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Abstract

The Landauer scattering approach to 4-probe resistance is revisited for the case of a d-

dimensional disordered resistor in the presence of decoherence. Our treatment is based on an

invariant-embedding equation for the evolution of the coherent reflection amplitude coefficient in

the length of a 1-dimensional disordered conductor, where decoherence is introduced at par with

the disorder through an outcoupling, or stochastic absorption, of the wave amplitude into side

(transverse) channels, and its subsequent incoherent re-injection into the conductor. This is essen-

tially in the spirit of Büttiker’s reservoir-induced decoherence. The resulting evolution equation for

the probability density of the 4-probe resistance in the presence of decoherence is then generalised

from the 1-dimensional to the d-dimensional case following an anisotropic Migdal-Kadanoff-type

procedure and analysed. The anisotropy, namely that the disorder evolves in one arbitrarily chosen

direction only, is the main approximation here that makes the analytical treatment possible. A

qualitatively new result is that arbitrarily small decoherence reduces the localisation-delocalisation

transition to a crossover making resistance moments of all orders finite.
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I. INTRODUCTION

Electron localisation [1, 2], strong as well as weak, and the associated metal-insulator

transition and conductance fluctuations [3] are due essentially to the time-persistent in-

terference of the complex wave amplitudes that result from multiple elastic scattering on

randomly distributed defects in the conductor with quenched potential disorder. Similar in-

terference effects also manifest in mesoscopic systems as various phase-sensitive phenomena,

e.g. the well known persistent ring currents and the Aharonov-Bohm oscillations. Clearly,

these one-electron phase-sensitive phenomena can get suppressed by decoherence. Micro-

scopically [4], decoherence can arise from incoherent processes involving, e.g., the inelastic

electron-phonon or the electron-electron scattering, as also from an entanglement with the

environmental degrees of freedom that remain undetected or unmeasured. (While coher-

ent inelastic scattering is in principle possible, as indeed in the case of neutron scattering,

it is not relevant to the case of coherent multiple scattering of electrons in a disordered

conductor). The question now is how to incorporate decoherence phenomenologically in

an analytical treatment of the otherwise Hamiltonian system such as the system of non-

interacting electrons moving in a lattice, or a continuum with random elastic scatterers,

e.g., the Anderson model system for metal-insulator transition in random lattices [1]. De-

coherence has often been included theoretically and probed experimentally through a phase

breaking, or dephasing cut-off length scale introduced on physical grounds [2, 5]. It is clearly

desirable, however, to have a phenomenology for introducing the degree of decoherence in

the analytical treatment of elastic scattering in a disordered conductor. A highly successful

and widely used approach to decoherence was pioneered by Büttiker [6, 7, 8, 9] through

the idea of reservoir-induced decoherence. The latter could be introduced naturally in the

scattering approach of Landauer [10] to quantum transport, e.g., the 4-probe resistance.

For the reservoir-induced decoherence, one inserts a scattering matrix with appropriately

chosen side (transverse) channels, and thereby outcouple a partial wave amplitude into an

electron reservoir. The amplitude re-emitted from the reservoir is then re-injected back into

the conductor, adding necessarily incoherently to the transmitted amplitude along the con-

ductor (the longitudinal channel) that carries the transport current. The chemical potential

of the reservoir is, of course, tuned so as to make the net current in the side channel vanish

on the average. (This is clearly analogous to the “potentiometric” probe of Engquist and
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Anderson [11]). The net result is the introduction of decoherence, or partial coherence, that

can be readily parametrised. It describes, in particular, the quantum-to-classical crossover

of a series combination of conductors [7] with increasing strength of the coupling to the in-

tervening reservoirs. While used extensively in the context of mesoscopic (zero-dimensional)

systems [12], the reservoir-induced decoherence has also been invoked by many workers for

treating partial coherence in quantum transport on tight-binding lattices – without disorder

[13, 14, 15], and with weak disorder [16, 17, 18], as also in a disordered continuum [19].

These studies are, however, confined to 1-dimensional conductors.

