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ABSTRACT

Following the path-integral approach we show that the Schwarz-
Hora effect is a one-electron quantum-mechanical phenomenon in that
the de Broglie wave associated with a single electron is modulated by
the oscillating electric field. The treatment brings out the crucial role
played by the crystal in providing a discontinuity in the longitudinal
component of the electric field. The expression derived for the resulting
current density shows the appropriate oscillatory behaviour in time and
distance. The possibility of there being a temporal counterpart of
Aharonov-Bohm effect is briefly discussed in this context.

1. INTRODUCTION

IN a recent experiment Schwarz and Hora (1969) have shown that a 50 keV
electron beam passing through a single-crystal film of SiO, or AlLLO,
(thickness 2d ~ 1000 A) irradiated with a monochromatic coherent polarized
intense light beam from a 10-W argon-ion laser (A = 4880 A) when allowed
to impinge on a non-fluorescent target (polycrystalline alumina) emits radia-
tion of the same wavelength as the exciting laser light. This result has
aroused a great deal of attention and conflicting explanations have been put
forward. While some authors have attributed it to a purely point-mechanical
classical bunching of electrons as in a Klystron (Rubin, 1970; Oliver and
Cutler, 1970), others invoke quantum-mechanical considerations involving
the modulation of the one-electron wave-function (Varshalovich and
D’yakonov, 1970; Oliver and Cutler, 1970; Van Zandt and Meyer,
1970; Hutson, 1970). The bunching hypothesis seems untenable owing to
the fact that the electron density in the beam in question is much too small
(several orders of magnitude smaller than in the case of a Klystron) (Hutson,
1970 ; Harris and Smith, 1970). Moreover, the depth of velocity modulation
is much smaller than the velocity spread in the in coming beam itself. A



92 N. KumMarR AND K. P. SINHA

quantum treatment would, therefore, seem to be more appropriatc. How-
ever, the earlier workers have attempted a rather heuristic and incomplete
quantum description in that certain salient features of the experimental con-
ditions have not been explicitly accounted for, such as the role of the
crystal. It is well known that free electrons cannot be scattered by
photons in vacuum in a first order process for reasons of energy and
momentum conservation. While this has been re-emphasized by several
workers and elaborated (Van Zandt and Meyer, 1970), no precise mathe-
matical formulation of the essential role played by the crystal has been given.

In what follows, we present a quantum-mechanical treatment of the
modulation of the one-electron wave-function and derive an cxpression
for the resulting current density which has the required oscillatory features,
following a different technique.

2. MATHEMATICAL FORMULATION

The path integral approach as developed by Feynman (1965) is clegantly
suited for the present purpose. The essential physics of the experiment is
represented by the following one-dimensional Lagrangian for an eclectron,

%)
_mx®

L — eV (x) sin ¢, (1)

where the x-axis is along the beam direction, m is the electron mass and £2 is
the circular frequency of the exciting laser light assumed to be polarized
such that its electric field vector is parallel to the electron beam and V (x)
is the scalar potential generated by the macroscopic laser field which can
be treated classically. The interaction term in the Lagrangian [cf. sccond
term of equation (1) ] can always bc written in this form by a suitable choice
of guage and neglecting the Lorentz force. The presence of the crystal will
impart certain discontinuities to the normal component of the electric licld
associated with the laser beam. This can be represented by

LX) B (9 —d)— 8 (x + d)] +

a smooth function F(x), (2)

P

. where E, is the constant electric displacement inside the crystal, /' (e)==(c—1)/

¢, <being the relative optical dielectric constant of the crystal. The $-functions
in Eqn. (2) repre:cnt discontinuities of the normal component of the electric
tield at the crystal boundaries. The smooth function F(x) referred to above
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takes care of the diffuse character of the boundary of the laser beam and
remains essentially constant over lengths of the order of (v/2), where v is
mean electron velocity in the beam. It should also be noted that it does not
change appreciably over lengths of the order of the de Broglic wavelength
of the electron.

We now consider the scattering of an incoming free electron by the above
interaction potential.

The modified final state wave-function is given by

i (xa, 1) = [ Ky (o, 137 3y, 1) ¢ (q, 1) dxy, (3)

where K (xs, 75 X7, 1) 18 the exact electron Kernal propagating from co-
ordinates x;, #; to Xy, #, and ¢ (x,, #;) is the initial state function given by

b (X1, 1) = et/t (p‘x”‘NEplt!): (4)

where Ep, = p;?/2m is the energy of the incoming electron. As usual the
wave function is normalised so as to correspond to the probability density
current v (= py/m). The exact Kernel K is explicitly given by the following
path integral (Feynman and Hibbs, 1965):

Ky (X3, a5 Xy, 1)

&To ta

_ J’ exp. (;i f [ﬁg — eV () sin Qt] dr) Dx (1), )

o3 1

where Dux (f) is the element of volume in the path space. In the present
situation the relevant parameter in the perturbation expansion for the above

Kernal i1s

la

' — ,;.z f eV (x (N)sin Q7dr |, , (6)

1y

where the integral is carried out along a typical (e.g., classical) path. Per-
forming integration by parts twice and using Eqn. (2) the above reduces to

e_].?p%ﬂjd ~0-1 (7)
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Accordingly, we retain terms upto first order only; thus

(X, I2)

1: &y
: [ : )
= (/) (_\‘2, ’J) - }Z f f I(() (..\-2., /2: “\.l‘ [;) SIN !Jil '.4/’ (*\'I' [l) (/\.', t/!‘q
-~

