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Geometric phase for a dimerized disordered continuum:

Topological shot noise
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Abstract

Geometric phase shift associated with an electron propagating through a

dimerized-disordered continuum is shown to be 0, or ±π (modulo 2π), ac-

cording as the associated circuit traversed in the two-dimensional parameter

space excludes, or encircles a certain singularity. This phase-shift is a topo-

logical invariant. Its discontinuous dependence on the electron energy and

disorder implies a statistical spectral and conductance fluctuation in a cor-

responding mesoscopic system. Inasmuch as the fluctuation derives from the

discreteness of the phase shift, it may aptly be called a topological shot-noise.

.

.

PACS. 03.65.Bz - Berry’s phase.

PACS. 73.23.-b - Mesoscopic systems.

PACS. 72.15.-v - Electronic conduction in metals and alloys.
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The geometric phase, that is the phase shift acquired by a non- degenerate eigenstate

of a quantum-mechanical Hamiltonian as the latter is cycled adiabatically through a closed

circuit in the space of its parameters, is now a well known and well studied anholonomy in

quantum physics [1]. This phase depends on the geometry of the circuit traversed, and not

on how it is traversed. Hence, the name geometric phase, as opposed to the dynamical phase.

It was re-discovered and discussed explicitly in the modern context by Berry [2],(hence also

known as the Berry phase after him) who had envisaged it for a dynamical sub-system of

interest with fast degrees of freedom, coupled to and enslaved by another sub-system of

relatively slower degrees of freedom (the parameters), with the total system wavefunction

remaining single-valued, of course. The idea has since been generalized to the case of non-

adiabatic evolution [3], with the only condition that the evolution be confined to the same

Hilbert space. The geometric phase in general varies continuously with the geometry of

the parametric circuit traversed. Thus, e.g., in the case of a spin-1/2 object (an electron,

say) in an external magnetic-field vector cycled over a cone, the geometric phase acquired

by the spin eigenstates is ±1/2 times the conical solid-angle so subtended [2]. There are,

however, interesting exceptions where the geometric phase can be a topologically invariant

quantity having only discrete allowed values. A case in point is the Zak [4] phase acquired

by the Bloch wave for a one-dimensional one-band periodic system where the parameter,

namely the wave vector ~q is cycled over the closed reciprocal space (the first Brillouin zone),

with ~q and ~q + ~G identified. (Here ~G ≡ shortest reciprocal lattice vector). In the present

work, we report yet another case of a topological phase shift that appears naturally when we

consider an electron propagating in a dimerized-disordered one-dimensional lattice, treated

here in the continuum limit. Here, the time-independent Schrödinger equation for the wave-

amplitude can be transformed to the spatial evolution equation for a pseudo-spin-1/2 object

in a pseudo-magnetic field generating a two-dimensional parameter space. The evolution,

however, turns out to be non-unitary. Following the recently developed procedure for non-

unitary evolution [5,6], we have calculated the geometric phase for a circuit and found it to

be 0, or ±π according as the circuit traversed excludes, or encircles a certain singular point
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in the parameter space. This topological phase depends discontinuously on disorder and

on the electron energy, and its discreteness is, therefore, expected to introduce a shot-noise

characteristic in the statistics of spectral and conductance fluctuations for certain mesoscopic

systems. Observable and calculable consequences for disordered mesoscopic systems are

discussed.

Consider the Schrödinger equation for the wave amplitude ψn for a 1D tight-binding

system given by

ih̄
∂ψn

∂t
= V E

n ψn − ν(ψn+1 + ψn−1), (1a)

ih̄
∂ψn

∂t
= V O

n ψn − ν(ψn+1 + ψn−1), (1b)

where dimerized-disorder has been introduced through the random site-diagonal potentials

V E
n and V O

n for the even and the odd sites respectively. More specifically, we set V E
n =

Un + ηn, V O
n = Un − ηn and treat Un and ηn as statistically independent random variables.

This bipartite structure is essential to our work. We now proceed to the continuum limit,

but without losing the two-sublattice structure. For this, we define [7]

ψ2n(t) = i2n(2s)1/2ψE(x, t), (2a)

ψ2m+1(t) = i2m+1(2s)1/2ψO(y, t), (2b)

and let the lattice spacing s → 0, total site number N → ∞, keeping the total length

L = Ns fixed and setting 2ns = x, (2m+1)s = y. In order to have a well defined continuum

limit, the coupling ν must also be scaled as ν → ∞, keeping 2sν/h̄ = vF . Then, defining

ψL = (ψE + ψO)/
√

2 and ψR = (ψE − ψO)/
√

2, we get

ih̄
∂

∂t









ψL

ψR









=









U(x) − ih̄vF
∂
∂x

η(x)

η(x) U(x) + ih̄vF
∂
∂x

















ψL

ψR









. (3)

It is clear that the above equation describes the left-going and the right-going wave am-

plitudes (also called the left- and right-movers in the context of a two-component Dirac

equation for a massless particle in 1-space + 1-time dimension) with the back-scattering

3



admixing them. Thus, for U(x) = 0 = η(x), the electron energy E = ±h̄vFk, where k is the

wavevector. We can rewrite it by introducing a two-component wave amplitude ψ as

ψ =









ψL

ψR









, (4)

and the evolution equation Eq.3 then becomes

ih̄vF
∂ψ

∂x
= −(E − U(x))σzψ + iη(x)σyψ ≡ Heffψ, (5)

where we have set ih̄ ∂
∂t

≡ E, the electron energy. This is our main equation and can be

studied for possible geometric phases. In this form the connection with a pseudo-spin 1/2

evolving spatially in a pseudo-field is clear. However, the evolution is now in space and is

non-unitary because of the imaginary ”i” occurring on the right-hand side of the equation.

