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Crossover from normal (N) Ohmic subdivision to superconducting  (S) 
equipartition  of  current  in  parallel conductors at the N-S transition: 
Theory 
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Abstract 
The recently observed1 equipartition of current in parallel at and below the Normal-
Superconducting  (N-S) transition can be understood in terms of a Landau-
Ginzburg order-parameter phenomenology. This complements the explanation 
proposed earlier1  based on the flux-flow resistance providing a nonlinear negative 
current feedback towards equipartition when the transition is approached from 
above. The present treatment also unifies the usual textbook inductive subdivision 
expected much below Tc, and the equipartition as Tc is approached from below. The 
question of metastability is also briefly discussed.  
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FOLLOWING the recent work1, consider two, or more than two pieces of a wire of a 
superconducting material (e.g., Nb-Ti), of unequal lengths in general, connected in 
parallel and fed from a constant current source.  Let the combination, assumed to be in 
the normal state initially, be now cooled to and below the N-S transition temperature Tc.  
It was experimentally observed1 that the usually expected normal ohmic subdivision of 
the current crosses over to an unexpected superconducting equipartition at the transition 
(Tc), and remains so divided below Tc.  The crossover was found to be reversible.  A 
physical explanation for this self-organization (namely, the equipartition without any fine 
tuning) was provided in terms of a nonlinear negative current  feedback that drove the 
current division towards equalization. This involved a nonlinear flux-flow resistance (R) 
due to flux de-pinning by the transport current (J) giving .0/ >∂∂ JR  In the present work, 
we propose a complementary treatment in which the N-S transition is approached from 
the superconducting side (from below Tc).  It is based on a Landau-Ginzburg order-
parameter phenomenology in the presence of non-zero supercurrent.  Our analytical 
treatment gives the equipartition as Tc is approached starting from an arbitrary initial 
current division much below Tc.  It also resolves some other puzzles associated with the 
phenomenon, e.g., the inductive equilibrium subdivision of the supercurrent much below 
Tc, and also the question of metastability.  
 
Label the two conductors connected in parallel as A and B.  Let �A and �B be the 
respective lengths, unequal in general. For simplicity, the cross-sectional areas are taken 
to be equal (as in the experiment1), and assumed unity. Further, the transverse linear 
dimensions are assumed <<�(T) (coherence length) and �(T) (the penetration length), 
which is certainly the case close to Tc. This ensures homogeneity of the superconducting 
order parameter over the entire conducting system. For a total supercurrent  J (=JA +  JB), 
the dominant G-L free energy functional2 
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and similarly for FB.  Here the superfluid velocity VA,B is related to the current (density) 
JA,B as 
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with the constraint JA+JB=J. 
 
Now, we must minimize F variationally with respect �A, �B, JA and JB with the above 
current constraint. 
 
Consider first the simple case of an arbitrary current division JA, JB well below Tc.  The 
order parameters are then essentially independent of the currents. It is sufficient then to 
consider current variations. From ,with,/0/ JJJJFJF BABA =+∂∂==∂∂ we at 
once obtain the current ratio 
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as noted in textbooks.3  Thus, indeed the supercurrent divides inductively at equilibrium 
well below the transition temperature. (Recall, that for equal cross-sections, self-
inductance is proportional to the length. Here, we have ignored the mutual inductance).   
 
Next, we consider the case of real interest here when we approach the N-S transition from 
below. Then the order parameters �A  and  �B  dominate variationally, giving 
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and similarly for �B.  Recall now from the Landau theory of second-order phase 
transitions that �(T)=�0(1-T/Tco) as T�Tco from below, with Tco the thermodynamic 
critical temperature in the absence of currents.   
 
Introduce dimensionless quantities, 0,,0,, /,/|| JJj BABABABA == ψψχ  with 
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. Eliminating the velocity VA,B in favour of the 

current JA,B, Eq. (4) gives 
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Now, ,)33/(2)1( 2/122 ≤− χχ and maximizes at 2/1)3/2(=χ .  With this, Eq. (5) defines 
a (normalized) critical current 
       )6()1()33/2( 2/3tjc −=  



 3 

such that cBA jj >, drives the conductors A,B normal. Here t=T/Tco is the dimensionless 

reduced temperature. This naturally leads to a universal temperature-current phase 
diagram as shown in Figure 1, and gives equipartition at N-S transition as follows. 
 

 
 

Figure 1.  Current-Temperature phase diagram showing approach to 
equipartition jA=jB=j/2 at the reduced critical temperature tc.  Here jA and  jB 
are the normalized currents in the parallel conductors A and B, and jC(t) is the 
normalized critical current. Here tco is the thermodynamic transition 
temperature at zero current.  

 
Start well below the N-S transition with an arbitrary supercurrent (j) division, j = jA + jB, 
between the two conductors A and B connected in parallel with jA>jB, say. In the plot  
(see Fig. 1) we have taken jA= 0.02 and jB = 0.01 with the total current j = 0.03. (Recall 
that in the present treatment with the conductors having equal cross-sectional areas, the 
current is the same as the current density).  The thermodynamic critical current (density) 
jC(t), however, is a material specific property, and its temperature dependence is given by 
Eq.(6).  Now, as the temperature is raised towards criticality (tco), the critical current 
decreases monotonically towards zero. Inasmuch as jA>jB, we must have the line jA meet 
the curve jC(t) first as shown in Fig. 1. Thereafter, jA must necessarily remain equal to and 
follow the critical current jC(t).  Thus, jA and jC(t) decrease together with increasing 
temperature along the thick line as shown in the figure.  The constraint jA + jB = j 
(constant) then requires jB to rise and eventually meet the thick line at the “equipartition 
point” at t = tco as marked in the figure. Finally, for t>tco, of course, both the conductors A 
and B are driven normal, and the current division necessarily jumps to the Ohmic 
subdivision in the normal state.  Thus, the supercurrent equipartition at the transition 
point (tco) is a universal consequence of the N-S criticality.  
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Some general remarks are in order now. The above Ginzburg-Landau phenomenological 
treatment should hold for both, the type-I as well as the type-II superconductors having 
sharp N-S transition. For systems with broad transition, e.g., granular superconductors, a 
more detailed treatment will be required that takes into account the flux de-pinning and 
flux flow in particular.  This should be particularly interesting as it may be possible then 
to track the fine structure of approach to equipartition at the transition. Further, it should 
be noted that we have assumed the transverse dimensions of the conductors to be much 
smaller than the coherence length and the penetration depth.  This condition should 
certainly hold close to the transition point. This would imply no flux trapping in the loop 
formed by the two conductors in parallel. Much below the transition, however, the flux 
trapping is expected for thick conductors leading to metastable states, i.e., the current 
division will depend on whether the conductors are pre-cooled before impressing the 
current from an external source, or the sample is post-cooled after the current has been 
impressed.  
 
In conclusion, we have given an order parameter phenomenological treatment for the 
equipartition of supercurrent between two conductors connected in parallel as the N-S 
transition is approached from below. The treatment can be readily generalized to include 
any number of parallel conductors. We should also add that similar equipartition should 
clearly hold for superfluid HeII  flowing through capillaries in parallel.  
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