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Abstract

We consider the question of robustness of the optimal nonlinear filter when the signal process
X and the observation noise are possibly correlated. The signal X and observations Y are given
by a SDE where the coefficients can depend on the entire past. Using results on pathwise
solutions of stochastic differential equations we express X as a functional of two independent
Brownian motions under the reference probability measure Py. This allows us to write the filter
7 as a ratio of two expectations. This is the main step in proving robustness.

In this framework we show that when (X", Y") converge to (X, Y) in law, then the correspond-
ing filters also converge in law. Moreover, when the signal and observation processes converge
in probability, so do the filters.

We also prove that the paths of the filter are continuous in this framework. (©) 2002 Elsevier
Science B.V. All rights reserved.

MSC: Primary 60G35; Secondary 60H10; 60G17; 60G44

Keywords.: Nonlinear filtering; Correlated signal and noise; Robustness; Pathwise formulae for
SDE

1. Introduction

We consider a general nonlinear filtering model with R? valued signal process X
and RF valued observation process Y where the observation noise is Gaussian. We
consider the case where the observation noise could possibly be correlated with the
signal X. Let 7 denote the optimal nonlinear filter defined by

n(f)=ELfX)|F]1,  f€Cp(RY).

Here and in the sequel, for any process 1, we will denote by Z the o-field generated
by {ns: 0 <s <t}. Cp(S) denotes the space of bounded continuous functions on a
metric space S.

We consider approximating processes (X”,Y") converging to (X,Y). Let n” denote
the corresponding nonlinear filter defined by

T ()=E[fX)Z]],  feCyR).
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In this article we address the question of robustness of the filter n: Does n" converge
to 7 (as C([0,T],.#(R?)) valued processes)? Here, .#,(R?) denotes the space of
positive finite measures equipped with the topology of weak convergence. C([0,T],S)
is the space of continuous functions from [0, 7] to S equipped with the topology of
uniform convergence and the corresponding Borel g-field.

It is well known that in general convergence in probability of (U", V") to (U, V') does
not even guarantee the weak convergence of the conditional expectations E[U"|V"] to
E[U|V]. Goggin (1994) obtained sufficient conditions for convergence of conditional
expectations and applied it to deduce weak convergence of n” to m assuming, among
other things, independence of signal and observation noise. In Bhatt et al. (1995) weak
convergence of " to m was shown in the signal-noise independent case using unique-
ness of solution of the (measure valued) Zakai equation. This required the assumption
that the signal is Markov. Both these results required stringent integrability conditions
to be satisfied.

Similar questions arise when one tries to prove convergence of approximate fil-
ter (computed via time discretisation or otherwise) to the optimal filter. See Goggin
(1992), Elliott and Glowinski (1989), Florschinger and Le Gland (1991), Budhiraja
and Kallianpur (1996).

In Bhatt et al. (1999) robustness of the filter (again in the signal-noise independent
case) was deduced directly from the Kallianpur Striebel Bayes’ formula under minimal
integrability conditions. The technique used was to express the filters n, 7" as

n(w)=H(Y (), n'(0)=H"(Y"(0))

for suitable Wiener functionals H and H" and then showing that H" converges to H
in probability.

Here, we extend these robustness results to the correlated case (Theorem 6.1). The
main hurdle in using this approach in the correlated case is that the usual analogue of
the Bayes’ formula expresses the filter as a ratio of two quantities each of which is
a conditional expectation as opposed to expectation in the independent case. Here we
consider the model

dX; = a(t, ,, %) AW} + b(t, X, %) AW? + c(t, 2, %,) dt,
dYt :h(tﬂ%ptz @Z)dt + dVV[29
%(S) :)(t/\sa

@Z‘(S) = Yt/\sa

where W' and W? are independent Brownian motions.
The main technique that we employ here is the following. We express X as a solution
of the following SDE.

dX, = a(t, 2, %,) AW, + b(t, 4;,%,) dY,
+(C(t, g{ts WJI) - b(t’ 3{‘[, @l)h(t’ g{ts @1))dt

We assume that the reference probability measure P, exists. Now using pathwise
solutions of stochastic differential equations, we express X as a functional of the two
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independent Brownian motions W', Y (under Py). This now facilitates writing 7 as a
ratio of two expectations (instead of conditional expectations) leading to a new Bayes’
formula for the filter in this framework. This in turn gives a way of proving robust-
ness of the filter in the correlated case, i.e. when the approximating processes (X", Y")
satisfy equations similar to the ones for (X, Y) given above, then weak convergence of
(X", Y™ to (X, Y) implies that " converges to m weakly.

