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Abstract

We consider the question of robustness of the optimal nonlinear %lter when the signal process
X and the observation noise are possibly correlated. The signal X and observations Y are given
by a SDE where the coe8cients can depend on the entire past. Using results on pathwise
solutions of stochastic di:erential equations we express X as a functional of two independent
Brownian motions under the reference probability measure P0. This allows us to write the %lter
� as a ratio of two expectations. This is the main step in proving robustness.

In this framework we show that when (X n; Y n) converge to (X; Y ) in law, then the correspond-
ing %lters also converge in law. Moreover, when the signal and observation processes converge
in probability, so do the %lters.

We also prove that the paths of the %lter are continuous in this framework. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

We consider a general nonlinear %ltering model with Rd valued signal process X
and Rk valued observation process Y where the observation noise is Gaussian. We
consider the case where the observation noise could possibly be correlated with the
signal X . Let � denote the optimal nonlinear %lter de%ned by

�t(f) =E[f(Xt)|FY
t ]; f∈Cb(Rd):

Here and in the sequel, for any process �, we will denote by F
�
t the �-%eld generated

by {�s: 06 s6 t}. Cb(S) denotes the space of bounded continuous functions on a
metric space S.

We consider approximating processes (X n; Y n) converging to (X; Y ). Let �n denote
the corresponding nonlinear %lter de%ned by

�nt (f) =E[f(X n
t )|FY n

t ]; f∈Cb(Rd):
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In this article we address the question of robustness of the %lter �: Does �n converge
to � (as C([0; T ];M+(Rd)) valued processes)? Here, M+(Rd) denotes the space of
positive %nite measures equipped with the topology of weak convergence. C([0; T ]; S)
is the space of continuous functions from [0; T ] to S equipped with the topology of
uniform convergence and the corresponding Borel �-%eld.

It is well known that in general convergence in probability of (Un; V n) to (U; V ) does
not even guarantee the weak convergence of the conditional expectations E[Un|Vn] to
E[U |V ]: Goggin (1994) obtained su8cient conditions for convergence of conditional
expectations and applied it to deduce weak convergence of �n to � assuming, among
other things, independence of signal and observation noise. In Bhatt et al. (1995) weak
convergence of �n to � was shown in the signal–noise independent case using unique-
ness of solution of the (measure valued) Zakai equation. This required the assumption
that the signal is Markov. Both these results required stringent integrability conditions
to be satis%ed.

Similar questions arise when one tries to prove convergence of approximate %l-
ter (computed via time discretisation or otherwise) to the optimal %lter. See Goggin
(1992), Elliott and Glowinski (1989), Florschinger and Le Gland (1991), Budhiraja
and Kallianpur (1996).

In Bhatt et al. (1999) robustness of the %lter (again in the signal–noise independent
case) was deduced directly from the Kallianpur Striebel Bayes’ formula under minimal
integrability conditions. The technique used was to express the %lters �; �n as

�(!) =H (Y (!)); �n(!) =Hn(Y n(!))

for suitable Wiener functionals H and Hn and then showing that Hn converges to H
in probability.

Here, we extend these robustness results to the correlated case (Theorem 6.1). The
main hurdle in using this approach in the correlated case is that the usual analogue of
the Bayes’ formula expresses the %lter as a ratio of two quantities each of which is
a conditional expectation as opposed to expectation in the independent case. Here we
consider the model

dXt = a(t;Xt ;Yt) dW 1
t + b(t;Xt ;Yt) dW 2

t + c(t;Xt ;Yt) dt;

dYt = h(t;Xt ;Yt) dt + dW 2
t ;

Xt(s) =Xt∧s;

Yt(s) =Yt∧s;

where W 1 and W 2 are independent Brownian motions.
The main technique that we employ here is the following. We express X as a solution

of the following SDE.

dXt = a(t;Xt ;Yt) dW 1
t + b(t;Xt ;Yt) dYt

+ (c(t;Xt ;Yt) − b(t;Xt ;Yt)h(t;Xt ;Yt)) dt:

We assume that the reference probability measure P0 exists. Now using pathwise
solutions of stochastic di:erential equations, we express X as a functional of the two
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independent Brownian motions W 1; Y (under P0). This now facilitates writing � as a
ratio of two expectations (instead of conditional expectations) leading to a new Bayes’
formula for the %lter in this framework. This in turn gives a way of proving robust-
ness of the %lter in the correlated case, i.e. when the approximating processes (X n; Y n)
satisfy equations similar to the ones for (X; Y ) given above, then weak convergence of
(X n; Y n) to (X; Y ) implies that �n converges to � weakly.

We extend the robustness results in another direction. All the robustness results
referred to above show weak convergence of the %lter. Here, we show that �n →
� in probability when (X n; Y n) → (X; Y ) in probability (Theorem 7.3). We use the
weak convergence of �n → � along with a technical lemma (Lemma 7.2) to conclude
convergence in probability of �n → �. This technique allows us to avoid the exponential
integrability conditions on the observation function h. Here again, the pathwise formula
for the stochastic integral plays an important role—it allows us to substitute the path
of the integrator in a stochastic integral with another process.

We also prove that the paths of the %lter are continuous in this framework.
Throughout the article ⇒ will denote convergence in law.