We now proceed to calculate the geometric phase associated with the spatial evolution

given by Eq.5. First note that the instantaneous eigenvalues of the evolution (non-Hermitian)

Hamiltonian Heff in Eq.5 are:

λ± = ±
√

(E − U(x))2 − η(x)2 (6)

and the corresponding right-eigenvectors (unnormalized) are:

|± >=









(E−U(x))∓
√

(E−U(x))2−η(x)2

η(x)

1









, (7)

noindent with bi-orthogonality between the left- and the right-eigenvectors.

Consider now the 1D disordered dimerized system as terminated asymptotically into two

ordered leads that may be joined. We now consider the evolution of the two-component wave

amplitude ψ(x) as x varies from one ordered lead to the other through a disordered segment.

This will subtend a closed circuit in the two-dimensional parameter space R(U(x), η(x)).

The question we are addressing now is whether or not there is a geometric phase associated

with the circuit and its magnitude if there is any. Such an anholonomy is expected from

the form of the evolution equation Eq.5 even though the evolution is non-unitary. The
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essential feature is the non-commutativity of the diagonal and the off-diagonal parts of the

Hamiltonian Heff . It is important to note here, that the circuit in the parameter space

depends explicitly on the energy E. We take the random potentials to vary slowly in the

x-space so as to make the evolution adiabatic in the sense of the geometric phase.

As noted earlier, a first principle calculation of the geometric phase is given in Ref. [2]

for an adiabatic and unitary evolution of the Hamiltonian on a closed circuit in a parameter

space. Calculation of the geometric phase was later generalized for the non-unitary evolution

[5,6]. The geometric phase γ for an adiabatic evolution in terms of the instantaneous right-

eigenstate is given by

γ± = i
∮

< ±|∂ ~R± >

< ±|± >
d~R , (8)

where ~R traces the circuit in the two-dimensional parameter spaces R((E − U), η). Now,

from Eq.8, the values of the geometric phases for the instantaneous eigenvectors | + > and

| − > are,

γ± = ∓
∮ 1

2





1/η d(E − U)
√

1 − (E − U)2/η2

− (E − U)/η2 dη
√

1 − (E − U)2/η2



 . (9)

From Eq.8, it is clear that in order to have a non-zero geometric phase, the ”instantaneous”

eigenvector has to be complex. The eigenvector expressions in Eq.7 give | ± > to be complex

if | η(x) |>| E − U(x) |. In Fig.1 we have drawn the parameter space R((E − U(x)), η(x))

with typical circuits marked (1), (2) or (3) . The region | η(x) |>| E − U(x) | is shown

in shade, where eigenvectors are complex and the geometric phase shift arises. In the

non-shaded region the eigenvectors are real and have no geometric phases associated with

them. Straightforward application of Stokes theorem shows that the total geometric phase

associated with a closed circuit in the parameter space is zero except for the case of circuits

encircling the singular point E − U = 0, η = 0. Also, in the latter case, the phase shift is

independent of the particular circuit traversed. We have, therefore, chosen a simple circuit

marked (1) as shown in Fig.1 for computational case. We get (setting (E − U)/η = z):
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γ± = ∓1

2

[

2 sin−1 z |+1
−1

]

= ±π (mod 2π). (10)

This is our main result.

It will be apt at this stage to discuss the validity of Eq.10. In particular, we would like

to assure ourselves that the approximations of the continuum limit, of adiabaticity and the

consideration of localization do not drastically limit the domain of validity of the Eq.10.

First, the continuum limit (Eq.2) in relation to the singular points where the right-hand

side of the Eq.6 vanishes, giving the topological phase jump. In the absence of disorder,

the dimer-to-dimer spatial variation of the two-component wave function for the discrete

dimerized lattice is controlled by the wavevector, k, for a given energy eigenvalue, E. With

disorder, one has to consider the local wavevector k(x), which vanishes at the ’turning

points’ E − U = 0 = η, where the local energy eigenvalue λ± vanishes. This ensures a slow

spatial variation as k(x)s = 0 at these points, where s is the lattice spacing. This justifies

our continuum limit at the point E − U(x) = 0 = η(x), that generates the topological

phase-shift. The topological nature of this phase shift then ensures validity of our treatment

in the neighbourhood of this singular point. The point to note here is that the slowness

of variation of the wave function, relevant to our continuum limit, is over dimer-to-dimer

spacing, and not intra-dimer. The latter is absorbed in the two-component nature of our

wave function. This is quite analogous to the two-component Dirac continuum limit of the

two-band models, treated in the literature [7] In our case, the dirac equation is massless.

