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ABSTRACT

Particle acceleration in relativistic shocks is not a very well understood subject. Owing
to that difficulty, radiation spectra from relativistic shocks, such as those in GRB after-
glows, have been often modelled by making assumptions about the underlying electron
distribution. One such assumption is a relatively soft distribution of the particle en-
ergy, which need not be true always, as is obvious from observations of several GRB
afterglows. In this paper, we describe modifications to the afterglow standard model
to accommodate energy spectra which are ‘hard’. We calculate the overall evolution
of the synchrotron and compton flux arising from such a distribution. We also model
two afterglows, GRB010222 and GRB020813, under this assumption and estimate the
physical parameters.
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1 INTRODUCTION

Relativistic particles accelerated by shocks occupy a predominant place in astrophysical systems. These particles emit syn-
chrotron and compton radiation, which can be observed from radio to gamma-ray bands. Gamma Ray Bursts (GRBs), their
afterglows, Supernova Remnants (SNRs), Active Galactic Nuclei (AGNs) and Pulsar Wind Nebulae (PWN) are some of the
most important and intriguing candidates which house shock accelerated electron population.

The details of these electron populations and hence the details of the acceleration process are inferred from studying the
emitted synchrotron and compton radiation. The accelerated particles are often found to be distributed non-thermally, as a
power law in energy characterised by an index p :

N(ve) = Kev.'?, (Ym < Ye < Yu)s (1)

where N(v)dv is the number density of electrons in the energy interval yme.c? and (v + dy)mec?
This non-thermal power law is a natural outcome of the Fermi process ), a standard framework to describe

shock acceleration. Several analytical and numerical investigations have been made (IAQhLﬂI_bﬁLgﬂjl“Zmll |Ostrowski & Bednarz
2002; [Ellison_& Doubld[2004; Keshetl 2006 mlmmﬂjﬂhﬁﬂﬂ ) especially for the Diffusive Shock Acceleration (DSA) mech-
anism, a variant of the Fermi first order process, which is expected to operate in collisionless shocks. Most of the theoretical
and numerical studies produce a ‘single soft’ distribution of the accelerated particles, where the index p is greater than two.

Though there are many observations supporting this prediction, a non-negligible fraction seems to differ from this.
Observations of some AGNs, GRB Afterglows and PWNs have revealed an underlying ‘hard’ (p < 2) electron distribution
(I&naﬁm_&_&lmﬂhﬂﬂlﬂ; IShen et all lZﬁKLd) Derivation of expressions for the radiation spectrum from such a distribution
requires a different treatment from its ‘soft’ counterpart.

In this paper, we introduce a modelling platform for afterglow spectral evolution in the presence of a hard electron
(p < 2) energy distribution. We then present the model of a few afterglows with such a hard spectrum, and derive their

physical parameters.
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2 HARD ELECTRON ENERGY SPECTRUM

The distribution described in equation-1 can be safely assumed to go to infinity if it is soft, since the role of the higher energy
end is negligible in total number and energy content of the distribution. Hence the equations which form the basics of the
standard afterglow modelling paradigm contain only ., and p.

However, a hard electron distribution can not be extended upto infinity, and requires to be terminated with an upper
cut off to keep the total energy from diverging. This upper cut-off, 7., which is determined by the acceleration mechanism,
plays a crucial role in the analytical treatment of p < 2 spectra. Since electrons towards the higher energy end dominate in
the share of the total energy content in the distribution, the upper cut-off appears explicitly in the equations describing the
spectral parameters. The distribution beyond v, could be a sharp drop, an exponential fall off, or a steeper (p > 2) powerlaw.

There have been previous studies to incorporate hard electron energy distributions in afterglow modelling. m
2001 (hereafter BO1) has used a v, which is a function of the bulk lorentz factor (I') of the shock. The dependence on I is
parametrised by an index q.

The time dependence of +,, is altered by the introduction of 7,. This in turn modifies the spectral evolution. Moreover,
a new break frequency corresponding to 7, will appear in the spectrum.

Dai & glhgné M (hereafter DCO01) has followed the same approach but by constraining v, (in their notation, vas) to
be due to the termination of acceleration process by energy loss to synchrotron radiation. Their model is a special case of

with ¢ = —1/2. This upper limit vas, in typical conditions lie at very high energies.
Panaitescu & K]]maﬂ m (hereafter PKO1) consider two conditions to determine the upper limit of the energy dis-
tribution. (i) The upper limit (yas1) results when the acceleration timescale becomes larger than the timescale for radiative

energy loss (same as DCO1), and the corresponding break frequency lies much above the observation limit. (i) In the second
case, the distribution terminates at an upper cut-off (ya2). A steeper powerlaw is assumed beyond the cutoff. A constant
fraction of the shock produced thermal energy is assumed to be contained in the electron distribution, the lower bound of the
distribution 7, is assumed to follow the same evolution as it does in the standard model. The evolution of yar2 results from
these two conditions. In the limit, yp2 > vm and I' > 1, yp2 can be obtained analytically to be proportional to Ffz;*é.
The second assumption that v, follows its standard model behaviour is somewhat inappropriate in this context, since this
behaviour corresponds to a condition where the effect of 2 is ignorable. In reality, yar2 originates in some physical process
which will have its own dependence on I', hence it is more appropriate to parametrise the evolution of yas2 as a function of I'.

In this paper, we continue the investigation of m The upper cutoff ~, ofm is identified as an injection break =i,
above which the electron distribution steepens to a powerlaw with index p2 > 2. We leave room for accommodating different
processes, by keeping the parametrisation of 7; to be that of BO1. Our results differ from PKO01 in having the evolution of vy,
and hence of the lightcurve, depending on the nature of the injection break. The flux decay index and the closure relations
between the lightcurve decay slope and spectral slope also depend on the injection break, essentially the value of ¢, which is
characteristic of the mechanism responsible for the upper cut-off.

3 MODIFIED ELECTRON DISTRIBUTION AND INJECTION BREAK

The double slope electron energy distribution with slopes p1 and p2 is represented as,

K gPl - < < .
NoO) =3 g IO (2)
Kere Vi S Ye < 0.