2. The �ltering model

We will consider the %ltering model where the signal process X and the observation
process Y are given by the following system of di:erential equations:

dXt = a(t;Xt ;Yt) dW 1
t + b(t;Xt ;Yt) dW 2

t + c(t;Xt ;Yt) dt; (2.1a)

dYt = h(t;Xt ;Yt) dt + dW 2
t ; (2.1b)

Xt(s) =Xt∧s; (2.1c)

Yt(s) =Yt∧s (2.1d)

for 06 t6T , where X;W 1 are the Rd valued processes, Y;W 2 are the Rk valued pro-
cesses and W 1; W 2 are the independent Wiener processes. Further, it is assumed that
X0 is independent of W 1; W 2 and Y0 = 0. All these processes are de%ned on a com-
plete probability space (�;F; P). Here (Xt) and (Yt) are, respectively, C([0; T ];Rd)
and C([0; T ];Rk) valued path processes. Let E be equal to [0; T ] × C([0; T ];Rd) ×
C([0; T ];Rk). We will denote by Md×k , the space of matrices of order d × k. Here,
the functions a; b; c and h,

a :E →Md×d; b :E →Md×k ; c :E → Rd; h :E → Rk

are assumed to be continuous and each satisfying the following condition:

|f(t; �; �) − f(t; �′; �′)|6K
(

sup
06u6t

|�u − �′u| + sup
06u6t

|�u − �′u|
)

∀�; �′ ∈C([0; T ];Rd); �; �′ ∈C([0; T ];Rk): (2.2)
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Under these conditions, (2:1) admits a unique solution (see Kallianpur, 1980). It is
easy to see that the solution (X; Y ) also satis%es

dXt = a(t;Xt ;Yt) dW 1
t + b(t;Xt ;Yt) dYt

+ (c(t;Xt ;Yt) − b(t;Xt ;Yt)h(t;Xt ;Yt)) dt: (2.3)

Under the additional assumption that bh also satis%es condition (2.2), it follows that
(2.3) along with (2.1b)–(2.1d) admit a unique solution.

Let qt be de%ned by

qt = exp

{∫ t

0

k∑
i=1

hi(u;Xu;Yu) dY i
u −

1
2

∫ t

0
|h(u;Xu;Yu)|2 du

}
: (2.4)

We will assume that

dP0

dP
= q−1

T = exp

{
−
∫ T

0

k∑
i=1

hi(u;Xu;Yu) dW 2; i
u − 1

2

∫ T

0
|h(u;Xu;Yu)|2 du

}

(2.5)

de%nes a probability measure P0.

Remark 2.1. P0 de%ned above is always a probability measure if h is bounded. More
generally, when

E exp
{

1
2

∫ T

0
|h(u;Xu;Yu)|2 du

}
¡∞

P0 is a probability measure. See Novikov (1972) or Kallianpur (1980).

This probability measure P0 is called the reference probability measure. Under P0,
Y and W 1 are independent Brownian motions, also independent of X0. Further, as a
consequence of Girsanov’s theorem, we get

P ◦ X−1
0 =P0 ◦ X−1

0 = �0: (2.6)

Moreover, the optimal %lter �t admits a representation

�t(f) =
�t(f)
�t(1)

∀f∈Cb(Rd); (2.7)

where

�t(f) =EP0 [f(Xt)qt |FY
t ]: (2.8)

This observation is well known when the signal is Markovian (see Elliott (1982,
Theorem 18:21)) and the same proof carries over to this case. This can also be veri%ed
using Lemma 11:3:3 of Kallianpur (1980).

3. The Bayes’ formula

We will express �t as a functional on the Wiener space. For this purpose let �0 =Rd,
�1 =C([0; T ];Rd), �2 =C([0; T ];Rk) and let �̃=�0 × �1 × �2. It was shown in
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Theorem 4:3 of Karandikar (1989) that the solution X of the SDE (2.3) can be ex-
pressed as a functional e of the initial condition X0 and the underlying driving processes
W 1 and Y , i.e. there exists a mapping e : �̃ → �1 such that

Xt(!) = e(X0(!);W1(!);Y(!))(t) ∀t; a:s: P0: (3.1)

(See also the discussion on pathwise formulae in stochastic calculus in Karandikar,
1995.) Here W1 is the path process of W 1. It should be noted that the mapping e

depends on the coe8cients a; b; c and h appearing in (2.3) and does not depend on
the underlying measure.

Let I :C([0; T ];R) × C([0; T ];R) → C([0; T ];R) denote the pathwise integral map
so that for continuous semimartingales U; V

It(U; V ) =
∫ t

0
Us dVs ∀t a:s:

See Karandikar (1995). De%ne q̃ on �̃ by

q̃t(!̃) = exp

{
k∑

i=1

It
(
hi(· ; e(!0; !1; !2); !2); !i

2

)

− 1
2

∫ t

0
|h(u; e(!0;!1; !2); !2)|2 du

}
; (3.2)

where !̃= (!0; !1; !2). Then,

q̃t(X0(!);W1(!);Y(!)) = qt(!) a:s: [P0]: (3.3)

Let Q1; Q2 be the Wiener measures on �1 and �2, respectively, and let Q̃ on �̃ be
de%ned by

Q̃= �0 × Q1 × Q2:

De%ne

�̃t(f;!2) =
∫ ∫

f(e(!0; !1; !2)(t))q̃t(!0; !1; !2) d�0(!0) dQ1(!1): (3.4)