In this work, we have considered the case of a d-dimensional conductor for d ≥ 1 in the

presence of both the quenched disorder and decoherence. Our analytical treatment is based

on the invariant-embedding approach developed earlier for a 1-dimensional conductor with

quenched disorder [20, 21, 22], and its subsequent generalisation to higher dimensions for

anisotropic disorder using the Migdal-Kadanoff technique [23, 24]. Here, first the elastic scat-

terers (resistances) are combined in series quantum-mechanically along an arbitrarily chosen

direction and then classical Ohm’s law is used to combine these resistances in parallel along

the transverse directions. This is followed by a scaling transformation with an infinitesimal

increase in scale at each step. The resulting ‘transverse’ mixing up of disorder through the

evolution equation is known to give a qualitatively correct description of the weak scattering

regime in the absence of decoherence [24], despite the assumption of anisotropic disorder,

which is an approximation. In our approach, decoherence and elastic scattering (quenched

disorder) are treated formally at par through a proper insertion of the scattering (S-) ma-

trices, i.e., transverse channels distributed over the conductor. Specifically, a side-channel

is to be viewed as causing a stochastic absorption – a coherent process by itself. The in-

coherent re-injection with zero net side-current is, however, effectively realised through the

use of the Landauer expression |R(L)|2/(1 − |R(L)|2) for the 4-probe resistance, but with

|R(L)|2 now calculated as the coherent-only reflection coefficient. A physically robust argu-

ment is presented for the self-consistency of this procedure. The main results derived are,

(a) elimination of the metal-insulator transition (the unstable fixed point) for an arbitrarily

small strength of decoherence. This is indeed expected on physical grounds inasmuch as

metal-insulator transition with increasing static disorder is essentially due to the coherent-

back scattering [2] (where the back scattered amplitudes traversing the time-reversed paths

add up in phase), while decoherence suppresses this phase coherent effect; (b) suppression
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of the 4-probe resistance fluctuations with increasing decoherence strength making all the

resistance moments finite; and (c) a correction to conductivity due to decoherence in the

metallic limit that mimics the conventional phase cut-off length scale.

II. MODEL AND INVARIANT-EMBEDDING: 1-DIMENSIONAL CASE

Consider a model Hamiltonian H for the system of non-interacting electrons in a 1-

dimensional disordered conductor of length L:

H = − ~
2

2m

∂2

∂x2
+ V (x), (2.1)

where V (x), 0 < x < L is a spatially random potential (quenched disorder) assumed to be

delta-correlated Gaussian as

〈V (x)V (x′)〉 = V0
2δ(x − x′) .

Let an electron wave of unit amplitude be incident at Fermi energy (EF = ~
2k2

F/2m) on the

sample from right, and let R(L) and T (L), respectively, be the reflection and the transmission

amplitude coefficients. Next, let the sample of length L be embedded invariantly in a

supersample of length L + ∆L (Fig. 1). It is readily seen that the elastic scattering from

the random potential in the interval ∆L with kF∆L << 1 can be viewed as due to a delta-

function potential of strength V (L)∆L, the corresponding scattering matrix being ∆SE

∆SE =





2mV ∆L
2i~2kF

1 + 2mV ∆L
2i~2kF

1 + 2mV ∆L
2i~2kF

2mV ∆L
2i~2kF



 (2.2)

This gives an evolution equation for the S-matrix in the sample length L. Specifically, we

have for the amplitude reflection coefficient [20, 21, 22]

dR

dL
= i

kF

2
ξ(L)(1 + R(L))2 + 2ikF R(L) , (2.3)

with ξ(L) = −2mV (L)

~2k2
F

and 〈ξ(L)ξ(L′)〉 = Λδ(L − L′).