We extend the robustness results in another direction. All the robustness results
referred to above show weak convergence of the filter. Here, we show that n" —
7 in probability when (X”,Y") — (X,Y) in probability (Theorem 7.3). We use the
weak convergence of n” — 7w along with a technical lemma (Lemma 7.2) to conclude
convergence in probability of n” — =w. This technique allows us to avoid the exponential
integrability conditions on the observation function 4. Here again, the pathwise formula
for the stochastic integral plays an important role—it allows us to substitute the path
of the integrator in a stochastic integral with another process.

We also prove that the paths of the filter are continuous in this framework.

Throughout the article = will denote convergence in law.

2. The filtering model

We will consider the filtering model where the signal process X and the observation
process Y are given by the following system of differential equations:

dX, = a(t, %, %,) AW} + b(t, X, %) AW? + c(t, %, %,) dt, (2.1a)
Ay, =h(t, %, %,) dt 4+ dW?, (2.1b)
Zi(s) = Xips, (2.1c)
Yy ()= Yins (2.1d)

for 0 <t < T, where X, W! are the R? valued processes, Y, W? are the R valued pro-
cesses and W', W? are the independent Wiener processes. Further, it is assumed that
Xy is independent of W' W? and Y,=0. All these processes are defined on a com-
plete probability space (,.7,P). Here (2;) and (%,) are, respectively, C([0,T],R?)
and C([0,T],R*) valued path processes. Let E be equal to [0,7] x C([0,T],R?) x
C([0,T],R¥). We will denote by M“*¥ the space of matrices of order d x k. Here,
the functions a, b, ¢ and A,

a:E— M  p.E—- Mk c:E-SRY hiE— R

are assumed to be continuous and each satisfying the following condition:

|f(t’ éa V]) - .f(ts él’ ;/’l)| < K ( Sllp |€u - 61/4| + Sup |’1u - i’[;|>

o<u<t O<u<t

VE E e C([0,T],RY), ' € C([0, T],R5). (2.2)
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Under these conditions, (2.1) admits a unique solution (see Kallianpur, 1980). It is
easy to see that the solution (X, Y) also satisfies
dX, = a(t, 2, %) AW, + b(t, 21, ) dY,
+ (c(t, 1, Yy) — b(t, X0, W)h(t, 21, %)) dt. (2.3)

Under the additional assumption that b4 also satisfies condition (2.2), it follows that
(2.3) along with (2.1b)—(2.1d) admit a unique solution.
Let g, be defined by

i =exp {/ SR 2, ) dY] 1 / \h(u, Z,,, %, )|2du} (2.4)
0

i=1

We will assume that

dP() S a 2,i 1 /T g 7)) 2
dP _qT _exp{ / Zh(u ],ua*/)dW 2 0 |h(u7‘2/‘ua Ju)| du
(2.5)
defines a probability measure Py.

Remark 2.1. P, defined above is always a probability measure if / is bounded. More
generally, when

1 (T ,
Eexp{z/ |h(u,;%"u,@u)2du} <00
0

Py is a probability measure. See Novikov (1972) or Kallianpur (1980).

This probability measure Py is called the reference probability measure. Under Py,
Y and W' are independent Brownian motions, also independent of Xj. Further, as a
consequence of Girsanov’s theorem, we get

PoX,'=PyoX;, ' =m,. (2.6)
Moreover, the optimal filter 7, admits a representation

m(f)= 20

Ve Cy(RY), (2.7)
where

ol f)=Ep,[f(X)q:| 7. (2.8)

This observation is well known when the signal is Markovian (see Elliott (1982,
Theorem 18.21)) and the same proof carries over to this case. This can also be verified
using Lemma 11.3.3 of Kallianpur (1980).

3. The Bayes’ formula

We will express o; as a functional on the Wiener space. For this purpose let Qy = R¢,
=C([0,T],RY), Q,=C([0,T],RF) and let Q=Q) x Q; x Q,. It was shown in
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Theorem 4.3 of Karandikar (1989) that the solution X of the SDE (2.3) can be ex-
pressed as a functional e of the initial condition X, and the underlying driving processes
W' and 7, i.e. there exists a mapping ¢:Q — Q| such that

X(0)=e(Xo(), # (), Y(0))(t) Vi, as. Po. (3.1)

(See also the discussion on pathwise formulae in stochastic calculus in Karandikar,
1995.) Here ! is the path process of W!'. It should be noted that the mapping e
depends on the coefficients a, b, ¢ and & appearing in (2.3) and does not depend on
the underlying measure.