Here, K. is the normalisation constant, which will depend on the number density of the ambient medium n(r) and the bulk
lorentz factor T'. K. can be written as, KE%_(pz —P1),

We modify the BO1 parametrisation of v; to
i =EB0)! 1<y < oo ()

in order to accommodate the non-relativistic regime of expansion where I' 6 1 and (8 +¢ 1. Using the standard result that the
post shock particle density and energy density are 4T'n(r) and 4T(T' — 1)n(r)m,c?® respectively (IMM), one derives,

_ mp e 1 [1-a(2-p1)]
Ke =4n(r)gp e 1 GaED [C—1] posm (4)
( : 1) ( : 1) ( )
_mp e P1— 1 P1— 1 _4g 211)1
= {E@—mfp] [W] [ == I )

(2—p1)(p2—2)

where, m;, and m. are the proton and electron rest mass respectively. The function g, = fp(p1 — 1) and fp = eI TETE
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3.1 New Spectral Break

The standard afterglow model has four spectral parameters, the synchrotron peak frequency, v,,, the cooling break or the
synchrotron cooling frequency, v., corresponding to the lorentz factor beyond which the electrons cool rapidly, the flux f, at
the peak frequency (vm or v.), and the synchrotron self absorption (SSA) frequency, vq, above which the fireball is optically
thin. The radiation spectrum emerging from a double slope electron distribution will exhibit an additional “ injection break ”,
corresponding to the lorentz factor ;. Using the standard expression for synchrotron frequency vsyn () for an electron lorentz
factor 7, one obtains,

o 0.286 e £2q1—‘1+2qﬂ2q37 (6)

;=
1+ 2z mmec

where B is the post-shock magnetic field density, e is the electron charge, c is the velocity of light and z is the redshift of the
burst.
Above this frequency the spectral slope steepens to the value corresponding to p2 from that of p;.

4 SPECTRUM : THE SOURCE FUNCTION METHOD

Instead of the usual approach of writing flux f, o =%, we use the synchrotron source function along with the optical depth
to obtain the final flux. Therefore,

fo=Su[1 —exp(—7.)] (7)

where S, is the synchrotron source function, which has the following functional form:

2
Sy (%) v <V

Su = ! v 5/2 (8)
Sl,p (V—’;> V>

S., is the source function at peak frequency v,. For slow cooling (ie., vm < v¢), Vp = vm and for fast cooling (ie., ve < vm),

Vp = Ve. Sy, can be calculated as, S,, = fp7y,, where f,, is a normalisation constant, that equals the fllux that would have
been expected at v, if self absorption were absent.

5/3 when v is less than v, and v~ P+9/2 Gtherwise. Normalising
(217"
Va

The optical depth due to synchrotron process varies as v~

the optical depth to be unity at v = v,, 7, the optical depth at v = v, can be written as
[ vp } —(p+4)/2

when v, < vp and

o when v, > v,. Value of p in the latter expression is 2 for the fast cooling regime if v. < v < vs,. p is replaced

by p1 (p1 + 1) and p2 (p2 + 1) in the slow (fast) cooling regime below and above v; respectively.
For a double slope electron energy spectrum undergoing slow cooling,

(ﬁ —5/3 V< Um
(ﬁ)*(zﬂﬁr‘l)/? Um <V < (Ve, v4)

T =Ty, X (,L/_:L —(p1+4)/2 V_VC —(p1+5)/2 U < Ve <V < U (9)
(:7 —(p1+4)/2 VL —(p2+4)/2 Um < Ui < VU < Ve
V7(51+4)/2 Vc1/2 VZ_(P2*P1)/2 p—(p2+5)/2 (vi,ve) < v

For fast cooling,

(%)75/3 v < Ve
(V_uc)*3 Ve <V < Up

(10)

Tv = Tue X (m)*i’r L\~ (p145)/2

(5_;) -3 (l:'_T)*(Pl*f’)/2 (L)*(P2+5)/2

ve Vi

Ve < Um <V <V

Ve < VUm < Vi <V

These expressions, along with equationd8] are substituted in equation{7] to obtain the final flux, which at a given time, is
a function of the five spectral parameters (Vm, Va, Ve, v; and fp).

To estimate these parameters, we first evaluate I'(r) and r(t). For that, we use the expressions given by
(M), after correcting for redshift, which accommodates a smooth transition from an initial ultra-relativistic to the final
non-relativistic regime of the fireball. Time evolution of the half opening angle (0;) depends on the lateral velocity of the
jet in its comoving frame, which essentially is the sound velocity of the post-shock medium. The half opening angle varies
as, % = ﬁir [%]7 where cs is the velocity of sound in the downstream medium. ¢ is usually assumed to be constant
throughout the evolution of the shock, but this is not a very accurate assumption. Initially, when the downstream plasma is

ultra-relativistic, the thermal velocity will be ¢/ V/3, but as the ejecta becomes non-relativistic, the velocity approaches 4 / %7
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where my, is rest mass of the proton. We calculate c; as a function of I', adopting the method followed by W
). This gives us

[C_sr _ kT 1 (11)

cl T myAT
We have used equation-A3 (Appendix-1) to obtain temperature in terms of I'. More details of the calculation is given in the
1
Appendix. The comoving magnetic field density B is given as [87re B (F;ﬁ} ? ¢, where ep is the fraction of thermal energy in
the magnetic field, m is the total swept up mass, V. is the volume of the downstream plasma in the comoving frame, which
can be calculated as Qr?A’ where Q is the solid angle and A’ is the comoving shell thickness.
We calculate f, using the expression (equation-25) given by [Wijers & Galama (IL%H) Vm and v, are calculated using the

expression described in section [3] by replacing v; with v, (equationff]) and ~. (= 67rmec/(0TFth)). Vg is the frequency at

which the synchrotron optical depth in the comoving frame (o, A’, where a,, is the absorption coefficient calculated following

the method given by Bxbmk]_&_hghﬂn_aﬂ (IlQ_Zd)) equals unity.