We are now in a position to introduce decoherence at par with the random elastic scattering

within this approach. We recall the 4 × 4 S−matrix with the side channels as introduced
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e−ik xF

x=Lx=0 x=L+∆L

+ ∆R(L

−ik e F

T(L+ ∆L)
L)

−e F (xik −L )L∆

− −( Lx ∆L

SD SE∆

)

∆

FIG. 1: Shows disordered sample of length L embedded invariantly in a supersample of length

L + ∆L. Shown also are the elementary matrices for the elastic (∆SE) and the decohering (∆SD)

scatterings in ∆L, with the incident, the transmitted, and the reflected waves at Fermi wavevector

kF .

by Büttiker [7]:

S =















0
√

1 − ǫ
√

ǫ 0
√

1 − ǫ 0 0
√

ǫ
√

ǫ 0 0 −
√

1 − ǫ

0
√

ǫ −
√

1 − ǫ 0















(2.4)

Here the outcoupling through the side channels is parametrised by ǫ, which must be of order

∆L in the present case. Accordingly, we use the 2 × 2 sub-matrix

∆SD =





0
√

1 − ǫ
√

1 − ǫ 0



 (2.5)

for insertion into the interval ∆L. It describes the outcoupling into the side channels, i.e.,

the stochastic absorption, as also the coherent transmission directly through the interval ∆L.

(Its connection with the reservoir-induced decoherence will be clarified below later). Figure

(1) is a schematic depicting the insertion of the elementary ∆SE and ∆SD in the interval

∆L. Clearly, for kF ∆L << 1, the exact spatial order and the locations of the two insertions

within the interval ∆L are not relevant. Combining these two elementary S-matrices (∆SE

and ∆SD) for ∆L with the S−matrix (S(L)) for the sample of length L in series, we can

read off the emergent quantities R(L) and T (L):

R(L + ∆L) = ∆R +
∆T 2 e2ikF ∆L R(L)

1 − ∆R R(L) e2ikF ∆L
, (2.6)

with ∆R =
2mV ∆L

2i~2kF

and ∆T 2 = 1 − ǫ +
2mV ∆L

i~2kF

.
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In the limit ∆L → 0, we obtain the evolution equations for the amplitude reflec-

tion/transmission coefficients R(L) and T (L):

dRc

dL
= i

kF

2
ξ(L)(1 + Rc(L))2 + 2ikF Rc(L) − ηRc(L) , (2.7)

and
dTc

dL
= i

kF

2
ξ(L)(1 + Rc(L))Tc(L) + ikF Tc(L) − η

2
Tc(L) , (2.8)

where η = ǫ/∆L, ∆L → 0 parametrises decoherence. Here we have introduced the

subscript ‘c’ just to emphasize that the reflection/transmission amplitude coefficients in

Eq.(2.7) are coherent.

It seems in order at this stage to clarify how decoherence is realised in relation to the

sample resistance by the insertion of the side channel through ∆SD. Clearly, the embedding

Eq.(2.7) describes evolution of the coherent reflection amplitude Rc(L). (Similarly, Tc(L)

is the coherent transmission amplitude as depicted in Fig.(1). The embedding equation

for Tc(L), however, is not autonomous – it involves Rc(L)). The outcoupling into the

side channels corresponds to a stochastic absorption [25, 26, 27] in the interval ∆L. This,

however, has to be re-injected now incoherently back into the conductor. Inasmuch as this re-

injected current necessarily flows down the chemical potential gradient, it contributes to the

total transmitted current equal to (within constant of proportionality) |Tc(L)|2 + |Tin(L)|2 ≡
|Ttot(L)|2, where the subscript ‘in’ denotes incoherent. From the conservation of the total

current flowing down the conductor, we must have |Tc(L)|2 + |Tin(L)|2 = 1 − |Rc(L)|2.
Now, recall that the Landauer resistance (ρ(d,D)) formula ρ(d,D) = (1 − |Ttot|2)/|Ttot|2 holds

for arbitrary |Ttot|2 (coherent or incoherent both). Here the superscript (d, D) denotes the

dimensionality d and the decoherence parameter D. Thus, we have ρ(d,D) = |Rc|2/(1−|Rc|2)
given entirely in term of Rc(L) which is calculable from Eq.(2.7). Thus the 4-probe resistance

|Rc(L)|2/(1 − |Rc(L)|2) incorporates self-consistently the incoherent re-injection. Here we

must re-emphasize that |Rc(L)|2 is the coherent reflection coefficient given by and calculable

from the embedding Eq.(2.7).