Let J:C([0,T],R) x C([0,T],R) — C([0,T],R) denote the pathwise integral map
so that for continuous semimartingales U, V'

t
jl(U,V):/ UgdV; Vtas.
0

See Karandikar (1995). Define § on Q by
k

G(®)=exp {Zj, (K (-, e(o, 01,02), ), )

i=1
1 t
—5/0 Ih(u,e(wo;wl,wz),wz)lzdu}, (3.2)
where @& = (wg, w1, ;). Then,

G,(Xo(@), W (), #(w)) =qi(w) as. [Po]. (3.3)

Let 01,0, be the Wiener measures on ©, and €, respectively, and let O on Q be
defined by

QO=my x 01 X 0.
Define
Gi(f ) = / / (00, 1,02 X)) (0, 01, 02) dto(@0) Ay (1), (3.4)

Note that 6(f,~):EQ~[f(e(t))q~,|,}f,], where #, is the o-field generated by {w,(u):
0 <u <t}. Now using the fact that Py o (Xo, W',¥Y)"' =0, and Egs. (2.6), (2.8),
(3.1) and (3.3), we get

(/. Y(w)=0a(f)w) as.Po. (3.5)
Now defining 7# by

T(f, m2)= % (3.6)
it follows that

T(f, Y () =m(f)w) as.P. (3.7)

Egs. (3.5) and (3.7) express the unnormalized filter and the optimal filter, respec-
tively, as Wiener functionals of the observation path Y. These are analogues of similar
representations obtained in the signal-noise independent case in Bhatt et al. (1995,
1999).
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4. Continuity of the filter

In this section we will show that the filter 7, is a continuous process. The argument is
similar to that in signal-noise independent case given in Bhatt and Karandikar (1999b).
Note that by its definition, ¢, is continuous in ¢ for every @ € Q and further is a mean
one Q-martingale. Let

ﬁz(wz)://C?z(woawl,wz)dﬂo(wo)dQl(wl)~

It follows that (p,,%;) is a Q,-martingale, where (¥;) is the canonical filtration on
(€22, 8(£22), 0>) (satisfying usual hypotheses). Since O, is the Wiener measure on 25,
it follows that p, admits a continuous modification denoted by p;.

Let

N ={wy€Q: p,(w7)+# p(w,) for some rational r}.
Then it follows that Q,(N)=0. Note that
5= [ [ om0 dmon do). 0<i<T

is a continuous process and hence (%, )-predictable. Further, p, is the pointwise limit
of p as n tends to oo and hence j is also (%,)-predictable.

Fix a (%,)-stopping time 7. Let t"(wy)=27"[2"t(w,) + 1] (here, [x] denotes the
integer part of x). Note that 7"(w,) is rational and hence for w, ¢ N,

ﬁr"(wz)(wZ):p;k”(wz)(wz)' (4.1)

Fix w, ¢ N. Using (4.1) and Fatou’s lemma we conclude that
p:(wz)(ah) = hrIzn p:”(wz)(wZ)

= h£n ﬁ‘[”(u)z)(wZ)
= hmnlnf //qtn((uz)(wo,a)l,wz)dno(wo)dQl(a)l)
> [ [ timint g, (om0, 00) dma(00) 401 (o)

= //qNT(mz)(wOaa)l:wZ)dTCO(wO)dQl(wl)

= ﬁr(wz)(wZ )

Thus, p; = p, a.s. [Q»]. By Fubini and the definition of j it follows that Ep,[p.]=1.
Also, (p;) is a mean one continuous martingale and hence Eg,[p;]= 1. These obser-
vations give us

Ox(p,=p7)=1 for all stopping times 7. (4.2)
Since p and p* are predictable processes, (4.2) implies that

Ox(p,=p; for all 1)=1 (4.3)
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(see Meétivier, 1982, Theorem 14.2). Thus p, is continuous a.s. (,. Noting that
Ox(pr > 0)=1, p, is a O, martingale, and that p,(w2)=36,(1,w2) we get

[0)) (wz: 0<iItlgT&t(l,cug) > O) =1. 4.4)

(See Ethier and Kurtz, 1986, Proposition 11.2.15.) It follows that

- is continuous in ¢ a.s. Q0. (4.5)
O-t(la )

This discussion leads us to the following result.
Theorem 4.1. The paths of the processes (6,) and (7;) are Qp-a.s. continuous.

Proof. Let N; = {ws: p,(w;) is not continuous in ¢}. As seen earlier, 0>(N;)=0. Fix
t, — t.