For various values of ¢, the evolution of the spectral breaks as a function of time is plotted in figure 1 and the lightcurves

are displayed in figure 2. The difference of evolution introduced by ¢ is apparent in these figures.

5 DYNAMICS : LIMITING CASES

To obtain the overall dynamics of the fireball, we adopt the method presented by [Huang et alJ dM) which accomodates a
smooth transition from the initial ultra-relativistic to the final non-relativistic phase.

However, analytical solutions for I'(r) are possible in extreme cases. The adiabatic (e = 0) ultra-relativistic regime
(' > 1,8 ~ 1) is encountered most commonly in afterglow observations. At late times, (¢ > tnr, the fireball becomes
non-relativistic. This phase is same as that of the well studied supernova remnants.

5.1 Ultra-relativistic Limit

In this limit, the expressions for I'(r) and r( oflﬂua‘n.gﬂjﬂ (lZm)d can be approx1mated to

(3—5)Eo/(Qc?) (pord) ™2 (r/ro) =3/ and ((4—s)(3—5)2ct Eo /((1+2)Qc porg)) T== T respectively, where p(r), the ambient
medium mass density profile is parametrised as po (r/70) " °. The expressions for spectral parameters we obtained for this phase,
are listed below. We consider two types of ambient media, (i) a constant density around the progenitor star (n(r) = n,s = 0)

and (ii) a stellar-wind blown stratified density profile (s = 2, with a normalisation po = 5 x 10° A, and ro = 10'cm).

210.45 ¢, d1+z NEING TR (s =0)

fo(mJy) = ~1/2 (12)
dpy (1+2) ty
1021.5 222 fE aen A [—} s=2
L e s0,52€B (1+2) ( )
- 1-q(2—p1) m 2 - Ll
1.87 x 107 (17.14) " pi-t — [Z2 f |71 T /% 2L Jepn e
+ —2
57257;511 |:5iso,52i| % ty *3@411(23—?,117)2(1) (s = 0)
Um(Hz) = L " (1+2) PR (13)
T m.
577 x 107 (13.1)Y /% 2L [22 f,, ] (21 1) gV, ALY
—@C+y)
Vs /M) ¢TEtrT [(ffz)} : (s =2)
where y = %7 ¢p and 1z, are functions of p (MuﬂL&_GjlamﬁJllﬂQd)
" 5.84 % 10" []® 12 n= 2 [ta(1 + 2)]71/2 / (s =0) "
Ve zZ) = 1/2
11 . ca=3/2 =32 1/2 t -
7.6 x 10 m7 % / / A ngO 52 |:qu2):| 8—2)
1 —3
4.14)1+29 o iso, 1(+9) 7 (1+9)
1.3 x 100 U= /2% 2 /g [ 52} [U*Td)} s =0)
vi(Hz) = =l (24g) (15)
1.65 x 107 €2(3.62)7 /= €Y%, ALTD 22 {(ffz)} (s=2)

In the slow cooling regime,
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2+p3 p1t+1

194 21 194 2 g Al
(2.61 x 1077)*+r1 (8.38 x 10™7)T¥r1 (8.2 x 107 1) 4+r1 (0.88)1+p1 (3)P1+4
2(2—29+p1q) 24 py p1+2
(4.14) " T (0.64) TR [ i} n
Cs
P _2
(2.3 x 10710) 7T [[(242) [(20a2))2/ P44 ] 87 % 10712, /B | 7173
P1+6+9p1—2¢q P1+2 p1+6—apy+2q 2-py
Eiso ;Lé““) e Pt ei/“’l*‘*)nw £ “pia
_ —10—3p; —3qp1 +69
ve(Hz) = EE G (s=0 Vo> vm) (16)
10g+3pj —5qp1 —8 23/40 _ 3p1+2
2.61 x 10 (4.14)" swro - [e]* ™p ] " 50D
18—13p; —109+5 _ _
(4—p?)(p2—2) / 1/5 (Pl 1) 21 o Tg 4%1(1)1—?) P 141951 410025019 1%1%1(;1133) S
(P1+2/3)(p2—p1) B 3 is0,52 n
3(p1—2)(g—1
] T (020 <)
where [ denotes the Gamma function.
53\ s N .. 1o
(3.62)¥2 (3.42 x 10°°) @1 +4) (2.4 x 107) 1+ | g, = L
p1t2 2
Cs T2 r(3p1+2 3422\ [cs] Proa
[VEVeB] 7T T(2) T(2g2) [s] 7
ap1—29 1.+2p1+49—2p1q 2q7§flzzgl 8
2(p1+4 +4 t P
Slsc()pj2 ! A " |:(lez)j| ' (5 =2 Vg > V’nl)
vq(Hz) = 3/2 243p; (17)
14 y p1+2 cs123/40 m —
6.16 x 10°* 3.62Y3 |:plh’2/3j| [TS} [mi fp} 5p1—1)
2, @1-20-9) ¢ (@P1-2)1—q) 3_ _243p1
3/5 1/5 55 4(p1—1) As i(p1—1) e 5 5(p1—1)
9p is0,52 * 2o
7p1—2—109+5p14q
00 -1
[(ffz)} ' (s=2 va<vm)
where y, = L1t6=2a+20p1 o g0 = (P1=2)(0=q)

p1t+4
In the fast cooling regime,

1.96 x 10" (p1

10
va(liz) = 18310 (m

5.1.1 «-6 closure relations

1.44 x 10° (p1 — 1
8.48 x 107 (p1 — 1

p1—1

- e [CTS} (1+ 2)2/3 5ilszf52 n(l)/G [lt_fz]il/z y Ve <V <Vm (s=0)
3 ¢, 157/10 2 £7/10  11/10 6/5 [ tg 1—1/2 —
/ [T} (1+2)" &50 Mo B |:1fz} Va <ve (5=0) (18)
1A [ta(l+2)) 7% Ve < Va < Um (8=2)
35 [2]®% €25 ALVP &85 [f]7° Ve <ve (s=2)

The a-0 closure relations for a general value of ¢ valid in the slow cooling phase of the ultra-relativistic approximation are

the following:

2llg—1)—26(g+1)]
1Bg—1) = 35(q+1)]
3lg—3—-26(q+1)]
(@—1)—éd(g+1)

Um <V < Ve, t<1j
V> Ve, t<tj
Um <V < Ve, t>15
V>V, t>15

(19)

In figure 3., we display the above closure relations. The ¢ = 1 plot can be considered as a reference to the standard model,
as it recovers the usual slopes. The dependence « has on ¢ has to be kept in mind while inferring the value of p from the

lightcurves. Temporal decay indices calculated for the ultra relativistic limit are listed in table 1 and lightcurve decay indices

are listed in table 2 (slow cooling) and in table 3 (fast cooling).