Our next step is to obtain the ‘Fokker-Planck’ equation for the probability density of the

reflection coefficient r(L) = |Rc(L)|2 from the stochastic differential Eq.(2.7) which serves

as the Langevin equation here. Following the now familiar procedure [20, 21, 22, 28], we
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obtain

∂P (1)(r, l)

∂l
=

∂

∂r
[r

∂

∂r
(1 − r)2P (1)(r, l)] + D

∂

∂r
[rP (1)(r, l)] , (2.9)

with l =
L

l0
, l0 =

2

Λk2
F

and D = 2ηl0 .

This is clearly a two-parameter (l0 and D) evolution equation. The two independent pa-

rameters l0 and D are, of course, composed of the two basic independent parameters Λk2
F

(measure of disorder) and η (measure of decoherence). Thus, e.g., D may vary through η,

while l0 can remain constant.

Equation (2.9) in the limit of large length L >> l0 gives a steady-state distribution P∞(r)

for the reflection coefficient r

P (1)
∞ (r) =

|D| exp(|D|) exp(− |D|
1−r

)

(1 − r)2
, r ≤ 1. (2.10)

Note that for D = 0, the limiting distribution in Eq.(2.10) tends to the delta- function, δ(1−
r), and not to zero. (This can be readily seen by noting that the probability distribution is

normalized to unity for all D). This means that the reflection coefficient becomes unity with

probability one, as it must for an infinitely long 1d disordered wire without decoherence (all

states being localized then, a well known result from Anderson localization in one dimension).

The corresponding resistance moments are all finite for D 6= 0. In particular, the limiting

value of the average 4-probe resistance in the presence of decoherence is

ρ(1,D)
∞ =

π~

e2
〈 r

1 − r
〉

=
π~

e2|D| . (2.11)

With this preparation (Eq.(2.9)) in hand, we now turn to the case of d-dimensions.

III. HIGHER-DIMENSIONAL CASE

Changing over to the 4-probe resistance ρ = r/(1− r) (measured in the unit of π~/e2) as

the new variable with the associated probability density P (1)(ρ, l), Eq. (2.9) reduces to

∂P (1)

∂l
= ρ(ρ + 1)

∂2P (1)

∂ρ2
+ {(2ρ + 1) + Dρ(ρ + 1)}∂P (1)

∂ρ
+ D(2ρ + 1)P (1) . (3.1)

The corresponding nth resistance moment in 1 dimension is

ρ(1,D)
n =

∫ ∞

0

P (1)(ρ, l)ρndρ . (3.2)
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Multiplying both sides of Eq.(3.1) by ρn and integrating by parts on the RHS, we get the

evolution equation for the 1-dimensional moment

∂ρ
(1,D)
n

∂l
= n(n + 1)ρ(1,D)

n + n2ρ
(1,D)
n−1 − Dnρ(1,D)

n − Dnρ
(1,D)
n+1 , (3.3)

which is hierarchical in nature (i.e., the equation for ρ
(1,D)
n involves ρ

(1,D)
n−1 and ρ

(1,D)
n+1 ). For

D = 0, however, the equation for ρ
(1)
n involves the lower-order moments only leading to

a closure of the hierarchy. Thus, the presence of decoherence (D 6= 0) brings about a

qualitative change in the structure of the coupled equations for the moments of different

orders. For D = 0, the solutions of Eq.(3.3) for the 1st and the 2nd moments are readily

obtained as

ρ
(1,0)
1 =

1

2
(e2l − 1) ,

ρ
(1,0)
2 =

2

3
(2ρ

(1,0)
1

3
+ 3ρ

(1,0)
1

2
) . (3.4)