Also, for w, & Ny,
q,, (w9, w1,m2) — G,(wo, w1,02) Vo, w;

and

//q,ﬂ(wo,wl,wz)dno(wo)dQl(wl)—>//q,(wg,wl,wz)dno(wo)dQl(wl).

Thus, for w, € Ny, {gq, (-, ,w2):n>1} is npy ® QO;-uniformly integrable. Since
f(e(wo,m1,m,)(t)) is bounded and is continuous in ¢ for all (wg, w;,w,), it now fol-
lows from (3.4) that 6, (f,w2) — 6,(f,w,) for all w, ¢ N,. Almost sure continuity
of ¢ is now immediate.

Continuity of 7 follows from this and Egs. (3.6), (4.5). [

Remark 4.1. It should be noted that we have not explicitly used the continuity of the
signal process in the above arguments. Similar arguments would yield continuity of
the filter even when (2.1a) has a jump component.

5. Approximating the filtering model

Let a,b,c,h be as in the previous section. We will assume that these satisfy (2.2)
and (X,Y) defined on (Q, #, P) satisfy (2.1). We will now consider processes (X", Y")
which approximate (X, Y).

Let K < oo be fixed. Let a”, b", ¢" and A" be continuous functions

a i E— M pE S MR o E SR WE— R

each satisfying condition (2.2) (with the same fixed K). As before we also assume
that the product function A"4" also satisfies condition (2.2).
Let X", Y" be solutions to the system of equations

dX! =a"(6, 2", %" AW + b, AT, Y AW+ (L AT, Y dt, (5.1a)

Ay} =1'(e. 27, ) de + AW, (5.1b)
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[ (8) =X (5.1c)

Yi(s)=Yins (5.1d)

for 0 <t < T, where the processes X", Y",W"! W"? are defined on some complete
probability space (Q", Z", P"), X",W"! are R? valued processes, Y", W"? are R* val-
ued processes and W™, W™?2 are independent Wiener processes. The processes 2" and
" are C([0,T],R?) and C([0,T], R¥) valued, respectively. Further, it is assumed that
Xy is independent of W™!, W"? with P" o (X{')~' == and Y =0.

We will assume that

Ty = Mo (5.2)
and for &€ C([0,T],RY) and n € C([0, T], RF)
sup [a"(t,&,n) — a(t, &, n)| — 0,

0<t<T

Sup |bn(ts 59 ’7) - b(ts é? ’7)‘ - O,

0<t<T

sup |Cn(t7 éa ’7) - C(t, 57 ’7)| - O»

0<t<T

sup |h"(t,&,n) — h(t,&,n)| — 0.

0<t<T

(5.3)

Even in the case when the processes are Markovian the above condition is weaker than
uniform convergence of coefficients on compacts. Here we require that the coefficients
converge uniformly in ¢ for every fixed &, 7.
Let ¢” be defined as in (2.4) with h, %, % replaced by A", Z",%". Define P by
n

T (54)
We assume that P{ is a probability measure. Again, P§ o (XJ)~' ==} and under
Py Y", W"! are Brownian motions and Xy, Y, w1 are independent. Moreover, X", Y"
also satisfy

dX! =a"(t, 2], AW + b (e, 27, W) dY

+ (@279 = V(@ AT, YR (@ AT, 9] dt (5.5)

Here again the SDE, along with (5.1b)—(5.1d) admits a unique strong (and weak)
solution. Let ¢” be the pathwise solution map of this SDE so that

X" =Xy, WL Y") as. P (5.6)

Analogous to (3.2) define §" on Q by
k

gy (D) =exp {Z J(H (-, ¢ (w0, 01, 02), 02), )

i=1

—%/ h”(u,e”(wo,w],wz),w2)|2du}. (5.7)
0
Then,

/() =G X5 (), 7™ (), 9" () as. [Pg]. (5.8)
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Theorem 5.1. (a) Pio(X",Y")"' = Plo(X,Y)" !
(b)y PP o (X", Y")y ' = Po(X,Y) L.

Proof. If all the processes were defined on the same space and if the convergence
of X{ to Xo was in probability, then the Theorem would follow from the results on
stability of solutions of SDE given in Emery (1979) or Karandikar (1989, Theorem
3.3). The situation at hand is handled via Skorokhod representation.

For part (a), using Skorokhod representation theorem we get a sequence of random
variables X 8 and X, on a probability space (I',%,R) such that X 8 — X as. [R], and
Ro(Xg) '=nl and Ro (X,)~' =mny.