Note that �̃(f; ·) =EQ̃[f(e(t))q̃t |Ht], where Ht is the �-%eld generated by {!2(u):
06 u6 t}. Now using the fact that P0 ◦ (X0; W 1; Y )−1 = Q̃, and Eqs. (2.6), (2.8),
(3.1) and (3.3), we get

�̃t(f; Y (!)) = �t(f)(!) a:s: P0: (3.5)

Now de%ning �̃ by

�̃t(f;!2) =
�̃t(f;!2)
�̃t(1; !2)

; (3.6)

it follows that

�̃t(f; Y (!)) = �t(f)(!) a:s: P: (3.7)

Eqs. (3.5) and (3.7) express the unnormalized %lter and the optimal %lter, respec-
tively, as Wiener functionals of the observation path Y . These are analogues of similar
representations obtained in the signal–noise independent case in Bhatt et al. (1995,
1999).
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4. Continuity of the �lter

In this section we will show that the %lter �̃t is a continuous process. The argument is
similar to that in signal–noise independent case given in Bhatt and Karandikar (1999b).
Note that by its de%nition, q̃t is continuous in t for every !̃∈ �̃ and further is a mean
one Q̃-martingale. Let

$̃t(!2) =
∫ ∫

q̃t(!0; !1; !2) d�0(!0) dQ1(!1):

It follows that ($̃t ;Gt) is a Q2-martingale, where (Gt) is the canonical %ltration on
(�2;B(�2); Q2) (satisfying usual hypotheses). Since Q2 is the Wiener measure on �2,
it follows that $̃t admits a continuous modi%cation denoted by $∗t .

Let

N = {!2 ∈�2: $̃r(!2) 
= $∗r (!2) for some rational r}:
Then it follows that Q2(N ) = 0. Note that

$̃nt =
∫ ∫

(n ∧ q̃t(!0; !1; !2)) d�0(!0) dQ1(!1); 06 t6T

is a continuous process and hence (Gt)-predictable. Further, $̃t is the pointwise limit
of $̃nt as n tends to ∞ and hence $̃ is also (Gt)-predictable.

Fix a (Gt)-stopping time '. Let 'n(!2) = 2−n[2n'(!2) + 1] (here, [x] denotes the
integer part of x). Note that 'n(!2) is rational and hence for !2 
∈ N ,

$̃'n(!2)(!2) = $∗'n(!2)(!2): (4.1)

Fix !2 
∈ N . Using (4.1) and Fatou’s lemma we conclude that

$∗'(!2)(!2) = lim
n

$∗'n(!2)(!2)

= lim
n

$̃'n(!2)(!2)

= lim inf
n

∫ ∫
q̃' n(!2)(!0; !1; !2) d�0(!0) dQ1(!1)

¿
∫ ∫

lim inf
n

q̃'n(!2)(!0; !1; !2) d�0(!0) dQ1(!1)

=
∫ ∫

q̃'(!2)(!0; !1; !2) d�0(!0) dQ1(!1)

= $̃'(!2)(!2):

Thus, $∗' ¿ $̃' a.s. [Q2]. By Fubini and the de%nition of $̃ it follows that EQ2 [$̃'] = 1.
Also, ($∗t ) is a mean one continuous martingale and hence EQ2 [$

∗
' ] = 1: These obser-

vations give us

Q2($̃' = $∗' ) = 1 for all stopping times ': (4.2)

Since $̃ and $∗ are predictable processes, (4.2) implies that

Q2($̃t = $∗t for all t) = 1 (4.3)
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(see MRetivier, 1982, Theorem 14:2). Thus $̃t is continuous a.s. Q2. Noting that
Q2($̃T ¿ 0) = 1; $̃t is a Q2 martingale, and that $̃t(!2) = �̃t(1; !2) we get

Q2

(
!2: inf

06t6T
�̃t(1; !2)¿ 0

)
= 1: (4.4)

(See Ethier and Kurtz, 1986, Proposition II.2.15.) It follows that
1

�̃t(1; ·) is continuous in t a:s: Q2: (4.5)

This discussion leads us to the following result.

Theorem 4.1. The paths of the processes (�̃t) and (�̃t) are Q2-a.s. continuous.

Proof. Let N1 = {!2: $̃t(!2) is not continuous in t}. As seen earlier, Q2(N1) = 0. Fix
tn → t.

Also, for !2 
∈ N1,

q̃tn(!0; !1; !2) → q̃t(!0; !1; !2) ∀!0; !1

and ∫ ∫
q̃tn(!0; !1; !2) d�0(!0) dQ1(!1) →

∫ ∫
q̃t(!0; !1; !2) d�0(!0) dQ1(!1):

Thus, for !2 
∈ N1, {qtn(· ; · ; !2): n¿ 1} is �0 ⊗ Q1-uniformly integrable. Since
f(e(!0; !1; !2)(t)) is bounded and is continuous in t for all (!0; !1; !2), it now fol-
lows from (3.4) that �̃tn(f;!2) → �̃t(f;!2) for all !2 
∈ N1. Almost sure continuity
of �̃ is now immediate.

Continuity of �̃ follows from this and Eqs. (3.6), (4.5).

Remark 4.1. It should be noted that we have not explicitly used the continuity of the
signal process in the above arguments. Similar arguments would yield continuity of
the %lter even when (2.1a) has a jump component.

5. Approximating the �ltering model

Let a; b; c; h be as in the previous section. We will assume that these satisfy (2.2)
and (X; Y ) de%ned on (�;F; P) satisfy (2:1). We will now consider processes (X n; Y n)
which approximate (X; Y ).