5.2 Non-relativistic Limit

In the non-relativistic limit, at ¢ = txr, the lorentz factor is ~ 1 and 3 < 1. The fireball by this time would have undergone a

considerable lateral spread and the geometry may be approximated to be spherical. The solid angle 2 may now be set to 4.

5.2.1 Dynamics

The evolution of the radius r is calculated as,
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. 1/(5—s) .
— ) [E —0] /6= (20)
po

where Ey is the energy in the explosion and 4 is the ratio of specific heats for the plasma. One could assume ((¥) to be 1.05
for a constant density ambient medium and 0.65 for a stellar-wind blown medium (Berger et al] M)

5.2.2  Electron energy spectrum

The thermal energy density in the shock downstream is estimated as,

9¢?
Uth = 800 (r/ro)~° (21)
where (3 is 1ﬂ The expressions for electron number and energy will give, respectively,

K .
G = e /o) (2)

2
Keme S 96_"066 B2 (r/ro)”° (23)

9p ' 2
Solving eq. 23l and eq. 2] one obtains the expressions for K. and ~,:
9  po € _ —a(9—
Ke = S0 25 (rfro) " 20 (24

o = [2 my_Ge (25)

V=l 5 4oy
8" m, £2-r1

5.2.8 Spectral Parameters
The magnetic field energy density is assumed, as usual, to be a fraction eg times the thermal energy density. ie.,
B = \/9mepB2c2p(r) (26)

We calculate the four spectral breaks, vq, Vm, v, and v; and the peak flux f, from:

2.94 x 1072 K. B
fro= I 05 remt) romgz) o el 0
d7 a Y
z 2/P1=1)  apg2-py))
Um = 28x10° ) L 3 [2065 ey m] g~ D (28)
ve = 481 x10% = [ }72 {tNRyz (29)
INR 1+2
V; = .0 X
8.0 x 10° (1+z) Bg? 3 30
3/5 . - -
4.72 {pp:;?s K. ] 77;(3p1+2)/o r3/5 g2/5 (for va > vm)
Vo = (31)

1
(6.72 x 10~ 13) e (1 25 x 1019) (7 x 1075) P11

1+2 2
(M) g2 BIT [] 70 (for v < vi)

where a is a numerical factor, describing the thickness of the shock in terms of r as A =r/a

6 SYNCHROTRON SELF COMPTON EMISSION

The contribution to the total flux from synchrotron photons which are compton scattered by the non-thermal relativistic
electrons themselves, can be significant towards higher energies.

We calculate this compton component following the method adopted by [Sari & Esiﬂ (IZ)DJ) Following this work, the
approximate ratio of inverse compton (IC) to synchrotron luminosities may be estimated as follows (for a uniform density

ambient medium and the slow cooling regime).

Syn 2 syn

The IC spectrum is characterised by four break frequencies : 1€ = 272, 5" V1€ = 242p5™,

=2y;v =22,
syn

and a flux normalisation fp = ornr
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For v;y" < v < ", the energy emitted by the compton process peaks at vI€ and that by the synchrotron process
will peak at vg¥".

IC (IC

_pc o ve [
T — Tsyn ~ Tsyn s;n (32)
c Ve
500 (p1—1)o.5 yis (p2—1)1.5
= 700R_~ 7377 _m,500 145
Yi,5 Ye,7
For v¥™ < v™ < ¥, compton energy peaks at v/ and synchrotron energy peaks at v;>"
IC 4IC
v;C fo
T Syn s;n (33)

i vi
Ym,500

(r1—1)o.5
Yi,7 }

~ T00R-7 vi,7 Ye,5 [

1C ) gsyn
where Ye,n = 7e/10"™, Ym.500 = Ym /500, R_7 = % and (p — 1)y = (p — 1)/f. In either case, the compton power

% %) for a hard electron spectrum. Hence the contribution of synchrotron self

compton emission becomes significant only at frequencies above hard x-rays.

peaks at very high frequencies, (~ 10%* Hz

As a next step, we estimate the IC flux from a numerical integration over the photon and the electron spectra. To do so
we use the expression given by [Sari & Esid M) for the inverse compton flux due to the modified electron distribution, and

the synchrotron radiation spectrum f;*" generated by this electron energy spectrum,

(=S} xq
16— TO'T/ dy N(v) / dz f"" (z) (34)
Ym 0
where xg ~ 0.5
The synchrotron and the compton fluxes obtained from the above calculation are displayed in figure 4.

7 MODELLING SHALLOW EVOLUTION

A new parameter ¢ is required for modelling afterglow evolution based on hard electron energy spectrum. This index
parametrises the evolution of the upper cut-off of the electron spectrum (see equation-3). The value of ¢ is determined
by the acceleration process operating in the relativistic shocks. The present understanding about this from theoretical or
numerical calculations is not exhaustive.

