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A n g u l a r  m o m e n t u m  ca r r i ed  b y  a classical  circu- 
l a r ly  p o l a r i z e d  e l e c t r o m a g n e t i c  p l a n e  wave ( l ight)  
a p p e a r s  to  be  i den t i ca l l y  zero  i n a s m u c h  as i ts  
l i nea r  f i e l d - m o m e n t u m  d e n s i t y  is d i r ec t ed  a long  
wave  p r o p a g a t i o n ,  and ,  the re fo re ,  t h e  a n g u l a r  
m o m e n t u m ,  b e i n g  t h e  i n t e g r a t e d  m o m e n t  of  t h e  
l i nea r  m o m e n t u m  d e n s i t y  a b o u t  a n  axis  para l -  
lel to  t h e  d i r e c t i o n  of  p r o p a g a t i o n ,  necessa r i ly  
van i shes  - in  de ta i l .  This ,  however ,  c o n t r a d i c t s  
t h e  e s t a b l i s h e d  fact  t h a t  c i r cu la r ly  po l a r i zed  l igh t  
does  c a r r y  a n g u l a r  m o m e n t u m  t h a t  r e m a i n s  clas- 
s ica l ly  non-zero .  T h e  p a r a d o x  is reso lved  in  a 
p h y s i c a l l y  t r a n s p a r e n t  m a n n e r  by  t r e a t i n g  t h i s  
p r o b l e m  as t h a t  of  a t r a n s v e r s e l y  b o u n d e d ,  a n d  
h e n c e  neces sa r i l y  n o n - t r a n s v e r s e ,  e l e c t r o m a g n e t i c  
wave  p r o p a g a t i n g  a long  a c i rcu la r  waveguide ,  in  
t h e  l imi t  as i ts  r a d i u s  t e n d s  to  inf ini ty .  We  get  
a non-ze ro  a n g u l a r  m o m e n t u m  t h a t  bea r s  t h e  
co r r ec t  r a t i o  to  wave energy.  T h i s  a n g u l a r  mo- 
m e n t u m  der ives  e s sen t i a l l y  a n d  e x a c t l y  f rom t h e  
b o u n d a r y  c o n d i t i o n s  for t h e  g e o m e t r y  consid-  
ered.  Th i s  is a n  i n t e r e s t i n g  e x a m p l e  of  sur face  
t e r m s  g iv ing  a v o l u m e  (bulk)  c o n t r i b u t i o n ,  m u c h  
as in  t he  e n t i r e l y  d i f ferent  c o n t e x t  of  o rb i t a l  dia-  
m a g n e t i s m ,  w h i c h  was  r e g a r d e d  as a su rp r i se  of  
t h e o r e t i c a l  phys ic s  b y  R u d o l f  Peier ls .  [1] 

What  is the angular momentum carried classically by a 
circularly polarized electromagnetic plane wave? That  
is the question addressed here. A straightforward calcu- 
lation would, of course, suggest the simple answer that  
it is identically zero. This is readily seen from the fol- 
lowing. For an electromagnetic wave, the linear wave- 
momentum density p = ~oE • B* - S/c 2, while the an- 
gular momentum density 1 -- r • p, where S is the Poynt- 
ing vector and other symbols have their usual meaning 
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[2,3]. We are using here the complex representation, 
and the SI system of units. Thus, e.g., the physical elec- 
tric field is the real part of the complex E field, and 
similarly for B, and other quantities. Clearly, for a cir- 
cularly polarized transverse electromagnetic plane wave 
propagating aIong the positive z-axis, say, the angular 
momentum density 1~. about the z-axis is identically zero 
inasmuch as the linear momentum density is everywhere 
parallel to the (z) axis of propagation. But, of course, we 
must hasten to add that  this cannot be the case. Non- 
zero angular momentum of circularly polarized light is 
a well established fact. Moreover, we know that  the 
electromagnetic fields ultimately must be described cor- 
rectly in terms of the quanta of radiation, the photons, 
and that the photon carries a spin-angular momentum 
of magnitude h, directed parallel or antiparallel to the 
direction of propagation according as it is right- or left- 
circularly polarized. Now, a classical electromagnetic 
wave is the limiting case of the photonic state (a coher- 
ent state with a large mean photon number in the mode), 
and in this classical limit the angular momentum does 
survive. This then is the paradox! Where is the angular 
momentum? In this work we show that  the resolution 
of this paradox lies in treating correctly the boundary 
conditions at the transverse infinity for the transversely 
unbounded plane wave in question. This we will do now 
in a physically transparent way by treating the prob- 
lem in question as the limiting case of a well defined 
problem of a transversely bounded, and hence necessar- 
ily non-transverse electromagnetic wave propagating in 
a circular waveguide, as its radius tends to infinity. The 
non-zero angular momentum will be shown to derive es- 
sentially from the boundary cond,itions, and to bear the 
correct ratio to the wave energy. Thus, this is an inter- 
esting example of surface terms giving a volume (bulk) 
contribution, much as in the entirely different context of 
orbital diamagnetism, which was regarded as a surprise 
of theoretical physics by Rudolf Peierls [1]. 
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A strong motivation for presenting this work has come 
from the reaction of some graduate students and physi- 
cist colleagues when confronted with this paradox and 
our resolution of it - it was one of surprise! Further- 
more, we believe that  this physically motivated and trans- 
parent treatment has a didactic value - it is certainly 
much simpler than the involved treatment of angular 
momentum of EM waves found in standard textbooks 
[3]. 