Let K ¡∞ be %xed. Let an; bn; cn and hn be continuous functions

an :E →Md×d; bn :E →Md×k ; cn :E → Rd; hn :E → Rk

each satisfying condition (2.2) (with the same %xed K). As before we also assume
that the product function bnhn also satis%es condition (2.2).

Let X n; Y n be solutions to the system of equations

dX n
t = an(t;Xn

t ;Y
n
t ) dWn;1

t + bn(t;Xn
t ;Y

n
t ) dWn;2

t + cn(t;Xn
t ;Y

n
t ) dt; (5.1a)

dY n
t = hn(t;Xn

t ;Y
n
t ) dt + dWn;2

t ; (5.1b)
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Xn
t (s) =X n

t∧s; (5.1c)

Yn
t (s) =Y n

t∧s (5.1d)

for 06 t6T , where the processes X n; Y n;W n;1; W n;2 are de%ned on some complete
probability space (�n;Fn; Pn); X n;W n;1 are Rd valued processes, Y n;W n;2 are Rk val-
ued processes and Wn;1; W n;2 are independent Wiener processes. The processes Xn and
Yn are C([0; T ];Rd) and C([0; T ];Rk) valued, respectively. Further, it is assumed that
X n

0 is independent of Wn;1; W n;2 with Pn ◦ (X n
0 )−1 = �n0 and Y n

0 = 0.
We will assume that

�n0 ⇒ �0 (5.2)

and for �∈C([0; T ];Rd) and �∈C([0; T ];Rk)

sup
06t6T

|an(t; �; �) − a(t; �; �)| → 0;

sup
06t6T

|bn(t; �; �) − b(t; �; �)| → 0;

sup
06t6T

|cn(t; �; �) − c(t; �; �)| → 0;

sup
06t6T

|hn(t; �; �) − h(t; �; �)| → 0:

(5.3)

Even in the case when the processes are Markovian the above condition is weaker than
uniform convergence of coe8cients on compacts. Here we require that the coe8cients
converge uniformly in t for every %xed �; �.

Let qn be de%ned as in (2.4) with h;X;Y replaced by hn;Xn;Yn. De%ne Pn
0 by

dPn
0

dPn = (qnT )−1: (5.4)

We assume that Pn
0 is a probability measure. Again, Pn

0 ◦ (X n
0 )−1 = �n0 and under

Pn
0 ; Y

n;W n;1 are Brownian motions and X n
0 ; Y

n;W n;1 are independent. Moreover, X n; Y n

also satisfy

dX n
t = an(t;Xn

t ;Y
n
t ) dWn;1

t + bn(t;Xn
t ;Y

n
t ) dY n

t

+ (cn(t;Xn
t ;Y

n
t ) − bn(t;Xn

t ;Y
n
t )hn(t;Xn

t ;Y
n
t )) dt: (5.5)

Here again the SDE, along with (5.1b)–(5.1d) admits a unique strong (and weak)
solution. Let en be the pathwise solution map of this SDE so that

X n = en(X n
0 ; W

n;1; Y n) a:s: Pn
0 : (5.6)

Analogous to (3.2) de%ne q̃n on �̃ by

q̃nt (!̃) = exp

{
k∑

i=1

It(hn; i(· ; en(!0; !1; !2); !2); !i
2)

− 1
2

∫ t

0
|hn(u; en(!0; !1; !2); !2)|2 du

}
: (5.7)

Then,

qnt (!) = q̃nt (X
n
0 (!);Wn;1(!);Yn(!)) a:s: [Pn

0]: (5.8)
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Theorem 5.1. (a) Pn
0 ◦ (X n; Y n)−1 ⇒ P0 ◦ (X; Y )−1.

(b) Pn ◦ (X n; Y n)−1 ⇒ P ◦ (X; Y )−1.

Proof. If all the processes were de%ned on the same space and if the convergence
of X n

0 to X0 was in probability, then the Theorem would follow from the results on
stability of solutions of SDE given in Emery (1979) or Karandikar (1989, Theorem
3:3). The situation at hand is handled via Skorokhod representation.

For part (a), using Skorokhod representation theorem we get a sequence of random
variables X̃

n
0 and X̃ 0 on a probability space (*;G; R) such that X̃

n
0 → X̃ 0 a.s. [R], and

R ◦ (X̃
n
0)−1 = �n0 and R ◦ (X̃ 0)−1 = �0.

Recall the de%nitions of �1; �2 and Q1; Q2 from the previous section. Let ,; Z be
the coordinate processes on �1; �2, respectively. Let X̃ ; X̃

n
be de%ned on (*;G; R) ⊗

(�1;F,; Q1) ⊗ (�2;FZ; Q2) by

X̃ t(.; !1; !2) = e(X̃ 0(.); !1; !2)(t); (5.9)

X̃
n
t (.; !1; !2) = en(X̃

n
0(.); !1; !2)(t): (5.10)

Then X̃ ; X̃
n

are solutions of the Eqs. (2.3) and (5.5), respectively, with the driving
processes ,; Z . The stability results referred above now imply

sup
06t6T

|X̃ n
t − X̃ t | → 0 in R⊗ Q1 ⊗ Q2 probability: (5.11)

The result (a) follows from this as the law of (X̃
n
; Z) under R⊗Q1 ⊗Q2 is the same

as the law of (X n; Y n) under Pn
0 and law of (X̃ ; Z) under R⊗Q1 ⊗Q2 is the same as

the law of (X; Y ) under P0.
For part (b) instead of considering the pathwise solutions of Eqs. (2.3) and (5.5),

we look at pathwise solutions to (2:1) and (5:1), respectively. The rest of the argument
is same as in part (a).