Recall the definitions of Q;,Q, and Q;, 0, from the previous section. Let f5,Z be
the coordinate processes on 21, €2, respectively. Let X ,)? " be defined on (I''9,R)®
(21,7%,01) ® (2, 7% 0,) by

X(y, 01,02) = e(Xo(7), 01, 02)(1), (5.9)

X, (¢ 01,00) = " (X (), 01, 02)(0). (5.10)
Then X, X" are solutions of the Egs. (2.3) and (5.5), respectively, with the driving
processes f3,Z. The stability results referred above now imply

sup [X] —X,| =0 inR® QO ® O, probability. (5.11)

0<t<T

The result (a) follows from this as the law of (X", Z) under R® 0 ® O, is the same
as the law of (X”,Y") under Pj and law of (X,Z) under R® Q; ® Q, is the same as
the law of (X, Y) under Py.

For part (b) instead of considering the pathwise solutions of Egs. (2.3) and (5.5),
we look at pathwise solutions to (2.1) and (5.1), respectively. The rest of the argument
is same as in part (a). [

6. Robustness of the filter

We continue to use the notations introduced in the previous sections. We start by
noting that the functional ¢ defined by (3.4) can also be expressed as

5,(f,w2)://f()?t()),601,wg))pt()),wl,a)z)dR(“/)dQ1((1)1), (6.1)

where the probability measure R is as in the proof of Theorem 5.1 and

(0 01,02) = §,(Xo(7), w1, 02). (6.2)
Note that
e ko 1 N
P =exp {/ > W, 2)dz, - 5/ |h(u,%’,£”)|2du}. (6.3)
(UN— 0

Similarly, we define p” and 6" by

Pr(, o1, 0) =3/ (X (), 01,02) (6.4)
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and

31 f.00)= [ [ £ 00800102 dRG) A1), (6.5)
Once again note that

pl=exp {/Ot ih”’i(u, 1" 7)dzl - ;/0; W (u, ?Z'”,g)ﬁdu}. (6.6)
Let 7" be defined by i

A f )= Z’f(fﬁj)) : (6.7)

Define ¢”" and 7" by

ol (f)N@")=6/(f,Y" (")), (6.8)

T (W) =7/ (f, Y (). (6.9)
As in (3.7) we get

m(f)=Ep (X F]"]. (6.10)

Now we state the main theorem of this article. We restate all the assumptions explicitly.

Theorem 6.1. Let (X,Y), (X", Y") be solutions of SDE’s (2.1) and (5.1), respectively.
Let the coefficients a,b,c,h,bh,a",b",c", h",b"h" satisfy condition (2.2) for a fixed
constant K. Assume that Py and Pj defined by (2.5) and (5.4), respectively, are
probability measures. Further let (5.2) and (5.3) be satisfied. Then,

() Supy< <1 67(f, ) — 6, fo)| — 0 in Oy probability.

(b) supg—, 7 [R(fs02) — Al fow2)| — 0 in Oy probability.

(c) Pro(¢") ' = Pog™!.

(d) Pro(n")y ' = Ponr!.

Proof. (a) We will first show that for 7, — ¢, p, — pin L'R® 01 ® 0y), where p
and p" are defined by (6.3) and (6.6), respectively. Note that
sup |W' (6,4 %) —h(t, X, %)

0<t<T

< swp (LA Z) - W2, 7))

0<r<T

+ sup BT, %) — WX, %))

0<t<T
— 0 asn— o0oin R® Q; ® O, probability. (6.11)

We have used (5.9)—(5.11) to get that the first term on the RHS of the above inequality
tends to zero, since for every n, the function 4" satisfies the Lipschitz condition (2.2)
with the same fixed K. The second term tends to zero by (5.3).

It now follows that

sup —0 asn— o0

0<t<T

t t
/ W, A", %) dZ! — / W(u, 4, %)dZ!
0 0
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in R® Q) ® O, probability for 1 <i <k and
T
/ W, 2", 2) — h(u, 2, Z)Pdu — 0 as n— oo (6.12)
0
in R® 0 ® O, probability. As a consequence we get that

P} — p; in R® Q) ® O, probability.
Since

///pz’deQIdQZ:///pthd@sz:l

for all n, we get
Py = nL(R® 01 @ ). (6.13)

Since f(X ;’) is bounded and converges to f(X,) in R® Q; ® Q, probability it follows
that

/// [F&) P~ f(X)pi] dRAQ1 dQ, — 0.

Invoking Fubini’s theorem this gives

/ / |f(X,)p! — f(X)p|dRAO; — 0 in O, probability.
Thus, we get
|67 (f,@2) — 6/(f,@2)] — 0 in O probability. (6.14)

This now implies (a).