The termination of the acceleration process due to synchrotron radiation losses leads to 7; being inversely proportional to

the square-root of the bulk lorentz factor (¢ = —0.5) (Gallant & Aghggrbgrélg)&d; Li& Waxmaﬂlﬂﬂ). However, the slowest

post jet break decay in this case tends to 1.75 as p1 tends to its minimum possible value of 1 (in the limit 1 < p1 < 2). This

is noticed by DCO01 also, who have tried to model GRB010222 using a hard electron energy spectrum. They have used this
fact to rule out the presence of a hard electron energy distribution in this afterglow. None of the afterglows we model in this
paper however display post jet break decays steeper than 1.75, which rules out the possibility of their electron distribution be
terminated by synchrotron losses.

g = 1 is applicable to the lower cutoff of fermi process (v; = % I'), below which a pre-acceleration mechanism producing a
flat electron spectrum may operate ) The preseni:e of such an upper cut-off is observed in some of the Active
Galactic Nuclei (ILf@.hijJ |19&j; Mngmlmﬂ |201)j; IStawarz et all lZQ_Oj) and Pulsar Wind Nebulae

). Moreover, ¢ = 1 also provides scalings that would have been obtained in the standard fireball model without references

to g Good fits could be obtained with a g of 1 for all three afterglows we study dﬂhmhw_&;ﬁﬁsmj lZﬁKMI; Misra et all

), however, the value of £ we inferred from these fits are far higher than m,/me.

Another interesting value of ¢ is —1.0, though any mechanism producing such an upper cut-off proportional to the inverse
of the bulk lorentz factor is not discussed in the literature to the best of our knowledge. ¢ = —1 provides a1 of 0.75 and a of
2.0, independent of the value p assumes, as is obvious from equation{I9] since ¢ is always multiplied by (g + 1), which in this
case vanishes. It is interesting that these a s correspond to p > 2 scaling relations if applied to a p of 2.

For GRB afterglows, it is not often very easy to infer the value of p unambiguously. The spectral index estimated from
observations in the optical bands is a composite of the unknown host galaxy extinction and the intrinsic spectral index, §.
The X-ray spectrum is not affected by dust extinction but is modified by photoelectric absorption at lower energies. This
makes the x-ray spectral index to be a function of the unknown gas column density along the line of sight. Also, due to the
low count rate, it is often difficult to bin the spectrum and get the value of ¢ accurately. A third method is to measure the
flux decay index past the jet break in optical and in x-ray wavelengths and assume it to be p, as predicted by the standard
afterglow model. Though it suffers from complexities in the modelling of the fireball dynamics, this method is largely followed



8 L. Resmi and D. Bhattacharya

and trusted. However, the spectral index derived should be consistent with the closure relations between the temporal decay
index, a and the spectral index, J in various bands.

Recently several studies have suggested the possibility that the electron energy index, inferred by some of the above
methods, falls below 2. Out of the 16 well observed pre-Swift afterglows studied by (M), s of five afterglows
fall below 2. (M) along with blazars and PWNs, study a sample of well monitored X-ray afterglows observed
by BeppoSAX and Swift. The inferred values of p fall below 2 for eight of them (See figure 5 of )) Early
evolution of several x-ray afterglows monitored by Swift have shown an unprecedented ‘flat’ evolution delSﬁkle ).

Though not all of them may have an intrinsic flat electron energy spectrum (some could show shallow decay due to prolonged
energy injection from the central engine), some are well within the expectations of hard spectrum models. In some of the Swift
x-ray lightcurves (for example, GRB050820, GRB051109A, GRB061024), the normal decay phase, which follows the shallow
phase, has a values expected from an underlying hard electron energy spectrum )

In the following section, we model three pre-Swift afterglows, with rich multiband data set, showing evidence of an
underlying hard electron energy spectrum. We consider ¢ as a fit parameter and use a range of —2. < ¢ < +2 while searching
for the best fit.

7.1 GRBO010222

GRB 010222 mm% at a redshift of 1.477 dlhml]hﬂﬂll, Mnahaiﬁuﬂ,lhﬂﬂj) was one of the first afterglows seen with

hard electron spectrum and it initiated theoretical work in that direction (B01, DCO1).

The optical afterglow evolution was initially shallow (a1 ~ 0.6) and it steepened to an az of 1.3 — 1.4 around ~ 0.5 day
(Sagar et al] m; Stanek et al] m}ﬂj) Around the same time the x-ray lightcurve also steepened from «; ~ 0.6 to ag ~ 1.3
(in’t Zand et alJ M) Assuming this early achromatic break to be due to the lateral expansion of the jet, a hard electron
distribution is required to explain the evolution past this break. The spectral index, J,, within the optical band was found
to be 0.89 £ 0.03 after correcting for Galactic extinction (Ier@b_a.lﬁuﬂJ |20Qd The x-ray spectral index (0,) depends on the
assumed value of neutral hydrogen column density of the host galaxy. dmj_Zﬂ.ndjLaJJ Bgmnamnmﬂ lZm however
it falls in the range of 0.7 — 0.9.

Our model with p1 ~ 1.5 and ¢ ~ 1.3 reproduces the observed lightcurve decay indices before and after the jet break.

We assume v, to be below both optical and x-ray bands at ~ 0.5 day and v; to be above the x-ray bands. Along with the
extinction in the host galaxy (Ep—v = 0.03; starburst type extinction law by m M)) this reproduces the observed
optical and x-ray spectrum.

A model with g of 1.0 and v; in x-ray bands reproduces the data fairly well (Bhattacharya & Bgﬁmi M) and also
explains the spectral steepening seen towards the x-ray band (the x-ray spectral index derived by lin’t Zand et all (IM) using
the Beppo-SAX data , is steeper than that in the optical bands). However, our best fit is obtained when ¢ is 1.3, not when it

is unity. A higher ¢ requires a steeper p; to reproduce the lightcurves decay indices as §1 and d2 decrease as q increases. The
best fit with ¢ = 1.3 (figure 5) requires that v; > v,.

We calculated the inverse compton emission for these parameters, and found that it is negligible at the x-ray frequencies.
We obtain a peak flux f, of 1.04 mJy and the peak frequency v, of ~ 200 GHz, at the time of the break. From these fit
parameters, we infer an isotropic equivalent energy of 5.9 x 105271(1)/5 erg, a jet opening angle of 2.1°n(1)/10, and a total energy
of 3.6 x 1049713/ ° ergs. An upper limit of 10° is estimated for &. The best fit model along with the observations are displayed
in figure 5. The spectral parameters and physical parameters are listed in table 4 and table 5 respectively.