6. Robustness of the �lter

We continue to use the notations introduced in the previous sections. We start by
noting that the functional �̃ de%ned by (3.4) can also be expressed as

�̃t(f;!2) =
∫ ∫

f(X̃ t(.; !1; !2))pt(.; !1; !2) dR(.) dQ1(!1); (6.1)

where the probability measure R is as in the proof of Theorem 5.1 and

pt(.; !1; !2) = q̃t(X̃ 0(.); !1; !2): (6.2)

Note that

pt = exp

{∫ t

0

k∑
i=1

hi(u; X̃;Z) dZi
u −

1
2

∫ t

0
|h(u; X̃;Z)|2 du

}
: (6.3)

Similarly, we de%ne pn and �̃n by

pn
t (.; !1; !2) = q̃nt (X̃

n
0(.); !1; !2) (6.4)
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and

�̃n
t (f;!2) =

∫ ∫
f(X̃

n
t (.; !1; !2))pn

t (.; !1; !2) dR(.) dQ1(!1): (6.5)

Once again note that

pn
t = exp

{∫ t

0

k∑
i=1

hn; i(u; X̃
n
;Z) dZi

u −
1
2

∫ t

0
|hn(u; X̃n

;Z)|2 du

}
: (6.6)

Let �̃n be de%ned by

�̃nt (f;!2) =
�̃n
t (f;!2)
�̃n
t (1; !2)

: (6.7)

De%ne �n and �n by

�n
t (f)(!n) = �̃n

t (f; Y
n(!n)); (6.8)

�nt (f)(!n) = �̃nt (f; Y
n(!n)): (6.9)

As in (3.7) we get

�nt (f) =EPn [f(X n
t )|FY n

t ]: (6.10)

Now we state the main theorem of this article. We restate all the assumptions explicitly.

Theorem 6.1. Let (X; Y ); (X n; Y n) be solutions of SDE’s (2:1) and (5:1); respectively.
Let the coe8cients a; b; c; h; bh; an; bn; cn; hn; bnhn satisfy condition (2:2) for a 9xed
constant K . Assume that P0 and Pn

0 de9ned by (2:5) and (5:4); respectively; are
probability measures. Further let (5:2) and (5:3) be satis9ed. Then;
(a) sup06t6T |�̃n

t (f;!2) − �̃t(f;!2)| → 0 in Q2 probability.
(b) sup06t6T |�̃nt (f;!2) − �̃t(f;!2)| → 0 in Q2 probability.
(c) Pn ◦ (�n)−1 ⇒ P ◦ �−1.
(d) Pn ◦ (�n)−1 ⇒ P ◦ �−1.

Proof. (a) We will %rst show that for tn → t; pn
tn → pt in L1(R⊗Q1 ⊗Q2), where p

and pn are de%ned by (6.3) and (6.6), respectively. Note that

sup
06t6T

|hn(t; X̃n
;Z) − h(t; X̃;Z)|

6 sup
06t6T

|hn(t; X̃n
;Z) − hn(t; X̃;Z)|

+ sup
06t6T

|hn(t; X̃;Z) − h(t; X̃;Z)|

→ 0 as n → ∞ in R⊗ Q1 ⊗ Q2 probability: (6.11)

We have used (5.9)–(5.11) to get that the %rst term on the RHS of the above inequality
tends to zero, since for every n, the function hn satis%es the Lipschitz condition (2.2)
with the same %xed K . The second term tends to zero by (5.3).

It now follows that

sup
06t6T

∣∣∣∣
∫ t

0
hn; i(u; X̃

n
;Z) dZi

u −
∫ t

0
hi(u; X̃;Z) dZi

u

∣∣∣∣ → 0 as n → ∞
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in R⊗ Q1 ⊗ Q2 probability for 16 i6 k and∫ T

0
|hn(u; X̃n

;Z) − h(u; X̃;Z)|2 du → 0 as n → ∞ (6.12)

in R⊗ Q1 ⊗ Q2 probability. As a consequence we get that

pn
tn → pt in R⊗ Q1 ⊗ Q2 probability:

Since ∫ ∫ ∫
pn
tn dR dQ1 dQ2 =

∫ ∫ ∫
pt dR dQ1 dQ2 = 1

for all n, we get

pn
tn → pt in L1(R⊗ Q1 ⊗ Q2): (6.13)

Since f(X̃
n
tn) is bounded and converges to f(X̃ t) in R⊗Q1 ⊗Q2 probability it follows

that ∫ ∫ ∫
|f(X̃

n
tn)p

n
tn − f(X̃ t)pt | dR dQ1 dQ2 → 0:

Invoking Fubini’s theorem this gives∫ ∫
|f(X̃

n
tn)p

n
tn − f(X̃ t)pt | dR dQ1 → 0 in Q2 probability:

Thus, we get

|�̃n
tn(f;!2) − �̃t(f;!2)| → 0 in Q2 probability: (6.14)

This now implies (a).
(b) Note that as in (4.4) we have inf 06t6T �̃

n
t (1; !2)¿ 0 a.s. [Q2] for all n. Part

(b) now follows from part (a), (3.6), (6.7) and (4.4).
(c) Note that for G ∈Cb(C[0; T ];M+(Rd)),

EPn [G(�n)] = EPn
0
[G(�n)qnT ]

= ER⊗Q1⊗Q2 [G(�̃n)pn
T ]:

Similarly,

EP[G(�)] = EP0 [G(�)qT ]

= ER⊗Q1⊗Q2 [G(�̃)pT ]:

The result now follows from (a) and (6.13).
Part (d) follows similarly using (b).

