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ABSTRACT

Following Weisskopf, the kinematics of quantum mechanics is shown
to lead to a modified charge distribution for a test electron embedded in
the Fermi-Dirac vacuum with interesting consequences.

THERE is a well-known argument due originally to Weisskopf (1939) wherein
it has been shown that the kinematics of relativistic quantum mechanics
requires that the charge distribution associated with a single Fermi particle
such as an electron in absolute vacuum (as distinct from the physical vacuum)
be that of a point charge. However, for an electron embedded in the physi-
cal vacuum of the Dirac theory, i.e., the one in which the negative-energy

states are completely filled up while the positive-energy states are completely -
empty, the theory predicts a charge distribution that is highly singular but
still has a non-zero spatial support of linear dimensions of the order of the
Cotapton wavelength of the particle A/me. It may be of some interest to
examine the charge distribution associated with an electron when the latter
is embedded in the Fermi-Dirac (F-D) Vacuum, i.e., the one in which the
negative-energy states are completely filled up but the positive-energy states
are filled up only to a certain maximum of the single-particle energy (Fermi-

‘energy Ep). A situation of this kind obtains for a non-interacting electron

gas at the absolute zero of temperature. The purpose of this note will be
to-extend the treatment given by Weisskopf to this situation. It is found
that in this case, too, the charge distribution is highly singular over a region
of linear dimensions of the order of the Compton wavelength A/mc of the
particle. But there is, in addition to this, a long-range oscillatory tail that
reflects the sharpness of the Fermi surface in a manner that is reminescent
of the Friedel oscillations of the impurity problem. The two are, however,
very different conceptually. It is also found that the efle tive interaction
potential of two such overlapping charge distributions has regions of attrac-
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tion, favouring a bound-pair state. For an electron gas at low temperature
and in the low-density limit the latter is inteipreted to imply an instability
towards the Wigner-lattice formation. Its relevance to the purely electronic
mechanism of superconductivity is also pointed out.

The present derivation closely follows the treatment given in Reference(2).

We describe the test charge distribution in general by the auto-
correlation function G (§) given by

cO=[r(+9e(-De
2

where p (r) is the test-charge density at the point » and is given by
p(r) = e {F* (1) ¥ (1)} — o.

Here ¥ (r) is the four component spinor wavefunction with components ¥,,,
(0 =1,2,3,4), and the curly brackets denote the scalar product, i.e.,

[* (1) ¥ ()} = Z’ W () P, (1),

o is the background charge density of the Fermi-Dirac (F-D) Vacuum, and
Q is the normalisation volume.

The essential point of the treatment is to take full cognizance of the fact
that the test electron is indistinguishable from the electrons comprising the
physical vacuum, and that electrons obey Fermi-statistics.
we introduce second quantised waves:

Y (r) =3 ag@q (r); 1) = T al Oq* (r),

Accordingly,

where aq4f, ag are Fermion creation, annihilation operators for the states

®q (1), and Pq (r)are solutions of the Dirac equation for the free electron.
More explicitly

'@q (r) = 0-3% Ug et (-hq.'r—eq)'ﬁ’
where ug is the normalised four-component spinor and the other symbols

have the usuval meaning. The effective autocorrelation function G (&) for
the test-charge distribution can now be written as

Gy (8) = Gg.)n Vact1 Gg-)b Vac* (2)




Fermi-Dirac Vacuum Plus-One-Electron Problem 81

In the present case, recalling that the negative-energy states, labelled as g —,
are fully occupied while the positive-energy states, labelled as ¢ -+, are occu-
pied only up to the Fermi-level ¢ we get after some algebra

Gy (§) = (2 y-2 X )

Q- [9+] <« 9
< (o (r3) 2+ 3)}
4]
< {og* (- 5) Dyes (7 — g)} a, 3)

where gy is the magnitude of Fermi wavevector and the test electron is
assumed to lie just at the Fermi surface (i.e., at gqp).

Inserting the actual solutions of the Dirac equation in (3) we get

it.q
Gu® =(535) [ dang
19> s

and the corresponding charge distribution is given by

p(§)=e f dQ(E )*867:5733 = py (€) + pose (§). @)

la| < q,

Here p, (€) is the highly singular charge density as obtained by Weisskopf
and is ecssentially non-vanishing only over a region of linear dimensions of
the order of h/mec. For all practical (low-energy) purposes the latter can
well be replaced by a point charge. The second term pyge(€) is a long-range
oscillatory charge density and for &> hjme, Ex € mc? it can be evalua-

ted as

puso (§) = 55 (I T i St ®

Further, for two such test-charge distributions separated by a distance r the
electrostatic potential energy of interaction can at once be evaluated to be

a
9

V() (1= 2silaen), with i) = Qf =
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and
r > hjme. (6)

One may note several interesting features of the above expressions. The
oscillatory potential energy is seen to have an absolute minimum at r = =/qg
of depth ~ e?qy/2n* and radial width ~z/gs. A simple application of the
Uncertainty Principle shows that a bound-pair formation is favoured for
gr < e*mlh* ~5 x 108cm™, i.e., for low-density electron gas. It is tempt-
ing to relate this to the instability towards the Wigner-lattice (Wigner,
1938) formation for a rare electron gas. The modified potential may play
an important role in the purely electronic mechanisms of superconductivity
as envisaged by Luttinger (1966). In conclusion, it may be noted that the
above considerations do not involve any dynamical interactions such as
are responsible for charge screening in the electron gas problem. The smear-
ing out of the electron charge in the present case arises purely from the
kinematic phase space considerations involving the nature of the physical
vacuum In question.
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