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Diffusion of particles moving with constant speed
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The propagation of light in a scattering medium is described as the motion of a special kind
of a Brownian particle on which the fluctuating forces act only perpendicular to its velocity. This
enforces strictly and dynamically the constraint of constant speed of the photon in the medium.
A Fokker-Planck equation is derived for the probability distribution in the phase space assuming
the transverse fluctuating force to be a white noise. Analytic expressions for the moments of the
displacement 〈xn〉 along with an approximate expression for the marginal probability distribution
function P (x, t) are obtained. Exact numerical solutions for the phase space probability distribution
for various geometries are presented. The results show that the velocity distribution randomizes in
a time of about eight times the mean free time (8t∗) only after which the diffusion approximation
becomes valid. This factor of eight is a well known experimental fact. A persistence exponent of
0.435± 0.005 is calculated for this process in two dimensions by studying the survival probability of
the particle in a semi-infinite medium. The case of a stochastic amplifying medium is also discussed.

PACS numbers : 05.40-a, 42.25Dd, 78.90

I. INTRODUCTION

The propagation of light through a stochastic medium is traditionally described in the context of astrophysics by a

Boltzmann transport equation for the specific intensity I(~r, ~Ω, t) in a heuristic Radiative transfer theory [1]. However,
since the general analytic solutions are unknown, one resorts to the diffusion approximation which can be shown to
arise out of the Radiative transport equation in the limit of large length scales L >> l∗, where l∗ is the transport mean
free path of light in the medium [1,2]. Recently there has been considerable interest in the description of multiple
light scattering at small length scales (L ∼ l∗) and small time scales (t ∼ t∗ where t∗ is the transport mean free
time), both from the point of fundamental physics [3] and from the point of medical imaging, where the early arriving
‘snake’ photons are used to image through human tissues [4,5]. It has been experimentally shown that the diffusion
approximation fails to describe phenomena at distances of L < 8l∗ [6]. Moreover the diffusion approximation which is
strictly a Wiener process for the spatial co-ordinates of a particle is physically unrealistic. It holds in the limit of the
mean free path l∗ → 0 and the speed of propagation c → ∞ while keeping the diffusion coefficient Do = cl∗

3 constant.
Thus the diffusion approximation neither accounts for a finite mean free path nor for a finite and constant speed
of the particle which is charecteristic of light propagation in a stochastic medium. While approximately describing
light as a particle the constancy of speed should be preserved at the very least. Hence it is of importance to develop
better and alternative schemes to the diffusion approximation and also address the difficult question of the process of
randomization of a directional beam in such media.

For a particle moving with fixed speed in a one-dimensional disordered medium, it has be shown that the probability
distribution function P (x, t) for the displacement satisfies the telegrapher equation exactly. However, generalizations
of the telegrapher equation to higher dimensions [7] have been shown not to yield better results than the diffusion
approximation [8]. Recently there have been a few attempts to overcome the shortcomings of the diffusion approx-
imations and attack this problem using the concept of photon paths. In Ref. [9], a Monte-Carlo approach was used
to simulate photon paths and calculate their probabilities. An important advance was made in Refs. [10,11], where
the propagator for photons in highly forward scattering media was expressed as a Feynman path integral. However,
this attempt has had only limited success in that it was possible to calculate the probability distribution subject to

the constraint of constant photon speed only in the weaker (average) sense i.e.,
∫ t

0

[

(d~r
dt )

2 − c2
]

dt = 0. Moreover in
addressing the backscattering from a semi-infinite medium [10] and reflection/transmission from a finite slab [11], the
absorbing boundary conditions have not been rigorously implemented and it would be inappropriate to compare these
to experimental data. It should be mentioned here that the Ornstein-Uhlenbeck (O-U) theory of Brownian motion
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[12] would also be able to incorporate the finiteness of the mean free path and a well defined root-mean-squared
(rms) velocity but assuming, of course a distribution of speeds. This process has been compared with Monte-Carlo
simulations [13] and used to explain the lowering of the effective diffusion coefficient measured in pulse transmission
experiments through thin slabs [3]. It can be shown that the finite r.m.s speed defined by the fluctuation-dissipation
theorem for the O-U process is a stronger global constraint than the average speed constraint imposed in Ref. [10,11].