We note that a model assuming continuous energy injection by ernmnmﬂ (lZLMd) can also reproduce the observed
evolution of this afterglow. Another explanation for the achromatic break observed around ~ 0.5 day is the non-relativistic
transition of the fireball (Masetti et all M), but such an early non-relativistic transition would require a very high ambient
medium density (n ~ 10° atom/cc for the observed fluence of this burst) which would have suppressed the radio flux to

nano-jansky levels.

7.2 GRBO020813
GRB020813 was detected by HETE-IT (Villasenor et alJ M) at a redshift of 1.26 ) The optical afterglow

of this burst, like GRB010222, exhibited a shallow decay and an early break (o ~ 0.8 , t, ~ 0.5 day in optical

)). The x-ray observations started after the optical break, the lightcurve exhibited a single power law decay consistent with
the post break optical decay (o ~ 1.4 (Covino et 31“2093)7 Q, ~ 1.4 (MM)) The optical photometric spectral
index, corrected for Galactic absorption was ~ 0.9 vin 1 m}ﬂj) and the x-ray spectral index was ~ 1.0
) with no absorption column in excess of the Galactic value of 7.5 x 10%° ¢cm™2.

The value of p obtained from the best fit model is 1.4, for a ¢ of 1.3. The jet break occurs at around half a day. We
assumed v, to be ~ 2.5 x 10'3 Hz at the time of the break, below the optical bands, to satisfy the observed a and & in both
x-ray and optical frequencies. The synchrotron peak frequency vy, is around 4 x 10'! Hz at the time of the jet break and the
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peak flux f,,, is ~ 1.4 mJy. The self absorption frequency v, cannot be constrained using current observations. Our model
requires additional extinction from the host, with rest frame A, of 0.09 corresponding to an Er_y of 0.04 and a starburst
type extinction law (M M)

The derived total energy of the burst is 3.6 x 1049713/5 ergs, confined in an opening angle of 2.3°n,’ . The upper limit
on ¢ is 10*. The polarisation lightcurve of this afterglow has been explained in terms of a structured jet (Lazzati et al“ﬁ)ﬂi}]).
The lightcurve from a structured jet viewed at an angle 6y hardly differs from that of a homogeneous jet with half opening

1/10
0

angle 0o m @) (especially for a jet structure described by a 02 powerlaw). Hence we can still safely assume the
shallow powerlaw model for the electron energy distribution within the jet, even though we are not using the structured jet
calculations. However, The total energy calculations will be affected, if the energy distribution is not homogeneous within
the jet. If we assume that our inferred value of 6y, which according to will be the viewing angle, is approximately
equal to the half opening angle of the core of the structured-jet (IM m , and if the actual extent of the jet is 90°,
the energy inferred will be ~ 9 times smaller than the true energy (see for details).

The best fit model along with the observations are displayed in figure 6. The spectral parameters and physical parameters
are listed in table 4 and table 5 respectively.

7.3 GRB041006

We have presented multiband modelling of this afterglow, which is yet another example of a p < 2 electron distribution, in
another paper (MI M) We therefore do not describe this in detail here. We assume the cooling frequency (v.)
to be below the optical bands to satisfy « of 0.5 and ¢ in the range of 0.6 — 0.7 simultaneously. There is no signature of
steepening seen at the higher energy end of the spectrum from the available observations. Hence we place v; above the x-ray
band. We compute the spectral evolution of the afterglow with these basic assumptions. For the sake of completeness, we list
the spectral and physical parameters from our model in table 4 and table 5.

8 CONCLUSIONS

In GRB afterglows, as in other non-thermal sources, the shock accelerated electron spectrum at times assume a hard distribu-
tion (IHQS_hanﬂj.lJllﬂQd, Eﬁahml] |19&j) But almost all of the theoretical and modelling work in GRB afterglow physics,
by default, assume a single steep power law for the distribution of electrons in the downstream plasma. The presence of a
p < 2 spectrum, in a minority of cases, has however not received a fair share of attention. Calculations to derive the physical

parameters of the burst in such cases are often not done consistently. Early attempts to model GRB afterglows with hard
electron energy spectrum had several loopholes.

We have, in this paper, followed the approach of parametrising the temporal evolution of «; (thereby leaving room to
account for different possible physical processes that could determine 7;) as v; o< I'? (B01) and obtaining the afterglow flux
decay index for different values of q. We have obtained expressions to calculate the observables from the physical parameters
of the system which in turn can be used to derive the latter. We present multiband modelling of three afterglows, assuming
ultra-relativistic expansion, and estimated their physical parameters.

For all these afterglows, we obtain good fits when ¢ > 1. The inferred lower limit of £ is around 10*. Within the present
understanding of particle acceleration physics, a mechanism which produces ¢ > 1 and & ~ 10* is not known. However,
future observations of GRB afterglows in the high energy range which can be achieved by upcoming satellites GLAST and
ASTROSAT will shed more lights on these parameters. For none of the three afterglows, the synchrotron self absorption
frequency was well constrained. This left us with four observables and five unknowns, so we obtained the physical parameters
as a function of the assumed value of ambient medium density. Though all of these afterglows were bright in their y-ray
output with isotropic equivalent energy in y-rays ~ 1052 — 10°® erg, the total kinetic energy derived from multiband modelling
is relatively low (~ 10%° erg). This is partly due to the narrow beaming angle derived from an early jet break (for all the
jets, 0 is roughly 2.5°). Perhaps kinetic energy being an order of magnitude less than the energy output in radiation could
be a trait associated with the presence of hard electron energy spectrum. More afterglows and their detailed modelling is
required to examine this possibility. Another significant characteristic of all the three afterglows is a relatively low value of
the synchrotron cooling frequency. While for most afterglows discussed in the literature, v. remain above optical bands longer
than a day after the burst, the three afterglows discussed here have, in our model, v, falling below the optical band within
3 hours.