(b) Note that as in (4.4) we have info<,<7 67 (1,w2) > 0 ass. [Q,] for all n. Part
(b) now follows from part (a), (3.6), (6.7) and (4.4).

(c) Note that for G € Cp(C[0, T], .4 ((R9)),

Epi[G(0")] = Eps[G(0")q7]

= ER®Q1 ®0, [G(&n )pl}]
Similarly,

Ep[G(a)] = Ep,[G(a)qr]

= ER®Q1®Q2 [G(é:)pT]

The result now follows from (a) and (6.13).
Part (d) follows similarly using (b). [J

Remark 6.1. Instead of assuming (5.3) we can get the same conclusions as in Theorem
6.1 if we assume the weaker condition
—1

. T
P"o <X/ B (u, A", 9 ”)du,/ |h”(u,3£””,@")|2du>
0 0

—1

. T
= Po (X / he, 7. du, / |h(u,%,@>2du)
0 0
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This can be seen as follows. In the proof of Theorem 6.1 the convergence of the coef-
ficients was used to prove that the expression in (6.12) converges to 0 in probability,
where the processes X " and X are versions of X" and X, respectively, defined on some
appropriate representation space. Here, by choosing another appropriate representation
space and proceeding as in Lemma 3.1 of Bhatt et al. (1999) we can show that the
expression corresponding to (6.12) goes to zero in probability. It may be noted that
the Lemma referred to above proved the same result in the context of signal-noise
independent case. The remainder of the proof is similar to that of Theorem 6.1.

Remark 6.2. Note that we have deduced robustness of the filter without any reference
to the FKK (or Zakai) equation though it is known that n satisfies the FKK equation.
Indeed, at this level of generality, uniqueness of solution to the FKK equation may not
hold.

When the dependence of the coefficients a,b,c,h on X is Markovian, i.e. a(t,&,n) =
a(t, &, n) for a suitable @ (and similar conditions on b, ¢, &), uniqueness of solution to the
Zakai and FKK equations was proved in Bhatt and Karandikar, 1999a. No continuity
assumptions on the coefficients are required—only requirement being that system of
Egs. (2.1) admits a unique weak solution.

Remark 6.3. Here we have stated the results for finite-dimensional signal and noise.
However, the methods used can be easily carried over to infinite-dimensional setting.

7. Convergence in probability of the filter

In the previous section we considered the question of robustness of the filter under a
fairly general framework. In this section we will further assume that the approximating
processes are all defined on the same space and will show that in this setup the filters
will converge in probability.

We need to use the Emery topology on the space of semimartingales which is given
by the following metric d. (See Emery, 1979). For a semimartingale Z, define

r(Z)Z2”E{1/\( sup |Z,|>}

— 0<t<n
and for semimartingales Z;,Z,,
d(Z1,2,)
=sup {r < / fd(zZ, — 7, )) : f predictable and unformly bounded by 1} .
Let X and Y satisfy the stochastic differential equations

dX; = a(t, 2, %) AW} + b(t, X, %) dAW? + c(t, ;. ¥,) dt,

dY, = h(t, 2, %,)dt 4 dW?,
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%[(S) :‘th/\Sa

Yi(s)=Yirs (7.1)
for 0 <t < T, where X, W' are the R? valued processes, Y, W? are the R* valued
processes and W', W? are the independent Wiener processes. Let X, be indepen-
dent of W', W? and Yy =0. All these processes are defined on a complete probability
space (2, %,P). As before the functions a, b, ¢, h and bh will be assumed to satisfy
condition (2.2). Further, let X", Y" satisfy the equations

dX) =a"(, 27,9 AW, + B (6 A7, ) AWE + (A7, W) dt,

dY! =n"(t, 2", ") dt + dw?,

A7(8) = Xipss

Yl (s)=Yins (7.2)

for 0 < ¢ < T, where the W', W? are as in (7.1). We will assume that for all n, XJ is
independent of W', W? with Po (XJ)~! ==} and Y =0. We will continue to assume
that the coefficient functions a”, b", ¢, h" and b"h" satisfy (2.2) and (5.3). We will
now assume

Xy — Xy in P-probability. (7.3)

Under these conditions we have the following result. (See Emery (1979) or Karandikar
(1989, Theorem 3.3).)

Theorem 7.1. (X", Y") — (X,Y) in the Emery topology on the space of semi-
martingales.