The next important step in describing these photon random walks with a constant speed was undertaken in Ref.
[14], where the authors describe this process as a non-Euclidean diffusion on the velocity sphere and intuitively put
down a kind of a general Boltzmann equation for photons in a highly forward scattering medium. The solution to
this equation was expressed as a path integral, which was then evaluated by a standard cumulant decomposition [15]
truncated after the second cumulant. This yields a gaussian distribution similiar to the Ornstein-Uhlenbeck process.
More recently, an explicit derivation of the Feyman path integral representation for the propagator of the radiative
transfer equation has been given [16]. Here it was again evaluated by truncating the cumulant expansion after the
second term. This was justified by declaring that photons are massless and non-interacting. However, the imposition
of the speed constraint would not allow this gaussian approximation.

In this paper, we describe the light propagation in stochastic media as the motion of a kind of Brownian particle
on which the fluctuating forces act only perpendicular to the direction of its velocity. This is effective in strictly and
dynamically preserving the speed of the particle. This process is shown to correspond to a diffusion in the angular co-
ordinate in the velocity space for a white noise disorder. Exact expressions for the moments of the space variables are
presented and the second cumulant approximation is shown to yield a gaussian expression similiar to the traditional
Ornstein-Uhlenbeck theory of Brownian motion. An expression is derived for the probability distribution for large
force strengths which preserves the light cone. The exact Fokker-Planck equation for the probability distribution is
derived from the stochastic Langevin equations for a white noise process. Numerical solutions of this equation are
presented . It is shown that the probability distribution in infinite media is strongly forward peaked for short times
and randomizes only at times of about 8t∗ to 10t∗. We have also solved numerically the equation for a semi-infinite
geometry and obtained the persistence exponent of 0.435i ± 0.005 in 2-dimensions for this process. Solutions for
a finite geometry are also given, showing that the effective diffusion coefficient as measured in a pulse transmission
experiment through very thin slabs (L ∼ l∗) would be lowered. The effect of light amplification in the slab is examined
briefly.

II. THE MODIFIED ORNSTEIN UHLENBECK PROCESS

Light scattering in a stochastic medium is treated as a probabilistic process where each scattering event only changes
the direction of the photon. The wave nature and polarization effects are ignored and light is treated as a particle in
a medium which exerts transverse fluctuating forces on the particle. It should be remarked here that while the actual
disorder is maybe in space (quenched disorder), all current treatments including ours, are in terms of a Brownian
motion (temporal disorder i.e., a stochastic process). This is a valid approximation for incoherent transport in the
weak scattering limit (kl∗ >> 1 where k = 2π

λ , λ being the wavelength of light in the medium. The equation for
the motion of a randomly accelerated particle with the special condition that the random forces always act only
perpendicular to the velocity can be written as,

~̈r = ~̇r × ~f(t) (1)

This we term as the modified Ornstein-Uhlenbeck process. We will consider two dimesions for simplicity, and write

ẍ = −f(t)ẏ (2)

ÿ = f(t)ẋ (3)

where the force term f(t) is a random funtion of time. We will assume a delta-correlated force with gaussian
distribution. i.e.,

〈f(t)〉 = 0 (4)

〈f(t)f(t′)〉 = Γδ(t − t′) (5)

and all higher moments of f(t) being zero. This makes our treatment most valid for a very dense collection of highly
forward scattering weak anisotropic scatterers. This set of stochastic Langevin equations yield on integration a first

2



constant of integration ẋ2 + ẏ2 = c2, where c is the constant speed. So we can choose ẋ = c cos θ(t) and ẏ = c sin θ(t)
where θ(t) is some function of t. θ is recognised to be the angular co-ordinate in the velocity space. Substituting

these expressions back into equation(2,3), we obtain θ̇ = f(t) or

θ(t) − θ0 =

∫ t

0

f(t)dt (6)

Hence θ(t) follows a Wiener process and we can write the probability for θ(t) as

Pt(θ) =

(

1

2πΓt

)
1

2

exp

{

−
(θ − θ0)

2

2Γt

}

(7)

This is the result for a diffusion in θ the angular co-ordinate in the velocity space, and we recognise this modified
O-U process to be a random walk on the circle of radius c in the velocity space. Constraining θ to the range [0, 2π],
we get the marginal probability distribution for θ.

