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Abstract – It is generally known that the orbital diamagnetism of a classical system of charged
particles in thermal equilibrium is identically zero —the Bohr-van Leeuwen theorem. Physically,
this null result derives from the exact cancellation of the orbital diamagnetic moment associated
with the complete cyclotron orbits of the charged particles by the paramagnetic moment subtended
by the incomplete orbits skipping the boundary in the opposite sense. Motivated by this crucial
but subtle role of the boundary, we have simulated here the case of a finite but unbounded
system, namely that of a charged particle moving on the surface of a sphere in the presence
of an externally applied uniform magnetic field. Following a real space-time approach based on
the classical Langevin equation, we have computed the orbital magnetic moment that now indeed
turns out to be non-zero and has the diamagnetic sign. To the best of our knowledge, this is the
first report of the possibility of finite classical diamagnetism in principle, and it is due to the
avoided cancellation.

Copyright c© EPLA, 2009

In this work, we revisit the problem of the absence
of classical diamagnetism of a system of charged parti-
cles in thermal equilibrium. This vanishing of the classical
diamagnetism in equilibrium is generally referred to as the
Bohr-van Leeuwen theorem [1–4]. The fact that classically
the orbital diamagnetic moment vanishes is quite contrary
to our physical expectations inasmuch as a charged parti-
cle (of charge −e, position r(t), and velocity v(t) at time
t), say, orbiting in a plane perpendicular to the magnetic
field B under its Lorentz force should have an orbital
magnetic momentM (=−e/2c[r(t)×v(t)]), where c is the
speed of light, and with a diamagnetic sign as dictated
by Lenz’s law (see, e.g., [5]). Formally, the vanishing of
the classical diamagnetic moment follows from the well-
known fact that the canonical partition function involves
the Hamiltonian for the charged particle (coupled mini-
mally to the static magnetic field) and a simple shift of the
canonical momentum variable in the integration makes the
partition function field-independent, giving zero magnetic
moment [3].

(a)E-mail: nkumar@rri.res.in
(b)E-mail: vijayk@physics.iisc.ernet.in

Physically, the vanishing of the classical diamagnetism
is due, however, to a subtle role played by the boundary
of the finite sample [1–4]. It turns out that the diamag-
netic contribution of the completed cyclotron orbits of the
charged particles orbiting around the magnetic field in a
plane perpendicular to it is cancelled by the paramag-
netic contribution of the incomplete orbits skipping the
boundary in the opposite sense in a cuspidal manner. The
cancellation is exact, and that is the surprise. This cancel-
lation was demonstrated explicitly some time back [6] for
the case of a harmonic-potential (V (r) = kr2/2) confine-
ment, which is equivalent to a soft boundary, and finally
letting the spring constant k go to zero. The treatment
was based on the classical Langevin equation [7], and
the magnetic moment M=−e/2c[r(t)×v(t)] was calcu-
lated in the infinite-time limit —the Einsteinian approach
to statistical mechanics. The ordering of the two limits
namely k→ 0 (the deconfinement limit) and t→∞ (the
infinite time limit), however, turned out to be crucial
and physically meaningful —one must let t→∞ first and
then let k→ 0. This ensures that the particle is affected
by the boundary or the confinement. Thus, one had to
conclude that any orbital diamagnetism observed in an
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experiment is essentially of quantum-mechanical origin,
as indeed was derived first by Landau [8]. In the quantum
case, the above cancellation of the bulk and the boundary
contributions turns out to be incomplete. But again, the
order of the two limits is all important and was implicit
in the treatment of Landau [3]. This was shown more
explicitly by Darwin [9]. In fact, one could just use the
quantum Langevin equation [10] and derive essentially
the Landau result by properly taking the above “Darwin
limit”. The calculated diamagnetic moment is, however,
found to depend on the frictional term occuring in the
quantum Langevin equation [11,12].
The subtle but essential role of the boundary in all these