(N1

where (Feynman and Hibbs, 1965)

_ m G | im(xy )
Bo= (th) (s — n)* =P B2 [ (1, ly) ] ) )

Making use of the identity (Appendix veference above)

(e =]

a ,
ex .(— =5 — bvz) dy = 7 oexp. (— 2/
f P y =0 d 4p CXP (— 2+v/ub)
Y
with Rea >0 < Re b, (10}

after some change of variables, the time integration can casily be performed.
We get

(X3, 15)

@
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(11

If -5 : .

and ea:c?fditsgyhiglggéemféo Z_m;z;g];? Sxperiment of Schwarz and Hora (1969),
. LEp, == n&d)* by Ep 3 eVCl'yWhCTC m Ean. (11 VN »

when it ocours in the exponent, integration by parts using Eqn. ( ;J) yi(cld)s o

% (xy, 15)
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; ('l‘ju,f‘( ‘) Sin (Szl)
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(12)

with

3 N
P m(l """’fs"), (13)
I

where the ntepral involving the smooth function F(vy) has been ignored
(Ricmann-1.chspue lemma), The resulting current jx,, ) is given by

ek

Pt 2m

l
g 2'111(‘/‘* (;xg ‘/’) (14)

! 7 g ' -
c"u[l : “‘I'”’/(‘)sin (S;’;I) Sin (5312- “"’”)
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Sl flam N L
j MV’%&”” 3111($i:1)c<v>;(31;,' \:fg)sm(\;ﬁf“ )J (15)

I deriving the above expression for the current we have gone up to second
order terms of the expansion in Egn (13),

3. DIscussion

The above expression for the current affords an casy interpretation of
the Schwarz-Hora result, The current given by Eqn. (15) consists of a con-
stant beam current, dewa de part and a spatially modulated oseillating
part as well as an unmodulated oscillating part. The d.e. part is of no con-
sequence 1 the present confext and the unmodulated term is relatively small
in magnitude,  Thus the most interesting part is the third term in the bracket
of Byn. (13),  For a given distance of the non-fluorescent screen the current
oscillates in time with the same frequency as the laser beam.  This can excite
the target material optically and lead to re-radiation through Bremsstrahlung
processes. The amplitude of the exciting current is seen to vary sinusoidally
with the screen distance. In this connection it may be added that in a one-
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dimensional treatment given here, we cannot get any aperiodic attenuation
of the current amplitude.  The above derivation clearly displays the role
of the crystal in as much as the latter provides the discontinuity in the field
[¢f. Bqn. ()] In fact, in the absence of such discontinuities we will not
get any optical modulation. This corresponds (o the well-known fact that
in first order free electrons cannot be scattered by photons in vacuum for
reasons of ¢nergy momentum conservation, It seems in order at this stage
to discuss the quantum verswey the classical nature of the Schwarz-Hora effect
im terms of the expression obtained above [¢f. the third term of the right-
hand side of Eqn. (15). hereafter referred to as j(3]. It should be
noted that i a purely formal sense for -0, /7(3) has a non-vanishing
Jlimiting valuc. This, however, is not the appropriate way of taking a classical
limit in the present context.  In point of fact the argument of the modulating
factor sin (A% %) would be taken to be small in the classical Timit,
ie.,

A

¢ hé2 .\'25.))

Lao® 20

In the experiment of Schwarz and Hora this quantity is rather large. ie.,
¢ ~10%  Thus the experiment of Schwarz and Hora is in the quantum
domian. It is interesting to note, however, that the ratio

j(3) sin & [

. . LI (16)
3 <.

G{aa(ﬂi(:?d "

where j(3) is the limiting value of j(3) in the limit §.+71, /e

clagnical
high clectron cnergy or low photon energy (microwave region), It may he
noted that in the region well beyond the effective range of the radiation
field of the faser beam there will still be a time-dependent but space-inde-
pendent oscillating potential V ().  While this will have no classical effect,
it will introduce a time-dependent phase factor in the wave-function in
the field free region. As discussed by Aharonov and Bohm (1959) in «
different context, this type of potential will introduce a phase factor of
the form

exp. (hl e f V(7 dr) . (17)

. for very
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On carrying out the Bessel function expansion, i.e.,

-]

Ajh eV |‘td/ sin £ (,, ] CV() . int 18
¢ 0, W . n(hgg)cxp~ ([n ')9 ( )

nem OO

it can readily be seen that a plane wave solution of the form
exp. [;(px - Epi)]

gets modilied to the extent that Ey is replaced by Ep + #AQ while the mo-
mentum remains unaflected.  Therefore, the relationship between energy and
momentum characteristic of a frec particle may not be strictly retained. In
the work of Varshalovich and D’yakonov, while it is not clear how the authors
have derived the asymptotic wave-fanction, the expression strictly fulfils

the free-particle energy-momentum relationship for each plane wave compo-
nent.

In passing it should be noted that the phase-factor occurring in Eqn.
(18) will not produce any obscrvable cffect in the sence of Aharonov and
Bohm owing to the fact that time is onc-dimensional [i.e., V (f) dtis a perfect
diflerential].  However, il we were to depart from the accepted concept
of the co-ordinate time (f) being integrable (i.e., dfis a perfect differential)
and to assert that it is the proper time that is intcgrable (Newburgh and Phipps,
1970), there will be a temporal counterpart of the Aharonov-Bohm effect.
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