In writing the last equation above, we have eliminated the length l in favour of an implicit

relation between ρ
(1,0)
2 and ρ

(1,0)
1 . We have verified by iteration of Eq. (3.3), that this relation

remains valid for ρ
(1,D)
2 and ρ

(1,D)
1 to a good approximation for D 6= 0, and will be used as

such. Substituting for ρ
(1,D)
2 in terms of ρ

(1,D)
1 in Eq. (3.3) for n = 1, and integrating we

obtain a relation between l and ρ
(1,D)
1

l =

∫ ρ
(1,D)
1

0

dρ̃
(1,D)
1

−4
3
Dρ̃

(1,D)3

1 − 2Dρ̃
(1,D)2

1 + (2 − D)ρ̃
(1,D)
1 + 1

. (3.5)

(From now dummy integration variable will be distinguished by a tilde). Hereinafter, the

superscript D in ρ
(1,D)
1 will be dropped except when required for the sake of clarity. Defining

the associated moment generating function χ(1)(x, l) and the cumulant generating function

K(1)(x, l) of P (1)(ρ, l) as

χ(1)(x, l) ≡
∫ ∞

0

e−xρP (1)(ρ, l)dρ ,

K(1)(x, l) ≡ lnχ(1)(x, l) ,

we derive from Eq.(3.3) their evolution equations

∂χ(1)

∂l
= (x2 + Dx)

∂2χ(1)

∂x2
+ (2x − Dx − x2)

∂χ(1)

∂x
− xχ(1) , (3.6)

∂K(1)

∂l
= (x2 + Dx)

∂2K(1)

∂x2
+ (x2 + Dx)(

∂K(1)

∂x
)2 + (2x − Dx − x2)

∂K(1)

∂x
− x . (3.7)
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Now, we proceed to generalise the above equations to the case d > 1 . For this we closely fol-

low the Migdal-Kadanoff procedure as in Ref.[23], assuming the quenched disorder to evolve

along one chosen direction only. This anisotropic disorder is admittedly an approximation,

but it is known to reproduce correctly the qualitative features of the Anderson transition in

the absence of decoherence, as shown in the earlier works [23, 24]. The probability density

P (d)(ρ, l) of the resistance of a d-dimensional hypercubic sample is accordingly found to obey

the integro-differential evolution equations

∂χ(d)

∂ ln l
= −(d − 1)x

∂χ(d)

∂x
+ [(x2 + Dx)

∂2χ(d)

∂x2
+ (2x − Dx − x2)

∂χ(d)

∂x
− xχ(d)] l , (3.8)

∂K(d)

∂ ln l
= −(d − 1)x

∂K(d)

∂x
+

[

(x2 + Dx)
∂2K(d)

∂x2
+ (x2 + Dx)(

∂K(d)

∂x
)2 + (2x − Dx − x2)

∂K(d)

∂x

− x] l , (3.9)

where l in the above equations is given by the integral in Eq.(3.5), but with ρ
(1)
1 in the

integrand now re-interpreted as ρ
(d)
1 . Clearly, in the limit D = 0, the above equations for

the generating functions reduce to the corresponding Eqs.(6,7) of Ref.[23].

In particular the fixed point probability distribution for d = 3 obtained by setting

∂χ(d)/∂ ln l = 0 and inverting the Laplace transform of the solution for χ(d) is nothing

but the known fixed point power-law distribution [24].

In the presence of decoherence (D 6= 0), however, there is no fixed point even for arbi-

trarily small values of D for d = 3. In order to see this, consider the evolution equation for

the first cumulant K
(d)
1 (≡ ρ

(d)
1 ) obtained from the cumulant-generating Eq.(3.9)

∂K
(d)
1

∂ ln l
= −(d − 1)K

(d)
1 + [1 + 2K

(d)
1 − DK

(d)
1 − DK

(d)
1

2 − DK
(d)
2 ]