The origin of the hard electron distribution is not yet clear. Different physical processes such as diffusive shock acceleration

(Achterberg et alJ M), cyclotron wave resonance (Hoshino et alJ M) etc. are beginning to be explored in detail in the

context of relativistic shocks. Further developments in this area will hold the key to understanding the origin of the observed

spectra of Gamma Ray Bursts and their afterglows.
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Table 1. Temporal indices of the spectral parameters. For general ¢ and s

frequency before jet break after jet break
v s+(s=6)p1 —2q(2—p1)(s—3) 2q—p1—qpy
m 2(4=s)(p1—1) p1—1
5(10g—4—p1 —5p1¢)+15(—=p1 +p19—29+2) __7p1—5p19+10g—12
Va(Va <vm <ve) T0(4—3)(p1—1) 10(p1 —1)
5(2+p1—4q+2p1q) —6p1 —20+129—6p1 g (2g—4—p1—qp1)
Va(Vm < va <wve) Ze=nrTE=Y S e
Va(Va < Ve < Vm) g+5(3—34) —%
Va(Ve < Vo < Vm) 6=s _g

3(s—4)
5(142q)—6(q+1)

Vi —2u—s —(1+aq)
3s—4
ve 2(4=s) 0

Table 2. The spectral indices (§) and lightcurve decay indices (a1; before jet break, awa; after jet break) for various spectral regimes in
slow cooling phase. Note that a depends upon the value g assumes. The expressions assume forms similar to those in p > 2 case, if ¢ is
set to unity.

spectral segment 0 a1 (ISM,WIND) a2
V< Vg <Vm< V¢
2 _ (10-7p1+3p19—69) 6—5p1+pi1g—2q 3p1 —6—3p1g+6q
8(p1—1) ’ 4(1-p1) 6(p1—1)
V< VUm < Vg <Vec
Vo <V < Vm < V¢
1 pP1+pPi19—29 2—pi+pig—2q —2p1+3—29+qp1
3 AP —1) * 6(P—1) 3(p1—1)
Um <V < Vg g %, % 1
Um <V <V <Ue
—1 2(q—1)—py (1+
~i) 3 4pig—2¢), 120 — prg—2p1 — 1) - 2alom(da)

Um <V < Ve <V;

vm <vi<v<wve 22D _3(py tpyg—2), 120 —pag—2pp —1) —2elopelta
vm <ve<v<v; -8 1(6g —3p1 — 3p1q — 2), 1 (2¢ —prg —2py)  —2eopletl)
Um < V; < Ve <V
20g—1)—
-& 1(6q —3p2 —3p2q — 2), 1(2q — 2p2 — pag) - 2atop2(atl)

Um < Ve < Vi <V

Table 3. Same as table 2, but for fast cooling phase. After v goes above both v, and vy, the respective positioning of these frequencies
does not affect lightcurve slope and the indices will be the same as that of the corresponding slow cooling regime.

spectral segment § a1 (ISM,WIND) s

V< Vg < Ve) 2 1,2 1/9
vg <v<ve) 1/3 1/6 ,-2/3 -1

v < Ve < Va) 2 1,2 13/5
ve <v<ve) 5/2 5/4,7/4 13/5

(Va,ve) <v<vm -1/2 -1/4,-1/4 -1
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Table 4. Fit parameters of the three modelled afterglows, given around the time of jet break.

Fit Parameters GRB010222 GRB020813 GRB041006
+0.004 +0.007

p1 14715002 1.4075-007 1.29 — 1.32

P2 2.0477:5% ~21 > 2.2

q 1.3 £ 0.06 1.3+0.05 0.95 — 1.14
Vi Hz 224150 x 101 3.9970-5% x 1012 (1.2 - 3.0) x 1012
ve Hz 9.037557 x 1013 2.3310-08 x 1013 (1.0 — 2.0) x 10
v; Hz > 10%° > 5x 10" > 2.4 x 1020
fp mJy 10377000 1351092 (0.37 — 0.49)

t; day 0.5610-0%° 0.48 £ 0.03 0.17 —0.24
E(p_v (host) 0.03570 00 mag  0.037050% mag  0.01 — 0.05 mag

Host Gal. B band
” V band

” R band

” 1 band

”? 8.46 GHz

? 4.86 GHz

25.6410 5, mag
26.29102° mag
25.837:8:35 mag
25.59 & 0.25 mag

25120 iy
20150y

11

Table 5. Derived physical parameters for the three afterglows. Since v, was not well constrained in all the cases, the parameters are
presented as a function of the ambient density ng, normalised to 1 atom/cc.

physical parameters GRB010222 GRB020813 GRB041006
_n
€eng 2 ~1.0 ~1.0 ~0.8
3
esng 0.0270-00% 0.179-002 0.07 — 0.14
1
Eng 12.011%° x 101 > 5.7 x 10 > 2.0 x 10

Fiso n(;g ergs
_ L
0jngy 0 deg.

_2
FEiot ng, ° ergs

5.8370:0% % 10%2
2.0° £ 0.008

3.60 £ 0.002 x 10%9

3.2270-976 x 1052

2.3° £0.05

2.270% % 1019

(2.0 — 4.0) x 1051
1.7° — 2.8°

(1.4 — 3.4) x 1048
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Figure 1. Evolution of spectral breaks v, (top left), v, (top right) and v; (bottom) for different values of g. For comparison, result of a
single power law with p = 2.2 is also shown (thin line). v; is not relevant for the p > 2 case however. The parameters used in calculating
the curves are: z = 1, a spherical outflow of isotropic equivalent energy 10°! ergs and initial lorentz factor 350 in a homogeneous ambient

medium of density 0.1 atom/cc. The shock microphysics parameters are: e« = 0.1, eg = 0.01, p; = 1.5, p2 = 2.2 and £ = 2000.
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28 ] ] ] ] ] ] ] -10 ] ] ] ] ]
-2-15-1-05 0 05 1 15 2 -2 -15-1-05 0 05 1 15 2
log((t — to)/day) log((t — to)/day)
-2 T T T T T T T

log(fv/mJy)