Remark 6.1. Instead of assuming (5.3) we can get the same conclusions as in Theorem
6.1 if we assume the weaker condition

Pn ◦
(
X n;

∫ ·

0
hn(u;Xn;Yn) du;

∫ T

0
|hn(u;Xn;Yn)|2 du

)−1

⇒ P ◦
(
X;
∫ ·

0
h(u;X;Y) du;

∫ T

0
|h(u;X;Y)|2 du

)−1

:
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This can be seen as follows. In the proof of Theorem 6.1 the convergence of the coef-
%cients was used to prove that the expression in (6.12) converges to 0 in probability,
where the processes X̃

n
and X̃ are versions of X n and X , respectively, de%ned on some

appropriate representation space. Here, by choosing another appropriate representation
space and proceeding as in Lemma 3:1 of Bhatt et al. (1999) we can show that the
expression corresponding to (6.12) goes to zero in probability. It may be noted that
the Lemma referred to above proved the same result in the context of signal–noise
independent case. The remainder of the proof is similar to that of Theorem 6.1.

Remark 6.2. Note that we have deduced robustness of the %lter without any reference
to the FKK (or Zakai) equation though it is known that � satis%es the FKK equation.
Indeed, at this level of generality, uniqueness of solution to the FKK equation may not
hold.

When the dependence of the coe8cients a; b; c; h on X is Markovian, i.e. a(t; �; �) =
â(t; �t ; �) for a suitable â (and similar conditions on b; c; h), uniqueness of solution to the
Zakai and FKK equations was proved in Bhatt and Karandikar, 1999a. No continuity
assumptions on the coe8cients are required—only requirement being that system of
Eqs. (2:1) admits a unique weak solution.

Remark 6.3. Here we have stated the results for %nite-dimensional signal and noise.
However, the methods used can be easily carried over to in%nite-dimensional setting.

7. Convergence in probability of the �lter

In the previous section we considered the question of robustness of the %lter under a
fairly general framework. In this section we will further assume that the approximating
processes are all de%ned on the same space and will show that in this setup the %lters
will converge in probability.

We need to use the Emery topology on the space of semimartingales which is given
by the following metric d. (See Emery, 1979). For a semimartingale Z , de%ne

r(Z) =
∞∑
n=1

2−nE
{

1 ∧
(

sup
06t6n

|Zt |
)}

and for semimartingales Z1; Z2,

d(Z1; Z2)

= sup
{
r
(∫

fd(Z1 − Z2)
)

: f predictable and unformly bounded by 1
}
:

Let X and Y satisfy the stochastic di:erential equations

dXt = a(t;Xt ;Yt) dW 1
t + b(t;Xt ;Yt) dW 2

t + c(t;Xt ;Yt) dt;

dYt = h(t;Xt ;Yt) dt + dW 2
t ;
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Xt(s) =Xt∧s;

Yt(s) =Yt∧s (7.1)

for 06 t6T , where X;W 1 are the Rd valued processes, Y;W 2 are the Rk valued
processes and W 1; W 2 are the independent Wiener processes. Let X0 be indepen-
dent of W 1; W 2 and Y0 = 0. All these processes are de%ned on a complete probability
space (�;F; P). As before the functions a; b; c; h and bh will be assumed to satisfy
condition (2.2). Further, let X n; Y n satisfy the equations

dX n
t = an(t;Xn

t ;Y
n
t ) dW 1

t + bn(t;Xn
t ;Y

n
t ) dW 2

t + cn(t;Xn
t ;Y

n
t ) dt;

dY n
t = hn(t;Xn

t ;Y
n
t ) dt + dW 2

t ;

Xn
t (s) =X n

t∧s;

Yn
t (s) =Y n

t∧s (7.2)

for 06 t6T , where the W 1; W 2 are as in (7.1). We will assume that for all n; X n
0 is

independent of W 1; W 2 with P ◦ (X n
0 )−1 = �n0 and Y n

0 = 0. We will continue to assume
that the coe8cient functions an; bn; cn; hn and bnhn satisfy (2.2) and (5.3). We will
now assume

X n
0 → X0 in P-probability: (7.3)

Under these conditions we have the following result. (See Emery (1979) or Karandikar
(1989, Theorem 3:3).)

Theorem 7.1. (X n; Y n) → (X; Y ) in the Emery topology on the space of semi-
martingales.