∫ ρ
(d)
1

0

dρ̃
(d)
1

−4
3
Dρ̃

(d)3

1 − 2Dρ̃
(d)2

1 + (2 − D)ρ̃
(d)
1 + 1

, (3.10)

where we have replaced the length l in terms of ρ
(d)
1 as explained above. Carrying out the

integration occurring in Eq.(3.10) numerically (using Mathematica), we found no solution

with ∂K
(d)
1 /∂ ln l = 0 for any non-zero value of D however small (down to D ∼ 10−6)

confirming that there is no fixed point. This should, of course, be physically so inasmuch

as the decoherence is expected to suppress quantum interference effects (and localisation),

in the limit of large sample size. For D 6= 0, however, we do expect the probability density

to vary slowly in the vicinity of the D = 0 fixed point, now become a crossover. Indeed,
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setting ∂χ(d)/∂ ln l ≃ 0 for small non-zero D, we obtain for the quasi-fixed-point probability

density of resistance

P (ρ
(d)
1 ) =

D1−α e−D(1+ρ
(d)
1 ) (1 + ρ

(d)
1 )−α

Γ(1 − α, D)
, (3.11)

where Γ(1 − α, D) ≡
∫ ∞

D

e−uu−αdu and α =
d − 1

l|
ρ
(d)
1

.

Here ρ
(d)
1 (≃ ρ

(d)∗
1 = 1.96 for d = 3) is the average resistance corresponding to the quasi-

fixed-point probability density, and l|
ρ
(d)
1

is the value of the integral Eq.(3.5) with the upper

limit ρ
(d)
1 . It is clear from Eq.(3.11) that a non-zero value of D (decoherence) makes all the

resistance moments finite, that is it cuts-off the otherwise divergent resistance fluctuations.

In the absence of decoherence (D=0), Eq.(3.11) gives a power -law probability distribution

for resistance at the mobility edge as in Ref.[24]. It is to be noted, however, that all numerical

work on tight-binding Anderson model shows that the distribution of conductance in 3d at

the mobility edge (the fixed point) is far from a power law [29, 30]. We think that this

could be for two reasons: First, the neglect of the transverse fluctuations in our anisotropic

Migdal-Kadanoff procedure, and secondly as the numerical results are all for the ensemble

averaged two-probe conductance (Tr tt†) (where t is the transmission matrix) while we have

calculated the ensemble averaged four-probe resistance. It is to be noted here that while the

four-probe resistance is unbounded from above and can, therefore, have large fluctuations,

the two-probe conductance is by definition bounded from above and can fluctuate relatively

much less. Thus, e.g., in the 1d case, Tr tt† ≤ 1; but, of course, there is no fixed point in the

1d case. We would like to point out here that the invariant imbedding equation is, of course,

known for d-dimensional as also for the quasi-one dimnsional case (see Ref.[22], Eq.2.28),

but an analytical solution is lacking, making any comparison with the available results for

the quasi-1d, D=0 conductance distribution [31, 32] impossible. Our immediate interest,

however, lies in the fact that decoherence cuts off the resistance fluctuations exponentially.

Finally, we consider the asymptotic behaviour of the resistance in 3 dimensions in the

presence of decoherence in the metallic regime as the sample size tends to infinity. In 3

dimensions with D 6= 0, we expect the resistance to tend to a small value in the mean along

with a narrow width (the variance) of the distribution. This motivates us to approximate
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the evolution Eq.(3.10) for the first moment as

∂ρ
(d)
1

∂ ln l
= −(d − 1)ρ

(d)
1 + [1 + (2 − D)ρ

(d)
1 ]

∫ ρ
(d)
1

0

dρ̃
(d)
1

1 + (2 − D)ρ̃
(d)
1

. (3.12)

Now, consider first the 3-dimensional case (d=3) in the metallic regime starting with the

resistance ρ0 = ρ
(3)
1 (l0) at a length scale l0. Let this evolve through Eq.(3.12) to a length

scale l >> l0 with ρ
(3)
1 (l) ≡ ρ << ρ0. Eq.(3.12) then gives

∫ ρ
(3)
1

ρ0

dρ̃
(3)
1

−ρ̃
(3)
1 + 2−D

2
ρ̃

(3)2

1

= ln(
l

l0
) , (3.13)

or, in term of the conductivity σ(3)(l) ≡ g/l, g ≡ 1/ρ and g0 ≡ 1/ρ0, we have

σ(3)(l) =
g0 − 1

l0
+

1

l
+

D

2
(
1

l0
− 1

l
) . (3.14)