-2-15-1-05 0 05 1 15 2
log((t — to)/day)

Figure 2. (left top) Sample model optical lightcurve (4 x 10'* Hz), (right top) x-ray lightcurve (10'® Hz) and (bottom) radio lightcurve
for 22 GHz for three different values of q.
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Figure 3. The a — § closure relations for various values of gq. The left panel shows the closure relations when the observing frequency
is below the v., the right panel is for v > v.. In the bottom panels « is calculated before jet break. In the top panel, post jet break o

values are presented. Solid line is for ¢ = 1, dotted line is for ¢ = —0.5 and dashed line is for ¢ = —1. For ¢ = 1, the standard p > 2
scaling is recovered. Note that for ¢ = —0.5, the minimum possible value of « is 1.75. For ¢ = —1, a does not depend on §.
2
— p<2; synch. T
ok — . p<2; compt. |
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R ]
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| | | .
105 175 20 225 25
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Figure 4. The predicted compton contribution from hard electron energy spectrum, in comparison with that from a steep spectrum.
For frequencies less than 10 Hz, the contribution from SSA is rather low for p < 2 spectrum. The parameters used for calculation are,
Eiso,52 = 102, n = 100, €c = 0.3 and eg = 10~ 3. For hard spectrum p; = 1.8, po = 2.2, ¢ = 1 and & = 5000 are used, and for steep
spectrum a p of 2.2 is used. The displayed spectra are for ~ 5 days post-burst.
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log((t — t(o)/ day)
a
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log v/Hz
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Figure 5. Multiband model fits for GRB010222. Points : observed data. Solid line : our model. (a) Radio and x-ray lightcurves. The
4 GHz lightcurve and the 1018 Hz x-ray lightcurve are offset by 0.01 and 0.1 mJy respectively for the ease of viewing. The flattening
seen in radio lightcurves (panel a) are due to the flux of the starburst host SMMJ14522+4301 (see text for details). (b) Optical BVRI
lightcurves, appropriately offset to avoid clustering. (¢) X-ray spectrum at ~ 1 day from BeppoSAX along with the model.

0 T T T T 12 T T T T T T T T T
-0.5 14 Iband-5 E
-1 16 .
L5
18 E
Rband

b2 4GHz/100 o
’é? < 20 | E
Z 25+ x % X E g
2 | \ | § 2t ]
o 3 <
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a4t \'&%\ Y i 2 _
45 | E 28 b
_5 1 1 1 1 30 1 1 1 1 1 1 1 1 1
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0.5 1 04 -02 0
log ((t — to)/day) log((t — to)/day)
Figure 6. GRB020813: Best fit model along with the observations. (i) The top two curves in the left side panel are radio flux in 8.46 GHz
and 4.86 GHz respectively. For ease of viewing, 4.86 GHz flux is multiplied by 0.01 mJy. The late time flattening in the 8 GHz data is
not due to the presence of any host. Such flattening is seen in the radio afterglows beyond a few days past the burst, and is suspected
to be some non-standard behaviour (see Frail et al. 2004) which is not taken care of by our code. The bottom curve in this panel is the
x-ray lightcurve at 1.2 x 10'® Hz. (ii) The right panel displays multiband optical lightcurves. I band is offset by —5 magnitudes while V
band is off set by +5 magnitudes.
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APPENDIX A: CALCULATION OF THE LATERAL VELOCITY OF THE JET

The adiabatic sound velocity is defined as, ¢s = dP/dp where P is the gas pressure and p is the mass density. m
) derives the thermal energy density Uy of a mono-atomic gas to be,

U, {3}(3(@) + K1(©)

1K) 1} mc’, (A1)

where n is the particle number density in the gas and m; is mass of a single particle. © = mlc2/k3T7 where T is the
temperature of the gas. K, (0) is the modified Bessel function of order n. In terms of temperature, thermal energy density is
usually expressed as, na(T)kgT, where o(T') parametrises the temperature dependence. It follows from the two expressions
that,

(A2)

a(T)_@[w_l]

175(9)

In the non-relativistic regime, «(7") approaches the familiar value 3/2 and in the relativistic limit, it tends to 3. For a blast
wave downstream plasma, with single particle rest mass m1, the average thermal energy per particle a(7)kgT can be written
as (I' — 1)mic?. ie.,

2 3K3(C"‘))+K1(@) 9
—_— < 1| =(T-1 A3
_— [ o)+ (O~ Dmae (43)
from which we identify (3K3(©)+ K1(©))/4K2(0) with I'. Temperature of the gas can be solved for, in terms of I" by inverting
this relation.

But the total energy density is independent of the dynamic regime of the gas and is given by, u = pc? = (U +nma 02)/V
where p is the total (rest+inertial) mass density. Using this expression we obtain,

P _ o3K3(0) + Ki(©)

—=0——————— 2 =0T A4
P 4K2(©) (A4)
which gives the sound velocity in the downstream in terms of I as,

cs 12 1

== = A5
[ c } or (A5)

Let us examine the limiting values of the above expression and check the consistency. In the non-relativistic limit, kg7 < m1c?

ie., © > 1, the Bessel function takes the form

4n? —1
30

1
Tz
Ko (0) = [%} exp (—O) [1 + (A6)
Substituting eqn. (A6) in eqn. ([A5);

o kT4 [,1 + 58] (A7)
mi 31+ 5]+ [1+ 5]

Neglecting terms of the order of 1/0, expression for sound velocity in a non-relativistic gas is reduced to

g_kBT

Cs

(A8)

mi
Now, in the relativistic limit, ie., when © < 1 The limiting expression for Bessel function is,

1(n—1)!

Ka(©) =3

2 () (49)

Substituting the above expression in (12), and neglecting terms O(0?), we get for the sound velocity in a relativistic gas,

s  ksT80 ¢
T 21 3 (A10)

We calculate the the lateral velocity of matter in the fireball as it decelerates, using eqn (AR). When I" — 1, we shift to the
non-relativistic expression given by eqn (AS).
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