We will need to use the following consequences of convergence in Emery topology.
Whenever fn and f are predictable, locally bounded processes with

P
(

sup
06t6T

|fn
t − ft |¿5

)
→ 0 ∀5¿ 0; (7.4)

then we have

P
(

sup
06t6T

∣∣∣∣
∫ t

0
fn dY n −

∫ t

0
f dY

∣∣∣∣¿5
)

→ 0 ∀5¿ 0: (7.5)

(Similar statement holds for X n and X .) In particular, we have for all 5¿ 0,

P
(

sup
06t6T

|Y n
t − Yt |¿5

)
→ 0; (7.6)

P
(

sup
06t6T

|X n
t − Xt |¿5

)
→ 0: (7.7)

We will once again assume that P0 and Pn
0 de%ned, respectively, by (2.5) and (5.4)

are probability measures on (�;F). Let � and �n be the optimal nonlinear %lters
(de%ned by (2.7) and (6.9), respectively). Similarly, let � and �n be the unnormalized
%lters (de%ned by (2.8) and (6.8), respectively).
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Recall that �t(f)(!) = �̃t(f; Y (!)) a.s. [P] and �n
t (f)(!) = �̃n

t (f; Y
n(!)), where �̃t

and �̃n
t are de%ned by (3.4) and (6.5), respectively. A similar statement holds for the

normalized %lters. In Theorem 6.1 we showed that �̃n converges in probability to �̃
on the Wiener space and deduced the weak convergence of �n to �. Here, we will
show that the convergence of �n to � is in fact in P-probability. The following lemma
is a crucial step towards this. It seems to be a simple measure of theoretical result.
However, we are unable to %nd a reference for the same and hence include the proof
here.

Lemma 7.2. Let U be a random variable and {Un} be a sequence of random variables
on a probability space (�∗;F∗; P∗) such that
(a) P∗ ◦ (Un)−1 ⇒ P∗ ◦ U−1;
(b) lim inf Un¿U a:s: P∗.
Then Un → U in P∗-probability.

Proof. Let Vn = tan−1(Un), V = tan−1(U ). Then Vn and V are bounded, P∗ ◦ (Vn)−1 ⇒
P∗ ◦ (V )−1 and

lim inf Vn¿V a:s: [P∗]: (7.8)

Since {Vn} are bounded, we get E(Vn) → E(V ).
On the other hand, using boundedness of {Vn}; we get by an application of Fatou’s

lemma

E
(

lim inf
n→∞ Vn

)
6 lim inf

n→∞ E(Vn) =E(V ): (7.9)

Now (7.8) and (7.9) imply

lim inf
n→∞ Vn =V a:s: [P∗]:

Let Ṽm = inf n¿m Vn: Then Ṽm → lim inf Vn =V a:s:
We thus have Ṽn6Vn; Ṽn → V a.s. and Vn ⇒ V . Since {Ṽn} and {Vn} are converg-

ing in law, the sequence {(Ṽn; Vn)} is tight as R2-valued random variables. If (Ṽnk ; Vnk )
is a convergent subsequence, with (Ṽ0; V0) as a weak limit, then Ṽnk 6Vnk implies that
Ṽ06V0 a.s. On the other hand, Ṽ0; V0 both have same law as V . Hence, Ṽ0 =V0 a.s.
We then conclude,

(Ṽn; Vn) ⇒ (V; V ):

It then follows that P(|Ṽn−Vn|¿ 5) → P(|V−V |¿ 5) = 0 for any 5¿ 0. Since Ṽn → V
a.s., it follows that Vn → V in probability.

Recall that M+(Rd) denotes the space of positive %nite measures on Rd with
Prohorov metric.

Theorem 7.3. Let (X; Y ); (X n; Y n) be solutions of SDE’s (7:1) and (7:2); respectively.
Let the coe8cients a; b; c; h; bh; an; bn; cn; hn; bnhn satisfy condition (2:2) for a 9xed
constant K. Assume that P0 and Pn

0 de9ned by (2:5) and (5:4); respectively; are
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probability measures. Further let (5:3) and (7:3) be satis9ed. Then;
(a) �n → � in P-probability as C([0; T ];M+(Rd)) valued processes.
(b) �n → � in P-probability as C([0; T ];M+(Rd)) valued processes.

Proof. (a) Let (*;G; R) be the Skorokhod representation space as in the proof of
Theorem 5.1. Let X̂

n
0; X̂ 0 be random variables de%ned on this space such that X̂

n →
X̂ a.s. [R], and R ◦ (X̂

n
0)−1 = �n0; R ◦ (X̂ )−1 = �0.

Consider the product space

(�̂; F̂; P̂) = (*;G; R) ⊗ (�1;F,; Q1) ⊗ (�;F; P):

(Recall that �1 =C([0; T ];Rd) and that Q1 is the Wiener measure.) De%ne X̂
n
; X̂ and

p̂n; p̂ on �̂ by

X̂
n
t (.; !1; !) = en(X̂

n
0(.); !1; Y n(!)); X̂ t(.; !1; !) = e(X̂ 0(.); !1; Y (!)); (7.10)

p̂n
t (.; !1; !) =pn

t (.; !1; Y n(!)); p̂t(.; !1; !) =pt(.; !1; Y (!)); (7.11)

where en; e; pn; p are as in (5.6), (3.1), (6.6) and (6.3), respectively. Note that (X̂
n
; Y n)

is a solution of the SDE (5.5) with Wn;1 replaced by , and hence the law of X̂
n

under
P̂ is same as the law of X n under P. Similarly, the law of X̂ under P̂ is same as the
law of X under P. It follows that for f∈Cb(Rd),

�n
t (f;!) =

∫ ∫
f(X̂

n
t (.; !1; !))p̂n

t (.; !1; !) dR(.) dQ1(!1);

�t(f;!) =
∫ ∫

f(X̂ t(.; !1; !))p̂t(.; !1; !) dR(.) dQ1(!1): (7.12)