treatments has motivated us to examine the diamagnetism
for a classical system that has no geometrical boundary
—a finite unbounded system such as a charged particle
moving on the surface of a sphere under the appropriate
Langevin dynamics in the presence of a uniform external
magnetic field. We were pleasantly surprised to find
that the numerically computed orbital magnetic moment
turned out to be non-zero, and indeed diamagnetic. To the
best of our knowledge, this is the first example reported on
non-zero orbital diamagnetism in principle for a classical
system. It arises explicitly from avoided cancellation as
the system has no boundary.
Consider a charged particle (charge −e and mass m,

an electron say) moving on the surface of a sphere of
radius “a”, in the presence of a uniform externally applied
magnetic field B directed along the z-axis. The particle
motion is described by the following classical Langevin
equation

m
dv

dt
=−e
c
(v×B)−Γv+

√
2ΓkBT f(t), (1)

where Γ is the friction coefficient, kBT is the thermal
energy, and f is a zero-mean δ-correlated Gaussian random
noise, i.e., 〈fα(t)fβ(t′)〉= δαβδ(t− t′). We recall here that
in this real space-time (Einsteinian) approach to statistical
mechanics, the long-time limit (t→∞) of the above
stochastic evolution is expected to give the thermal-
equilibrium properties. Note that there is no modification
of the dissipation (Γ) and the related noise term (f(t)) due
to the magnetic field [7].
Specializing now to the spherical-polar coordinates

appropriate to the motion on the surface of the sphere
(r= a, θ, φ), the Langevin equation reduces to

a

[
d2θ

dt2
− sin θ cos θ

(
dφ

dt

)2]
θ̂

+ a

[
sin θ

d2φ

dt2
+2 cos θ

dθ

dt

dφ

dt

]
φ̂=

−eB
mc
a

[
dθ

dt
θ̂+sin θ

dφ

dt
φ̂

]
× (r̂ cos θ)

−aΓ
m

[
dθ

dt
θ̂+sin θ

dφ

dt
φ̂

]
+

√
2ΓkBT

m

(
fθ θ̂+ fφ φ̂

)
,

(2)

where r̂, θ̂ and φ̂ are the unit vectors directed along the
radial (r), polar (θ), and the azimuthal (φ) directions.
Also, fθ and fφ are the forcing noise terms acting along
the θ and the φ directions, respectively. More conveniently,
we re-write eq. (2) in the dimensionless form

θ̈− sin θ cos θφ̇2 =−ωc
γ
sin θ cos θφ̇− θ̇+√ηfθ, (3)

sin θφ̈+2 cos θθ̇φ̇=
ωc

γ
cos θθ̇− sin θφ̇+√ηfφ, (4)

where we have introduced the cyclotron frequency
ωc = eB/mc, the frictional velocity relaxation rate
γ =Γ/m, the thermal forcing strength η= 2kBT/(ma

2γ2)
and the dimensionless time τ = γt. Note that η is also
a dimensionless quantity. Here, overhead dots denote
differentiation with respect to the dimensionless time τ .
The physical quantity of interest is the ensemble averaged
orbital magnetic moment

〈M(τ)〉=− e
2c
γ a2〈sin2 θ(τ)φ̇(τ)〉 (5)

in the long-time limit, where 〈· · ·〉 denotes the ensemble
average over the different realizations of the stochastic
forces fθ and fφ.
We now rewrite the above second-order differen-

tial Langevin equations (4) as four coupled first-order
equations for θ, x(≡ θ̇), φ and y(≡ φ̇), which are then
solved numerically using a simple Euler-Maruyama
scheme [13] with a time-step ∆τ = 10−2. Averages
are evaluated over n= 106 noise realizations. The
number of realizations, though quite large, is necessarily
finite, and so we resort to double average 〈〈· · ·〉〉 denoting
averaging over the ensemble as well as over time. This
gives for the equilibrium magnetic moment