Next, we consider the effect of localization. First, it is seen from the Eq.3, that the disorder

U(x) can give only forward scattering and hence can not be very effective for localization.

It is the disorder η(x) that gives back-scattering and is effective for localization. However,

both U(x) and η(x) control the path in the parameter space, and, therefore, whether or not

the path encircles the singular point. One can thus have weak disorder, so as to have the

localization length exceed the sample length and still not invalidate the continuum limit in

view of our discussion above. Slow variation of disorder in space can ensure adiabaticity.

Thus, in principle, the parameter space for the validity of our treatment is not constrained by
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conditions for continuum limit, localization and adiabaticity, militating against one another.

The question now is what observable consequences this geometric (topological) phase

may have. Given that it is the relative, rather than the absolute phase that has a physical

significance, one has basically two ways of demonstrating the geometric-phase sensitive ef-

fects. Either prepare the quantum system in a coherent superposition of two instantaneous

eigenstates that pick up different geometric phases for the same path traversed in the pa-

rameter space (i.e., two states but one Hamiltonian), or prepare the system in a given initial

(instantaneous) eigenstate and let it evolve along two different alternative paths traversing

the parameter spaces so as to give an interference between the partial amplitudes (one state

and two Hamiltonians). The physical significance of the above geometric (topological) phase

is, however, best realized by considering the following situation. Consider a 1D disordered

dimerized conductor in the form of a ring. Such a system automatically ensures a closed

circuit in the parameter space as discussed above. Mathematically this means imposing the

periodic boundary condition. The periodic boundary condition involves the matching of the

phases —the phase change accumulated around the ring must be a multiple of 2π. But now

this must include the extra geometric(topological) phase as well. This will alter the eigen-

value spectrum for the ring and must be included in any spectral reckoning. In the limit of

weak scattering, i.e., disorder parameter << level spacing (which can be obtained for small

enough ring size, the mesoscopic system) this extra phase of ±π will cause a level shift. A

rather subtle and experimentally observable effect associated with this geometric phase is

made plausible if we consider the disorder U(x) and η(x) to be weakly and slowly modulated

in time. This has the effect of translating the parametric (sample specific) fluctuation into

temporal fluctuations. This happens naturally in mesoscopic systems at low temperatures.

The modulation depth can be such that the circuit in the U(x) and η(x) parameter space

sweeps across the central singularity (η(x) = 0 = E − U(x)) — i.e., the geometric phase is

cyclically flipped from zero to ±π discontinuously. The discontinuous nature of our topolog-

ical phase change should lead to a large spectral (level spacing) and conductance fluctuations

manifesting as noise. The discreteness of the topological phase shift (as distinct from the
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usual continuous geometric phase) should make this the statistical analogue of a shot-noise.

Finally, we must note that the circuit in the U(x) and η(x) parameter space involves energy

E explicitly. Thus, for a given realization of randomness, as E varies we expect singularities

in the energy spectrum at the special values of E corresponding to the circuit enclosing,

or not enclosing, the center i.e., the singularity of the parameter space. This suggests the

following experimentally realizable possibility of observing certain phase-sensitive effects by

combining our pseudo-magnetic field with a real Aharonov-Bohm magnetic flux, threading

the matrial ring connected to two leads. The variation of the energy level as function of

the real flux can then tune it across the singular point causing the phase jump. This must

manifest as jump in the transmission through the ring. Similarly, one should expect jumps

in the persistent ring currents.

We would like to conclude with the following remarks in support of what is new in

our work. Topological phase shift is by itself not a new idea now. It is a well known

particular case of Berry’s phase when, e.g. the magnetic field acting on a spin is confined to

a planar transport circuit. Indeed, such situations have been realised literally experimentally

involving, e.g. a momentum-dependent magnetic field via the spin-orbit coupling [8]. In our

work, the pseudo-magnetic field arises in a novel way through the dimerised nature of the

medium, and one has to calculate the topological phase shift for the effectively non-unitary

evolution of a properly defined state vector. Further, the parametric trajectory traced out by

this pseudo-magnetic field, as one goes along the sample length, depends sensitively on the

sample specific realization of the disorder. It is this sensitivity coupled with the discreteness

of the topological phase shift that generates the shot noise when the sample scans the

parameter space through, e.g. a phononic modulation. Clearly, other manifestations of

this topological phase are expected, e.g. through its effect on the level spacing statistics.

We hope that this work will stimulate experimental work on mesoscopic rings made from

quasi-one-dimensional disordered dimerized materials, i.e. material having bipartite lattice

structure. Many conducting pseudo one-dimensional polymeric systems may belong to this

category of materials.
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FIG. 1. Parameter space R((E − U(x), η(x)) for the adiabatic circuit. Shaded portion marks

the regime where geometric phase shift exists, that is, |(E − U(x))| < |η(x)|.
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