Pt(θ) =

∞
∑

n=−∞

(

1

2πΓt

)
1

2

exp

{

−
(θ − θ0 + 2nπ)2

2Γt

}

(8)

The value of θ0 can be conveniently chosen to be zero.

Now we will derive the probability distribution function in the phase space. Consider the system of Stochastic
Langevin equations

ẋ = u (9)

ẏ = v (10)

u̇ = −f(t)v (11)

v̇ = f(t)u (12)

Let Π(x, y, u, v) be the phase space density of points for the given system and U be the vector (x, y, u, v). Now, Π
satisfies the stochastic Liouville equation.

∂Π

∂t
+ ∇U ·

(

U̇Π
)

= 0 (13)

where ∇U = ( ∂
∂x , ∂

∂y , ∂
∂u , ∂

∂v ). Substituting for U and averaging over all possible configurations of disorder, by the

van Kampen Lemma [17], the probability distribution P (x, y, u, v) = 〈Π(x, y, u, v)〉 and satisfies,

∂P

∂t
+ u

∂P

∂x
+ v

∂P

∂y
− v

∂

∂u
〈f(t)Π〉 + u

∂

∂v
〈f(t)Π〉 = 0 (14)

By the Novikov theorem [18] for a white noise process f(t),

〈f(t)Π[f(t)]〉 =
Γ

2
〈

δΠ[f ]

δf(t)
〉

=
Γ

2

(

v
∂P

∂u
− u

∂P

∂v

)

(15)

Using the above, we obtain for P(x,y,u,v) the differential equation

∂P

∂t
+ u

∂P

∂x
+ v

∂P

∂y
=

Γ

2

(

u
∂

∂v
− v

∂

∂u

)2

P (16)

Now expressing u and v in terms of the angular co-ordinate θ, we finally get

∂P

∂t
+ c cos θ

∂P

∂x
+ c sin θ

∂P

∂y
= 2Γ

∂2P

∂θ2
(17)
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This differential equation explicitly preserves the constancy of the speed of the photon. This Fokker-Planck equation
is the same equation (in two dimensions) which was written down in Ref. [14]. It is rigorously proved therein that
this has a path integral solution and the two approaches are equivalent. It appears that this equation has solutions
in terms of Mathieu functions. However we have not been able to analytically solve the equation.

The moments of the displacements can however be calculated analytically. The displacements can be written in
terms of θ as

x − x0 =

∫ t

0

c cos θdθ (18)

y − y0 =

∫ t

0

c sin θdθ (19)

Using these and a gaussian distribution for f(t), we get

〈x − x0〉 =
2c

Γ
cos θ0

(

1 − e−
Γt
2

)

(20)

〈y − y0〉 =
2c

Γ
sin θ0

(

1 − e−
Γt
2

)

(21)

〈(x − x0)
2〉 = c2

[

2t

Γ
−

2

3

(

2

Γ

)2
(

1 − e−
Γt
2

)

−
1

12

(

2

Γ

)2
(

1 − e−Γt
)

]

(22)

〈(y − y0)
2〉 = c2

[

2t

Γ
−

4

3

(

2

Γ

)2
(

1 − e−
Γt
2

)

+
1

12

(

2

Γ

)2
(

1 − e−Γt
)

]

(23)

〈(x − x0)(y − y0)〉 = 0 (24)

This reproduces the result of the traditional Ornstein-Uhlenbeck process in that the first moment saturates at a mean
free path l∗ and the second moment increases linearly with time at long times (Γt/2 ≫ 1). For short times (Γt/2 ≪ 1),
the longitudinal spread 〈∆x2〉 ∼ t2 and the lateral spread 〈∆y2〉 ∼ t3 which are considerably slower than the diffusive
linear behaviour. From these relations, we identify the mean free time t∗ to be 2