Consider a monochromatic electromagnetic wave of cir- 
cular frequency w propagating in a circular cylindrical 
waveguide of radius R, in the mode T E n ,  well known 
from standard textbooks on classical electrodynamics 
[2,3]. The corresponding electric and magnetic fields 
are (in the complex representation) 

E(lin) = (Ep~ + Er162 + Ez~,)expi(~t - k~z) (1) 

B(hn) = ( Bp~ + Bed + Bz~,)expi(wt - kzz) (2) 

with 

and 

A J1 (kp) sinr 
Ep = (3) 

P 

Er = A ~-~[Jl (kp)]cosr (4) 

Ez =0,  (5) 

B,= Ak o., dp (6) 

Be -- Ak_____~ Jl(kp) sine (7) 
w p 

.Ak 2 
Sz = -~ Jl(kp)cosr (8) 

w 

where/~, r and ~ are the unit vectors in the respective 

directions; k = ~/(w2/c 2 - k~) with kz the wavenumber; 

i = ~ and Jm(kp) the Bessel function of order m. 
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The parenthetical (lin) anticipates linear polarization of 
the T E n  mode in the limit R --+ c~. Now, the bound- 
ary conditions for perfectly conducting waveguide walls, 
namely that  Er = 0 = Bp at p = R, demand 

d J1 (kp)[p=n = 0 (9) 
dp 

~vmg 
U 

k = ~ ,  (10) 

where u (= 1.841) is the first root of (9). The field con- 
figuration as in (1 - 8) corresponding to the waveguide- 
bound T E n  mode clearly goes over to that  for a trans- 
versely unbounded linearly plane polarized transverse 
electromagnetic (TEM) wave in the limit R -+ oo, i.e., 
for all finite points on the transverse planes, z=  con- 
stant, the two field configurations coincide. Next, in 
order to realize a circularly polarized limiting field con- 
figuration, all we have to do now is to superpose on the 
fields of (1-8), another field configuration which is in 
space-time quadrature with the former. The fields in 
space-time quadrature are obtained from those of (1-8) 
by simply replacing r by r + 1r/2, and multiplying the 
resulting expressions by i. This gives at once 

E(circ) = EoR (iJl(_kp).~ + ~--~Jl(kp)r expi (wt-kzz-r  
\ P 

(11) 
B(circ) -- E~ (-kzdJl(~ -kp) ~ + ikzJl(kp) ~ -  ik2Jl(kp)~ p 

expi(wt - kzz - r (12) 
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where we have chosen for convenience the normalization 
such that  the field Ep = Eo for r = ~r/2, R -~ oo, giving 
A = REo, to within a numerical constant (2/u) which 
is ignored. Here the (circ) in parenthesis anticipates the 
circular polarization in the limit R --+ c~. 

Clearly, in the limit R --+ oo, the above field configu- 
ration goes over to that  of a right-circularly polarized 
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plane wave propagating along the z-axis, but now with 
clearly defined boundary conditions admissible at the 
spatial infinity in the transverse plane, z = constant 
(see(9)). 