Meq = 〈〈M(τ)〉〉 ≡ 1

τmax

∫ τmax
0

〈M(τ)〉dτ (6)

as τmax→∞. In the context of numerical simulation,
we have to be careful at the singular polar points θ= 0
and θ= π, where 1/sin θ diverges. This is regularized by

replacing sin θ by
√
sin2 θ+ ε, where ε is a small positive

quantity taken to be of order ∆τ . Further, inasmuch as
the physical motion is restricted to 0� θ < π and 0�
φ< 2π, while mathematically, however, eqs. (3) and (4)
can evolve outside these bounds, we have to set in our
numerical simulation the following conditions: If θ(τ)< 0,
then θ(τ)→−θ(τ), x(τ)→−x(τ), φ(τ)→ φ(τ −∆τ)+π;
and if θ(τ)>π, then θ(τ)→ 2π− θ(τ), x(τ)→−x(τ),
φ(τ)→ φ(τ −∆τ)−π. This takes care of the trajectories
that happen to pass through the poles. The choice of
initial conditions on θ and φ, and their time derivatives,
turns out to be irrelevant for the long-time ensemble
averaged behavior as indeed is validated by our numerical
simulation.
In fig. 1, we have plotted the dimensionless magnetic

moment 〈µ(τ)〉= 2c/(eγa2) 〈M(τ)〉 as a function of τ for
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Fig. 1: (Colour on-line) Plot of the ensemble averaged
dimensionless magnetic moment µ(τ) as a function of the
dimensionless time τ for ωc/γ =±10.0 and η= 1.0. Clearly the
moment can be seen to be odd in the magnetic field B and is
diamagnetic.

Fig. 2: (Colour on-line) The velocity distribution on a sphere
in the presence of magnetic field computed from the Langevin
dynamics simulation. The dashed curve is the corresponding
Maxwellian distribution. Here, ωc/γ = 10.0 and η= 1.0.

certain choice of ωc/γ and η. As can be readily seen, the
moment is diamagnetic and odd in the magnetic field.
Also, it can be shown to be independent of the sign of
the charge (electron or hole) as indeed it must be. The
fluctuations seen in the figure are statistical fluctuations
due to the finiteness of the number of realizations used for
ensemble averaging. These are thus statistical fluctuations
—these will, and indeed do, decrease with increasing
number of noise realizations n.
For completeness, we have also plotted the computed

velocity distributions (the θ and φ components) in
fig. 2 and these are seen to be essentially Maxwellian as
expected, with the correct mean square values consistent
with the fluctuation-dissipation theorem. In fact, there is
no dependence on the external magnetic field.
Figure 3 shows the variation of the dimensionless

magnetic moment µeq (corresponding to Meq) with the
magnetic field ωc/γ (which is proportional to B). The plot
shows an essential linear response that is diamagnetic.
In fig. 4, we have plotted the probability density P (µ) of

the statistical mechanical fluctuations about the equilib-
rium value µeq. The distribution for the chosen values of
the parameters is quite broad relative to the mean. (The
corresponding plot for a system with a boundary is indeed

Fig. 3: (Colour on-line) Plot of the dimensionless magnetic
moment µeq as a function of ωc/γ (proportional to the magnetic
field) for η= 1.0. Again, the moment is found to be odd in B
and is diamagnetic in sign.

Fig. 4: (Colour on-line) Plot of the long-time probability
density P (µ) against µ giving the ensemble fluctuations about
µeq. The latter is clearly non-zero and diamagnetic. The
fluctuations are seen to be large compared to the mean value.
Here, ωc/γ = 10.0 and η= 1.0.

known to be broad [14]. Of course, in that case the mean
is zero.)
We now return to the main point of this puzzle, namely

that the classical Langevin dynamics for this finite
unbounded system gives a non-zero diamagnetic moment,
and yet a straightforward calculation using the canonical
partition function with a minimally coupled Hamiltonian
gives a free energy that is independent of the magnetic
field, and therefore, a zero field-derivative of the latter
implying zero diamagnetism. Now, the classical Langevin
dynamics provides a real space-time picture of the charged
particle motion under the influence of fluctuations and the
concomitant dissipation. Its long-time limit is expected
to describe thermal equilibrium, and sure enough it does
reproduce the Maxwellian velocity distribution (fig. 2).
Moreover, it is manifestly gauge-invariant because it
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involves the magnetic field directly without invoking a
vector potential (indeed, in classical electrodynamics,
the vector potential is essentially a matter of convenience,
unlike in the case of quantum mechanics). Also, the
computed diamagnetism is consistent with the Lenz’s
law. On the other hand, the canonical treatment based on
the Hamiltonian underlies all of the classical statistical
mechanics, but it gives zero classical diamagnetism. Our
resolution of this puzzle is as follows: It is known that
classically the static magnetic field does no work on the
moving charge inasmuch as the Lorentz force (− e