Γ and the transport mean free path

l∗ = ct∗. The diffusion coefficient is identified as the coefficient of the linear term of the second moment i.e., c2

Γ

It is of interest to note that an analytic expression for moments of all orders for the displacements can be obtained.
This expression is given in the Appendix. The marginal probability distribution function P (x, y, t; x0, y0, 0) can be
written in terms of a cumulant expansion (See the Appendix). Truncation of the cumulant series after the second
term yields the result of Ref. [14] for the probability distribution.

P (x, y, t; x0, y0, 0) =
1

2πdet(M)
exp

{

−
M−1

ij

2
(~r − ~r0 − ~a)i(~r − ~r0 − ~a)j

}

(25)

~a =
2c

Γ
(1 − e−Γt/2)(cos θ0, sin θ0)

Mij = 〈 (~r − ~r0)i(~r − ~r0)j 〉 − 〈 (~r − ~r0)i 〉〈 (~r − ~r0)j 〉

The distribution is gaussian in this approximation and similiar to the distribution for the traditional O-U process
[12]. Thus it does not exactly preserve the light cone and would appear to constrain the speed only in an average
sense. Higher cumulants would be required to describe this feature of fixed speed.

An approximate solution which preserves the light cone can be obtained under the assumption that θ is completely
randomized in time t∗, so that θ has a uniform distribution over [0, 2π]. This can be justified in the limit of large force
strength (Γ), when the scattering events change the momentum by a large amount. Now the time can be discretized
on this time-scale and the probability distribution can be written as

P (x, t; x0, 0) =
1

2π

∫ ∞

−∞

dω eiω(x−x0)〈 exp[−iωc

n
∑

j=1

cos θjt
∗] 〉 (26)

where we have used that at t = 0, the angle θ was uniformly distributed. To evaluate the average, we will use the
fact that in this approximation, each θj is independent of all others, giving
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〈 exp[−iωc

n
∑

j=1

cos θjt
∗] 〉 = [J0(ωct∗)]

n
(27)

where J0 is the ordinary Bessel’s function of order zero. Using n = t/t∗, we have

P (x, t; x0, 0) =
1

2π

∫ ∞

−∞

dωeiω(x−x0) [J0(ωct∗)]
t/t∗

(28)

Using the fact that the Fourier transform of J0(ωct∗) is zero for |x − x0| > ct∗ and the fact that P (x, t, x0, 0) is an nth

convolution of J0(ωct∗), it is seen that P (x, t, x0, 0) is zero for |x − x0| > nct∗ = ct. Thus the light cone is preserved.
In fig-1, we plot the P (x, t, x0, 0) obtained by numerical evaluation for different times. It is seen that for t = t∗, the
probability is accumulated at the light front, and all the curves show a cut-off at |x − x0| = ct. At long times, using
the Laplace approximation, we have (for large n);

[J0(ωct∗)]n ≃ exp

{

−
c2t∗2ω2n

4

}

P (x, t; x0, 0) ≃

(

1

πc2t∗t

)1/2

exp

{

−
(x − x0)

2

c2t∗t

}

(29)

Thus we recover the diffusion limit at long times.

III. NUMERICAL SOLUTIONS AND RESULTS

In this section , numerical solutions for the differential equation (17) are presented. The particle is released in the
x − y plane at the origin (generally) along an initial direction θ0. Here θ is the angle made by the velocity vector
with the x-axis. Let us first further simplify by assuming invarience with respect to y i.e., we have a line source
along the y axis. Then the derivative with respect to y drops out and and we have a partial differential equation
in three variables. This is essentially a parabolic equation with an advective term. To numerically propagate the
probability distribution in time, we use an alternating direction implicit -explicit method [19] for x and θ. A local von
Neumann stability analysis [19] shows that this differencing scheme is unconditionally stable. The initial condition is
a δ-function at x = 0, θ = 0 which is approximated by a sharp gaussian for numerical purposes. For infinite media,
the boundary condition P (x, t) = 0 for |x| > ct is used. For a semi-infinite medium −∞ < x < L with an absorbing
boundary at x = L, the appropriate boundary condition is given by P (L, θ, t; x0, θ0, 0) = 0 for −π < θ < −π/2 and
π/2 < θ < π, corresponding to no flux entering the medium from free space. Also, we can write the Fokker-Plank
equation in the form of a continuity equation.