We are now in a position to calculate the total angular 
momentum (L~) caxried by the above wave fields, and 
see if it remains non-zero in the limit R --4 c~. We have 

Lz~ = /eopf~ • (E • B*)pdpdCdz 

= (~~ 2~ (u2 -1)(Jl(u))27cR2~, , (13) 

where the integration is over a unit length of the wave- 
guide. Thus, the angular momentum per unit-cross- 
sectional area per unit length of the cylindrical waveguide 
is 

2 
Lz~ = soE~ (u2 _ 1)(Jl(u))2~. (14) 

w 
This is clearly non-zero. Interestingly, it is independent 
of R[ 

We also verify that  the calculated angular momentum 
bears the correct ratio to the wave energy. The wave 
energy per unit cross-sectional area of the waveguide 
per unit length is 

_ 

ClZoW 

This gives for the ratio 

(u 2 -  1)(Jl(u)) 2. (15) 

Lz = f ~o#oC (16) 

Note that  this ratio depends on the radius R of the 
waveguide through the relation k -- u/R (see (10)). 
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Thus in the limit of present interest, R --+ 0o, and hence 
k -+ O, the ratio turns out to be 

lim Lz ( 1 
R-~oo -U"---- w ) (17) 

which is a known standard result, valid in the quantum 
as well as in the classical limit - recall that  in the quan- 
tum case, Lz = nh and U ---- nhw with n the number of 
photons in the wave-guide. 

Physical origin of this boundary contribution to the bulk 
angular momentum should now be clear. In the large R 
limit, the transversely bounded waveguide mode, namely 
the TEl l  mode plus its counterpart in space-time quadra- 
ture, is arbitrarily close to being a circularly polarized 
TEM wave except near the boundary p = R, where 
the curving of the B field lines in the longitudinal (ax- 
ial) direction gives a tangential component to the field- 
momentum density which, when crossed with pf~, gener- 
ates a finite contribution to the angular momentum - 
the large arm length p provides the necessary leverage. 
Indeed, the circumferential whispering-gallery-mode like 
momentum density at the boundary is reminiscent of 
the boundary-skipping classical orbits of electrons in a 
magnetic field - the Landau diamagnetic problem [1,4]. 
Of course, this is not to imply that  the electromag- 
netic angular momentum problem is being mapped on 
to that  of the Landau orbital diamagnetism. The point 
to note here is that  in both the cases we have an orbital 
bulk (volume) effect coming from the boundary! Rudolf 
Peierls [1] had called this a surprise of theoretical physics 
in the context of orbital diamagnetism. Clearly, the an- 
gular momentum of electromagnetic waves, as treated 
above, provides yet another example of this. 

Finally, we would like to make some remarks. The first 
one is that  we have demonstrated explicitly and exactly 
the non-vanishing of the angular momentum only for the 
case of a circular perfectly conducting boundary. We 
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believe, however, that  the effect is general - the exact 
shape of the boundary should not matter in the limit of 
R --~ c~. Indeed, one can have internal boundaries too 
(again much as in the case of Landau diamagnetism). 
The point really is that  any transversely bounded, or 
confined (localized) electromagnetic wave in a simply 
connected region of space cannot be strictly transverse 
- it is the non-transversality of the field (that for the 
waveguide model is pronounced essentially at the bound- 
aries only) that  contributes to the angular momentum. 
More importantly, this classical electromagnetic angu- 
lar momentum coming from the tangential whispering- 
gallery-mode like wave propagation at the boundary is 
manifestly of an orbital nature. It is not obvious, how- 
ever, how this orbital angular momentum eventually 
connects up with the photonic spin-angular momentum 
which is a purely quantum concept. The ratio in (18) 
turns out to be the same for both cases, the classical as 
well as the quantum. This question has been discussed 
at somewhat formal level in advanced texts (see, e.g., 
[3]). The reader is encouraged to give further thought 
to this. 

Suggested Reading 

[1] R Peierls, in Surprises in 
Theoretical Physics, Prin. 

ceton Univ. Press, Prin- 

ceton, 1979. 

[2] W C Elmore and M A 

Heald, Physics of Waves, 
McGraw Hill, New York, 

1969. 

[3] J D Jackson, Classical 
Electrodynamics, John  

Wiley, London, 1999. 

[4] A M Jayannavar and N 

Kumar, J .  Phys., Vol. A14, 

p. 1399,1984. 

RESONANCE J October 2003 75 