We will need to use the following consequences of convergence in Emery topology.
Whenever f” and f are predictable, locally bounded processes with

P( sup |ff—f,|>8>—>0 Ve > 0, (7.4)

0<t<T

then we have

P( sup
0<t<T

(Similar statement holds for X” and X.) In particular, we have for all ¢ > 0,

t t
/f”dY”—/de’>8>—>0 Ve > 0. (7.5)
0 0

P( sup |Y' — Yy >£) — 0, (7.6)

0<t<T

P ( sup |X' — X| > 8) — 0. (7.7)
0<I<T

We will once again assume that Py and P defined, respectively, by (2.5) and (5.4)
are probability measures on (£, ). Let n and 7" be the optimal nonlinear filters
(defined by (2.7) and (6.9), respectively). Similarly, let ¢ and ¢” be the unnormalized
filters (defined by (2.8) and (6.8), respectively).
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Recall that o,(f)(w)=6,(f,Y(®)) as. [P] and o}(f)(@)=6](f,Y"(w)), where &,
and 67 are defined by (3.4) and (6.5), respectively. A similar statement holds for the
normalized filters. In Theorem 6.1 we showed that 7" converges in probability to 7
on the Wiener space and deduced the weak convergence of n” to m. Here, we will
show that the convergence of ©” to 7 is in fact in P-probability. The following lemma
is a crucial step towards this. It seems to be a simple measure of theoretical result.
However, we are unable to find a reference for the same and hence include the proof
here.

Lemma 7.2. Let U be a random variable and {U,} be a sequence of random variables
on a probability space (Q*, F*,P*) such that

(a) Pro(U,) ' =P oU!,

(b) liminf U, = U a.s. P*.

Then U, — U in P*-probability.

Proof. Let ¥, =tan~!(U,), V =tan~!(U). Then ¥, and V' are bounded, P*o(V})~! =
P*o(V)~! and

liminf ¥, >V as. [P*]. (7.8)

Since {V,} are bounded, we get E(V;,) — E(V).
On the other hand, using boundedness of {V;}, we get by an application of Fatou’s
lemma

E <lim inf V) <liminf E(V,)=E(V). (7.9)

n—oo

Now (7.8) and (7.9) imply

linrggéf V,=V as.[P*].
Let V,, =inf, >, V,. Then V,, — liminf ¥, =V as.

We thus have V, < V,, V,, — V a.s. and ¥, = V. Since {17,,} and {V,} are converg-
ing in law, the sequence {( V., V,)} is tight as R2-valued random variables. If (17,,k, Vi)
is a convergent subsequence, with (170, Vo) as a weak limit, then 17,,k < V,, implies that
Vo < Vy as. On the other hand, ¥y, ¥y both have same law as V. Hence, Vo=V a.s.
We then conclude,

(V) = (V7).
It then follows that P(|V,—V,| = &) — P(|V —V| = &) =0 for any ¢ > 0. Since V,, — V
a.s., it follows that 7, — V' in probability. [J

Recall that .#,(R?) denotes the space of positive finite measures on R? with
Prohorov metric.

Theorem 7.3. Let (X,Y),(X",Y") be solutions of SDE’s (7.1) and (7.2), respectively.
Let the coefficients a,b,c,h,bh,a",b",c", h",b"h" satisfy condition (2.2) for a fixed
constant K. Assume that Py and P} defined by (2.5) and (5.4), respectively, are
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probability measures. Further let (5.3) and (7.3) be satisfied. Then,
(a) 6" — o in P-probability as C([0,T],.# (R?)) valued processes.
(b) n" — m in P-probability as C([0,T], # ((R?)) valued processes.

Proof. (a) Let (I',%,R) be the Skorokhod representation space as in the proof of
Theorem 5.1. Let X 8, X o be random variables defined on this space such that X" =
X as. [R], and Ro (Xy) ™' =nf, Ro(X)~' =m,.

Consider the product space

(Q,7,P)=(I%,R) @ (2,7",0)) @ (2, F,P).

(Recall that Q; = C([0,T],R?) and that Q; is the Wiener measure.) Define X " X and
p", p on Q by

X[ (5 01,0) = "(Xo(7), 01, Y'(@)),  Xi(3,01,0) =e(Xo(7), 01, Y (@)), (7.10)

ﬁ;’(y,a)l,w):p:’(y,a)l,Y”(w)), ﬁz(yawl’w):pt(yswl>Y(w))’ (711)

where ¢, ¢, p", p are as in (5.6), (3.1), (6.6) and (6.3), respectively. Note that ()?n, ")
is a solution of the SDE (5.5) with W”! replaced by f and hence the law of X" under
P is same as the law of X” under P. Similarly, the law of X under P is same as the
law of X under P. It follows that for f € Cy(R?),

o (f0) = / / SR (0, )P (00, ) dR(7) A1 (1),

o frw)= / / SR 01, 0)) Py 01, 0) dRG) Q1 (o). (7.12)