∂P

∂t
+ ∇ · ~ = 0 (30)

∇ = êx
∂

∂x
+ êθ

∂

∂θ

~ = êx cos θP + êθΓ
∂P

∂θ

Since Γ = 0 outside the medium, we can conclude that the current density ~ in the real (x) space is conserved across
the boundary in the forward direction (−π/2 < θ < π/2) while the current density in the velocity (θ) space is not
conserved. This explains why the output flux at the boundary is proportional to the value of the probability distri-
bution function at the boundary itself ( rather than the space derivative of the probability distribution (∂P

∂x ) given
by Fick’s law ) as observed in experiments [20]. For a finite slab we use a similiar boundary condition at the other
boundary.

In Fig-2, we show the probability distributions in an infinite medium with the initial condition, P (x, θ, t = 0) =
δ(x)δ(θ). It is clearly seen that the probability distribution for times upto 5t∗ is peaked in the forward direction θ ∼ 0
for x > 0, with a tail in the backward direction (θ ∼ ±π) at x < 0. There is also a clear cut off at |x| = ct, which
is prominently noticeable for positive x. The small amount of tailing arises from the finite width of the gaussian by
which the δ-function was approximated. One can also note that the probability distribution becomes almost flat along
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the θ-axis only at times of about eight times the mean free time (8t∗). In Fig-3, the first and second moments of the x
co-ordinate are shown. The solid lines show the analytical results of equation(20 and 22) and the symbols(◦) represent
the results of the numerical solutions. Excellent agreement is found between them. In Fig-4, we show the marginal
probability distribution for x i.e., P (x, t; x0, θ0, 0) =

∫ π

−π
dθP (x, θ, t; x0, θ0, 0). At short times (t ≃ 3t∗), there is a clear

ballistic peak, separate from the more randomized tail. The probability distribution for these times is also clearly
forward-peaked. One can also note that the probability distribution randomizes and becomes almost gaussian, centred
at x ∼ l∗ only at times t ≥ 8t∗. As noted above, this is also the time by which the angular coordinate θ randomizes.
This is when the diffusion approximation becomes valid. This can be understood by noting that, by equation(7),
the time required for Pt(θ) to attain an angular width of 2π is T where T is given by 〈∆θ2〉 = (2π)2 ∼ 2ΓT . This
yields (using Γ/2 = t∗) a value of T = π2t∗ ≃ 10t∗ for the randomization time. Thus we now have a clear picture of
the reason for this long known experimental fact [6]. This forward peaked behaviour at short times also illustrates
the deficiency of the second cumulant approximation where the probability distribution is a Gaussian and symmetric
about the first moment. Higher cumulants are clearly required to describe these asymmetric features.

The probability distribution functions for a semi-infinite medium are shown in Fig-5. Here the particle is released
at the origin inside the random medium and the initial direction is towards the boundary (in this case at x = 4l∗) For
times lesser than 4t∗, there is no difference in the probability distribution from the case of the infinite medium. This
is because the wave front has not propagated upto the boundary and the effect of the boundary is not felt. This is
to be contrasted with the diffusion approximation where the effect of the boundary is felt everywhere simultaneously
and causality is violated. At long times the probability distributions attain a typical shape with a long tail at negative
x within the medium and a sharp cut-off at the boundary. In Fig-6, we show the marginal probability distribution
for x i.e., P (x, t; x0, θ0, 0) =