Equation (3.14) clearly shows that increasing decoherence (D) increases the metallic con-

ductivity in 3 dimensions. Indeed, one can re-write the correction D/2l0 as 1/Lφ with Lφ

a phase-cut-off (dephasing) length scale as usual. Proceeding in similar way, we get for

the 2-dimensional case a logarithmic correction to the conductivity σ(2)(l) (noting that in 2

dimensions conductivity is the same as conductance)

σ(2)(l) = σ0 +
D − 2

2
ln(

l

l0
) , (3.15)

where σ0 is the conductivity (or the conductance) at the starting length scale l0. Again, the

conductivity σ(2)(l) is seen to increase with increasing decoherence D. This is qualitatively

consistent with the negative temperature coefficient of resistance observed in disordered

conductors at low temperatures in the weak localisation regime, in particular for 2d systems

[2].

IV. DISCUSSION

We have extended the phenomenology of decoherence known well in the context of

phase-sensative systems, such as mesoscopic rings [33] and 1-dimensional quantum wires

[13, 14, 15, 16, 17, 18], to higher dimensions – specifically to a d-dimensional disordered

conductor for d = 2 and 3. Our treatment here follows the invariant embedding approach

developed earlier [20, 21, 22], beginning with the 1d case. It treats decoherence and dis-

order formally at par in that the two are introduced through appropriately chosen and
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parametrised scattering matrices distributed over the conductor. The invariant embedding

appraoch is naturally suited to the problem on hand as it gives the evolution-in-length

of the resultant emergent quantities such as the reflection coefficient related directly to

the Landauer 4-probe resistance of interest. Decoherence is realised specifically through

stochastic absorption of the wave-amplitude into distributed side (transverse) channels, and

the subsequent re-injection of the absorbed fraction back into the conductor so as to add

incoherently to the (longitudinal) coherent transport. This is essentialy in the spirit of

Büttiker’s reservoir-induced-decoherence. A point to note here is that the current-conserving

re-injection is realised here self-consistently through the use of the 4-probe resistance which

now needs to be calculated with the coherent-only reflection coefficient. Extension to higher

dimensions has been carried out within the Migdal-Kadanoff procedure assuming the dis-

order to evolve only along an arbitrarily chosen direction for the current. This choice of

anisotropic disorder is admittedly an approximation, but its innocuous nature is borne out

a posteriori by the fact that this approximation had correctly given the unstable fixed point

for the disorder induced Anderson (metal-insulator) transition for d = 3 in the absence of

decoherence. Its reasonableness may be attributed to the transverse mixing up of disorder

by the evolution equation. Physically, moreover, the classicalisation expected from decoher-

ence should make the approximation even better. A non-trivial result of our work is the

elimination of the unstable (Anderson) fixed point due to decoherence. Again, it is expected

on physical grounds that the fixed point should get replaced by a crossover for D 6= 0. So

is the finiteness of all moments, that is the suppression of resistance fluctuations due to

decoherence, as is evident from our Eq.(3.11). A point to note is the decoherence correction

to the quantum conductivity for d = 3, where a cut-off length (dephasing length) appears

naturally. Finally, we would like to point out here that the decoherence, through stochas-

tic absorption into the transverse channels and the re-injection, does not cause scattering

in the coherent longitudinal (transport) channel in the sense of momentum randomisation

that would have given additional resistance. Indeed, as is clear from our Eq.(2.7), in the

absence of scattering by disorder, the reflection amplitude (R) remains identically zero for

all lengths, independently of the value of η (that parametrises decoherence). This is also

obvious from the Eq.(2.5). We would aptly like to call this a pure decoherence without any

12



concomitant elastic scattering.
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[32] A. Garćıa-Mart́ın and J. J. Sáenz, Phys. Rev. Lett. 87, 116603 (2001).

[33] D. Roy, J. Phys.: Condens. Matter 20, 025206 (2008).

14


	Introduction
	Model and invariant-embedding: 1-dimensional case
	Higher-Dimensional case
	Discussion
	References