Note that p̂n and p̂ can also be represented by

p̂n
t = exp

{∫ t

0

k∑
i=1

hn; i(u; X̂
n
;Yn) dY n; i

u − 1
2

∫ t

0
| hn(u; X̂n

;Yn)|2 du

}
; (7.13)

p̂t = exp

{∫ t

0

k∑
i=1

hi(u; X̂;Y) dY i
u −

1
2

∫ t

0
|h(u; X̂;Y)|2 du

}
: (7.14)

As in (6.11) we get

sup
06t6T

| hn(t; X̂n
; Ŷ

n
) − h(t; X̂; Ŷ)| → 0 in P̂ probability: (7.15)

Using (7.4) and (7.5) we conclude that

sup
06t6T

∣∣∣∣
∫ t

0
hn; i(u; X̂

n
; Ŷ

n
) dY n; i

u −
∫ t

0
hi(u; X̂; Ŷ) dY i

u

∣∣∣∣ → 0 in P̂ probability

(7.16)

and ∫ T

0
| hn(u; X̂n

; Ŷ
n
) − h(u; X̂; Ŷ)|2 du → 0 in P̂ probability: (7.17)
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Let tn → t and let f∈Cb(Rd). As a consequence of (7.16) and (7.17) we get

p̂n
tn → p̂t in P̂ probability (7.18)

and hence

f(X̂
n
tn)p̂

n
tn → f(X̂ t)p̂t in P̂ probability: (7.19)

Let 7n =f(X̂
n
tn)p̂

n
tn and let 7=f(X̂ t)p̂t . Consider any subsequence (7nk ) of 7n. Then

7nk → 7 in R ⊗ Q1 ⊗ P probability. Thus there exists a further subsequence, say nkj
such that

7nkj → 7 a:s: [R⊗ Q1 ⊗ P] as j → ∞:

Now applying Fatou’s lemma and using (7.12) we get

lim inf
j→∞

∫ ∫
7nkj dR dQ1¿

∫ ∫
lim inf
j→∞

7nkj dR dQ1 =
∫ ∫

7 dR dQ1: (7.20)

On the other hand, using (7.12) and Theorem 6.1 we have

lim inf
j→∞

∫ ∫
7nkj dR dQ1 = �

nkj
tnkj

(f; ·) ⇒ �t(f; ·) =
∫ ∫

7 dR dQ1: (7.21)

Thus, using (7.20), (7.21) and Lemma 7.2 we get that

�
nkj
tnkj

(f; ·) → �t(f; ·)

in P-probability. Since the subsequence (nk) was arbitrary, we have shown that any
subsequence of �n

tn has a further subsequence that converges in P-probability to �t .
This implies that

�n
tn(f; ·) → �t(f; ·) in P-probability: (7.22)

Since tn is an arbitrary sequence converging to t, we get

sup
06t6T

|�n
t (f; ·) − �t(f; ·)| → 0 in P-probability: (7.23)

This holds for all f∈Cb(Rd). Hence we get (a).
(b) As in (4.4) we have

P
(
! : inf

06t6T
�n
t (1; !)¿ 0

)
= 1 ∀n;

P
(
! : inf

06t6T
�t(1; !)¿ 0

)
= 1:

The proof of part (b) follows from this fact along with the de%nitions of �n and � and
part (a).

Remark 7.1. In literature, we %nd that robustness of the %lter is studied vis-a-vis con-
vergence in law of �n to �. This may be useful when we want to simulate the true
%lter �= �̃(Y ), but are only able to simulate an approximate %lter �n = �̃n(Y n). Here
we have shown that this convergence holds in probability. In the context of %ltering
theory, this is of more practical relevance, as seen in the following two Remarks.
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Remark 7.2. Suppose that the true (signal, observation) pair is given by (7.1) but is
approximated by the (signal, observation) pair modelled by (7.2) (for a large parameter
n). Then the true %lter � is given by �̃(Y ) where as the %lter computed based on the
model (7.2) will be �̃n(Y ). Since the law of Y is absolutely continuous with respect
to the Wiener measure, Theorem 6.1 would imply that �̃n(Y ) converges to �̃(Y ) in
probability. Thus, no serious error is committed by using an approximate model.

Remark 7.3. Now suppose that the true (signal, observation) pair is given by (7.2) (for
a large parameter n) but is approximated by the (signal, observation) pair modelled by
(7.1). Then the true %lter � is given by �̃n(Y n) (for the true observations are Y n) where
as the %lter computed based on the model (7.1) will be �̃(Y n). Using arguments similar
to those used in the proof of Theorem 7.3, it can be shown that �̃(Y n) converges to
�̃(Y ) in probability. Since �̃n(Y n) also converges in probability to �̃(Y ), it follows that
�̃n(Y n) − �̃(Y n) converges in probability to 0 again justifying the approximation.

Remark 7.4. In the usual signal–noise independent case, where the observation Y is
given by

Yt =
∫ t

0
h(Xs) ds + Wt

with W being a Wiener process independent of signal X , if we approximate X by X n

in probability and consider

Y n
t =

∫ t

0
hn(X n

s ) ds + Wt;

we can conclude that the %lters �n converges to � in probability if∫ T

0
|hn(X n

s ) − h(Xs)|2 ds → 0 in probability:

This supplements the results in Bhatt et al. (1999) where we had shown convergence
in law.
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