∫ π

−π dθP (x, θ, t; x0, θ0, 0). The value of P (x, t; x0, θ0, 0) is finite at the boundary and
zero outside. As seen in Fig-6b, if the points near the boundary are linearly extrapolated outside the boundary,
they all roughly cross the x-axis at about 0.7l∗ which is the value of the extrapolation length used in the diffusion
approximation [21]. In Fig-7, the surviving probability inside the medium Ps =

∫

dx
∫

dθP (x, θ, t; x0, θ0, 0) is plotted

with time. For long times, this quantity should scale as t−ϑ where ϑ is the persistence exponent for this process [22].
We have performed these calculations for several source-boundary distances and obtained a value of 0.435± 0.005 as
the persistence exponent for this process in two dimensions.

Finally we present solutions for a finite slab with absorbing boundaries at x = ±L. The particle is released from
the origin at t = 0 along the positive x direction. Fig-8a shows the first and second moments of the probability with
time in a thin slab of thickness 2l∗. The first and second moments initially increase as in an unbounded medium
until the photon-front hits the boundary and dip before increasing again and saturating at an almost constant value.
The dips occur because just after the ballistic and near ballistic components exit the slab, only the photons which
are effectively moving in the opposite directions are left behind. In fact, the first moment is seen to become negative,
implying that the net transport is in the backward direction for some time. The dip in the second moment implies that
the photon cloud is effectively expanding at a slower rate. This would cause a lowered ’effective diffusion coefficient’
to be measured in a pulse transmission measurement. This reinforces the conclusions reached in Ref. [13] based on
Monte-carlo simulations and explains the experimental results of Ref. [3] on a more rigorous footing. Fig.8b shows the
survival probability for the case of a finite slab. This decays considerably faster than the in case of the semi-infinite
slab, though at early times (t ∼ t∗) the decay rates are comparable. The initial rates of decay are comparable because
of the forward peaked nature of the probability distribution at early times, when the effect of the boundary at the
back is hardly felt. This is to be compared with the mirror-image solution in the diffusion approximation, where equal
weightage is given to both boundaries at all times.

Finally we turn to the case of an amplifying stochastic medium. The effect of medium gain can be incorporated
straight forwardly by noting that in our treatment, the time of exit from the slab directly translates into path-length
traversed within the medium because speed is kept absolutely fixed. In the presence of amplification in the medium
therefore, the net gain is directly proportional to the time. Thus the output flux at the boundary in a given direction
is simply P (L, θ, t) cos θ exp(αt), where α is the gain coefficient in the medium. It is thus simple to obtain a picture of
amplified emission from such a medium. In Fig-9, we show the total light emitted by slab with boundaries at x = ±2l∗

for several amplification factors. The photon is released from the origin in the positive x - direction. For large times,
the output increases exponentially because of the presence of a exponential gain in the medium with no saturation. It
is seen that the ballistic part is only slightly amplified while the output in the tail regions are increased considerably.
To obtain a more realistic picture of lasing in random media [23,24] however, one would have to consider the lasing
level population depletion and saturation effects.
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APPENDIX : EXPRESSION FOR THE MOMENTS 〈XN 〉

The nth order moment is given by

〈(x − x0)
n〉 = cn

∫ t

0

∫ t

0

· · ·

∫ t

0

dtndtn−1 · · · dt1〈cos θ(t1) cos θ(t2) · · · cos θ(tn)〉 (31)

Writing θ(ti) as θi, the quantity within the angular brackets can be expressed as follows,

〈cos θ1 cos θ2 · · · cos θn〉 = 2−n〈 (eiθ1 + e−iθ1)(eiθ2 + e−iθ2) · · · (eiθn + e−iθn) 〉

= 2−n
∑

σ1,σ2···σn

σi=±1

〈 exp[i

n
∑

j=1

σjθj ] 〉 (32)

This can be expressed as a path integral using a gaussian distribution for f(t).