Note that p” and p can also be represented by

t k t
) Al 1 ~n
f)f =exp {/ Zh"”(u,gf ,@")dY;’l — 5/ |h"(u,3f ,@")|2 du} R (7.13)
0 i=1 0

t k t
. N . 1 N
ﬁt:exp{/ > W d.Y)dy] - E/ h(u,gz,@)zdu}. (7.14)
0 4 0
As in (6.11) we get
sup |, 2" 9"y — h(t, Z,%)| — 0 in P probability. (7.15)
0<t<T

Using (7.4) and (7.5) we conclude that

sup
0<I<T

f t
/h"’f(u,éf",@")dY;”’—/ W, 4.9)dY,
0 0

— 0 in P probability

(7.16)

and

T
/ \W'u, 2", 9" = h(u, Z,%))*du — 0 in P probability. (7.17)
0
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Let t, — ¢ and let f € Cy(R?). As a consequence of (7.16) and (7.17) we get

Pl — p, in P probability (7.18)
and hence
fX)p! — f(X)p, in P probability. (7.19)

Let 0, = f(X Z,) pi and let 0= f X)) p,. Consider any subsequence (0,, ) of 0,. Then
0n, — 0 in R® Q1 ® P probability. Thus there exists a further subsequence, say ny,
such that

9% — 0 as.[R® (O ®P]asj— oo

Now applying Fatou’s lemma and using (7.12) we get

lim inf // 0n, dR dQ; = // liminf 0,, dRdQ :/ 0dRdQ;. (7.20)
Jj—oo J j—00 i

On the other hand, using (7.12) and Theorem 6.1 we have

lim inf // ij deQ1:a:j(f,.):xa,(f;):// 0dRdQ;. (7.21)

J— oo

Thus, using (7.20), (7.21) and Lemma 7.2 we get that
0, (f:) = ol f>")

in P-probability. Since the subsequence (n;) was arbitrary, we have shown that any
subsequence of ¢} has a further subsequence that converges in P-probability to a;.
This implies that

o, (f,-) — o/ f,-) in P-probability. (7.22)
Since ¢, is an arbitrary sequence converging to ¢, we get

sup |o}(f,-) —o(f,-)] — 0 in P-probability. (7.23)
0<I<T
This holds for all 1 € C,(RY). Hence we get (a).

(b) As in (4.4) we have

P <(u : inf o/(l,w) > 0> =1 Vn,
0<I<T

P (a) : infTat(l,a)) > 0) =1

0<t<

The proof of part (b) follows from this fact along with the definitions of 7" and 7 and
part (a). [

Remark 7.1. In literature, we find that robustness of the filter is studied vis-a-vis con-
vergence in law of n” to m. This may be useful when we want to simulate the true
filter 7 =7(Y), but are only able to simulate an approximate filter 7" = #"(Y"). Here
we have shown that this convergence holds in probability. In the context of filtering
theory, this is of more practical relevance, as seen in the following two Remarks.
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Remark 7.2. Suppose that the true (signal, observation) pair is given by (7.1) but is
approximated by the (signal, observation) pair modelled by (7.2) (for a large parameter
n). Then the true filter m is given by 7(Y) where as the filter computed based on the
model (7.2) will be #"(Y). Since the law of Y is absolutely continuous with respect
to the Wiener measure, Theorem 6.1 would imply that 7"(Y) converges to #(Y) in
probability. Thus, no serious error is committed by using an approximate model.

Remark 7.3. Now suppose that the true (signal, observation) pair is given by (7.2) (for
a large parameter n) but is approximated by the (signal, observation) pair modelled by
(7.1). Then the true filter « is given by 7#"(Y") (for the true observations are Y”) where
as the filter computed based on the model (7.1) will be Z(Y"). Using arguments similar
to those used in the proof of Theorem 7.3, it can be shown that 7(Y") converges to
7(Y) in probability. Since #"(Y™) also converges in probability to 7(Y), it follows that
7"(Y™) — 7(Y™) converges in probability to 0 again justifying the approximation.

Remark 7.4. In the usual signal-noise independent case, where the observation Y is
given by

t
mz/hmn®+m
0

with W being a Wiener process independent of signal X, if we approximate X by X"
in probability and consider

t
v [ wrogyas o,
0
we can conclude that the filters 7" converges to m in probability if
T
/ |W"(X") — h(X;)[*ds — 0 in probability.
0

This supplements the results in Bhatt et al. (1999) where we had shown convergence
in law.
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