c
(v×B))

acts perpendicular to the instantaneous velocity vector.
However, such a gyroscopic force can still alter the
motion of the charged particle so as to give a non-zero
magnetic moment without changing its energy. In fact,
it induces a correlation between the velocity and the
transverse acceleration due to the Lorentz force. Clearly,
such a subtle dynamical correlation, without change
of energy, is not captured by the equilibrium partition
function. But, the Langevin dynamics manifestly treats
this gyroscopic Lorentz force through the equation of
motion. It is thus our view that the real space-time
treatment based on the Langevin dynamics takes into
account these subtle correlations involving velocity and
the transverse acceleration caused by the Lorentz force
without changing the energy, which is missing from the
usual partition function. Of course, this disagreement is
only for the special case of a strictly unbounded classical
system in an external magnetic field.
Thus, we are forced to admit that there are two

alternatives —either there is indeed non-zero classical
diamagnetism for an unbounded finite system as under
consideration, or the classical Langevin dynamics fails to
describe in the long-time limit the thermal equilibrium
as described by the classical partition function in the
presence of a magnetic field1. Either way, we have a non-
trivial result.
Finally, it will be apt at this stage to make a few

comments, bearing on the physical realizability of such
a classical system.
First, we recall that the non-zero diamagnetic moment

for the classical system discussed above is due entirely
to the absence of a boundary —the avoided cancella-
tion for a finite but unbounded system. Now, for the case
of the quantum mechanical (Landau) diamagnetism too
there is a cancellation, but it is incomplete [3]. Hence
the smallness of the Landau diamagnetism in general. We
may reasonably expect then that the quantum mechan-
ical diamagnetism for a finite but unbounded system too
should be different, probably larger, because of the avoided
cancellation [15]. Second, our classical treatment is valid
in principle for a finite but unbounded system, i.e., a
strictly closed two-dimensional surface (the charged parti-
cle moving on the surface of a sphere). It may, however, be

1This can be readily verified by making the well-known shift of
the canonical momentum variable in the partition function. This also
works for the case of a particle moving on the surface of a sphere.

physically realized to an approximation. Thus, we could
consider a dielectric microsphere coated with an ultra-
thin layer of a conducting material having small carrier
concentration at room temperature, e.g., a non-degenerate
system with the degeneracy temperature much smaller
than the room temperature, as in the case of a doped
high-mobility semiconductor. (By ultrathin we mean here
a thickness � the thermal de Broglie wavelength of
charge carriers so as to freeze out the radial motion quan-
tum mechanically, making the system essentially a two-
dimensional classical gas of charged particles moving on
the surface of the sphere. Thus, quantum mechanics helps
us realize a dimensional reduction —an essentially two-
dimensional closed surface.) We could then consider a
finite volume fraction of an inert medium (paraffin say)
occupied by the above microspheres. This system should
have a measurable diamagnetic response that will be
essentially classical. Third, it should be interesting to
consider more general geometries such as that of a triax-
ial ellipsoid where different axes ratios can mimick very
different physical situations. Perhaps it will be much more
interesting to try out topologies other than that of a sphere
and look for qualitative differences [15]. The numerically
estimated value of the diamagnetic moment for a charged
particle (say, electron) moving on a sphere of radius
a= 100µm for B � 5 kG, γ ∼ 109 s−1 turns out to be ∼ 1
Bohr magneton per electron which is quite large. Thus,
we may have a giant classical diamagnetism. Of course,
the measured bulk susceptibility for the physical classi-
cal system suggested above may have much smaller values
because of the realizable parameter values. But, the point
of principle at issue would have been made. It is our hope
that experimentalists may take note of this possibility.
To conclude, we have shown that a classical system of

charged particles moving on a finite but unbounded surface
(of a sphere), as described by Langevin dynamics, has a
non-zero orbital diamagnetic moment. This moment can
be large.
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