〈 exp[i

n
∑

j=1

σjθj ] 〉 =

∫

D[f(t)] exp







−

∫ t

0





f2(t′)

2Γ
+ i

n
∑

j=1

σjf(t′)



 dt′







= exp











−
Γ

2

n
∑

k=1





n
∑

j=k

σj





2

(tk − rk−1)











(33)

where t0 = 0 and we assumed a time ordering of t1 < t2 < · · · < tn. Thus,

〈(x − x0)
n〉 = cn(n!)2−n

∫ t

0

dtn

∫ tn

0

dtn−1 · · ·

∫ t2

0

dt1
∑

σ1,σ2···σn

σi=±1

exp











−
Γ

2

n
∑

k=1





n
∑

j=k

σj





2

(tk − rk−1)











(34)

A similiar expression can be obtained for the 〈(y − y0)
n〉 by noting that sin θ = cos(π/2 − θ).

Now we can obtain the joint probability distribution of x and y as

P (x, y, t; x0, y0, 0) = 〈 δ(x − x0 − c

∫ t

0

cos θ(t′)dt′) δ(y − y0 − c

∫ t

0

sin θ(t′)dt′) 〉 (35)

Expressing the δ-functions in terms of the Fourier transforms,

P (x, y, t; x0, y0, 0) =

(

1

2π

)2 ∫ ∞

−∞

dωx

∫ ∞

−∞

dωy ei[ωx(x−x0)+ωy(y−y0)]〈 exp

[

−ic

∫ t

0

[ωx cos θ(t′) + ωy sin θ(t′)]dt′
]

〉

(36)

This statistical average can be evaluated by a cumulant expansion [15] and since we have an expression for moments
of all orders, we can in principle evaluate the cumulant expansion to any desired order.
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FIGURE CAPTIONS

Figure-1 : The marginal probability distributions P (x, t; x0, 0) predicted by the approximate solution given by equa-
tion(28) at different times indicated in the figure. There is a clear cut-off at the light front and initially the probability
accumulates at the light front (for t = t∗).

Figure-2 : The Probability distributions in the phase space of a particle in an infinite medium at different times ob-
tained by numerically propagating equation(17). The particle is released at x = 0 along the positive x direction(θ = 0)
at t = 0. The probability distribution is clearly forward peaked and and becomes almost flat along the θ-axis only at
times of about 8t∗.

Figure-3 : The first and second moments of the displacement for the probability distribution of a particle in an infinite
medium. The solid lines show the anlytical result of equation(20) and equation(22) while the symbol ( ◦ ) show the
result obtained from the numerical solutions.

Figure-4 : The marginal probability distribution P (x, t; x0, θ0, 0) =
∫ π

−π P (x, θ, t; x0θ0, 0)dθ at different times. The
marginal probability distribution becomes almost a Gaussian at times of 8t∗.

Figure-5 : The Probability distributions in the phase space of a particle in a semi-infinite medium at different times.
The particle is released at x = 0 along the positive x direction(θ = 0) at t = 0. The absorbing boundary is located
at 4l∗. The probability distribution is zero in the range −π < θ < −π/2 and π/2 < θ < π at the boundary implying
there is no incoming flux into the medium.

Figure-6 : The marginal probability distributions in a semi-infinite medium with an absorbing boundary at x = 4l∗.
The plot on the right shows an expanded view of the distributions near the boundary. The solid straight lines are the
linear extrapolations of the behaviour near the boundary. All of them are seen to cross the x-axis roughly at 0.7l∗

outside the boundary.

Figure-7 : The surviving probability of the particle inside the semi-infinite medium for an absorbing boundary at
4l∗(◦) and 2l∗(∗). The persistence exponent ϑ is obtained from the long time behaviour of the survival probability.
The lines (· · ·) and (− · −) show the linear fits and give a persistence exponent of 0.4309 and 0.4364 respectively.

Figure-8 : The first moments of the displacement of a particle in a finite slab of thickness 2l∗ (left plot). The right
plot shows the survival probability in a semi-infinite medium and a finite slab. The distance between the point where
the particle is released and the boundary is same in both case. (2l∗).

Figure-9 : Total light emitted (from both sides) by a disordered slab with amplification for different values of the gain
coefficient A in the medium. The output increases exponentially at long times.
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