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Structural disorder and solid state transformations in single crystals of
Zn,Cd; _,S and Zn Mn,_.S
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Abstract. Single crystals of Zn,Cd, - S and Zn,Mn, _ S were grown from the vapour phase
at 1100°C in the range x =09 to 1. X-ray characterization shows that polytypes and
disordered structures occur in Zn,Cd,_,S for x > 094, whereas ZnMn, S displays
disordered and polytype structures in the entire range x = 09 to 1. It is observed th{it
Zn,Cd, .S and Zn,Mn, _,S undergo a 2H-6H solid state transformation on annealing in
vacuum around 600°C. Experimental analysis of the intensity distribution along the 10 L
reciprocal lattice row as recorded on a single crystal diffractometer from partially transformed
crystals shows that the mechanism of the transformation cannot be explained in terms of the
one-parameter models of non-random faulting reported earlier. A two-parameter theoretical
model with « representing the probability of random insertion of a fault in the 2H structure
and f representing the probability of the growth of the 6H nucleus, is developed both for a
deformation mechanism and a layer displacement mechanism. It is found that the theoretical
model of non-random deformation faulting with # > o approximates the actual mechanism of
transformation in these crystals.

Keywords.  Structural disorder; single crystals; polytype structures; theoretical models,

1. Introduction

Inrecent years there has been considerable interest in the study of mixed crystals of the
type Zn,Cd, _,S and Zn,Mn;, _ S and the characterization of their physical properties.
The possibility of obtaining a systematic variation of photoelectronic properties simply
by adjusting the solid solution composition has given rise to an interest in
optoelectronic applications of Zn,Cd, _,$ crystals, mainly luminescence applications
(Brodin et al 1970; Kawaguchi et al 1976; Yoshikawa and Sakai 1976) and
heterojunctions for photovoltaic energy conversion (Burton and Hench 1976; Domeus
et al 1977). Manganese-doped ZnS (ZnS : Mn) provides an efficient system for high field
electroluminescence (Theis 1981) and the electroluminescent devices exhibit
(Inouguchi et al 1974) characteristics which are especially attractive for use in flat panel
refreshed matrix displays with high peak luminescence-voltage response. Such devices
can be operated (Inouguchi et al 1974) at high brightness for tens of thousands of hours
at constant voltage with little loss of luminescence.

It is therefore of considerable interest to examine the defects present in such crystals
and study their influence on device properties. It is well known that single crystals of
ZnS when grown from the vapour phase at temperatures above 1050°C show a variety
of polytype structures with considerable random disorder. On the other hand Cds
which is isostructural with ZnS does not exhibit polytype structures and the related
disorder effects (Chandrasekharaiah and Krishna 1969). Zinc sulphide and cadmium
sulphide both display two polymorphic structures—wurtzite (2H) and sphalerite (3C).
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Manganese sulphide on the other hand exists in three polymorphic forms—a stable '

green a-MnS with the {rock salt structure and two pink metastable adamantine
structures f-Mn$ (sphaletite type) and y-MnS (wurtzite type). The B and y-forms are
metastable at room temperature and convert (Mehmed and Heraldson 1938; Schnaase
1933) into &-MnS on heating at 200°C. f-MnS is also known to convert into a-MnS at
high pressure (Roomians 1963).

CdS and ZnS are known to form solid solutions of the type Zn,Cd, _ S for all values
of x (Cherin et al 1970). MnS and Zn§ on the other hand forma continuous series of
solid solutions only in the range x = 0 to 0-52 (Schnaase 1933; Kroger 1939; Juza et al
1956; Lutz and Becker 1977). The present investigation was undertaken to study (i) the
variation of the disorder effects in single crystals of Zn,Cd, _,S and Zn,Mn, _,S with
change of composition and (ii) the effect of composition on the wurtzite-sphalerite (2H-
3C) phase transformation which is known to give rise to defect structures in these
materials.

2. Crystal growth, characterization and annealing behaviour of ZnCd;_.8

Single crystals of Zn,Cd;-,S (1> x> 0:90) were grown (Sebastian and Krishna
1983) from the vapour phase at 1100°C in the presence of HyS gas. Needle-shaped
crystals ranging in length from 0-5-8 mm and in width from 0-1-0-5 mm were obtained.
For x =095 we observed dendritic growth with large sword-shaped dendrites
branching and rebranching at 60° angles as seen in figure 1(2). The ZnyysCdgesS
dendrites grew as needles along the (1010} directions and finally merged to form a
platelet perpendicular to [0001]. Figure 1 shows the dendrites at four different stages of
growth.

The structure of as-grown Zn.Cd, - ,Scrystals was examined (Sebastian and Krishna
1983) by x-ray diffraction by recording 15° c-axis oscillation photographs. The crystals
showed different structures depending on the amount of cadmium present in the
crystal. All the crystals with a composition x < 093 were free of stacking faults and had
a perfect 2H structure. For x > 0-94 the crystals were found to contain 2H, 3C, 2H

+3C, polytype and disordered structures. The dendrites observed at x = 095 were
single crystals containing 2H + 3C +disorder in their structure.

Needle-shaped crystals of 2H Zn,Cd, S were annealed in vacuum at successively
higher temperatures in the range 400-1100°C for 1 hr each and then quenched in cold
water to arrest the structural transformations induced in them. During annealing the
crystals were kept immersed in ZnS powder in a silica tube to prevent the crystal from
vapourising at high temperatures. After each annealing run the crystals were quenched
by immersing the silica tube in cold running water. The structure of the crystals was re-
examined by x-ray diffraction after each annealing followed by quenching. The crystals
were also examined under an optical microscope before and after annealing to detect
any macroscopic kinks characteristic of crystals undergoing transformation by the
periodic slip mechanism.

It is found that the transformation behaviour of the 2H Zn,Cd, _. .S crystals depends
on the value of x. The crystals with the composition x > 098 transformed to a
disordered twinned 3C structure in a manner similar to that reported earlier for ZnS
(Sebastian et al 1982, 1983a). The 2H crystals in the composition range 098
> x > 0195 on annealing transformed to a disordered 6H structure around 600°C.
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Figure 1. Optical micrographs showing the progress of dendritic growth of Zngo5CdyosS
crystals. The axis of the dendrites is found to be along [1010] with the c-axis nearly
perpendicular to the plane of the figure. The dendrites appear to merge into a platelet as the
growth proceeds ( x 20).

These crystals on further annealing, at higher temperatures transformed to a
disordered twinned 3C structure around 800°C. The crystals in the range 095 > x
> (93 behave differently. Nearly 309 of the crystals studied transformed to a
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disordered 6H structure and the rest to a disordered 2H structure around 600°C. These
crystals on further annealing at higher temperatures do not transform to a 3C structure.
Figure 2 shows the 10- L reciprocal lattice row of a Zng,,Cd,, S crystal before and after
annealing at 800°C. The crystals with x <093 do not undergo any structural
transformation and remain as perfect 2H in the temperature range up to 1100°C
indicating that the addition of CdS to ZnS$ stabilizes the 2H phase in the solid solution.

3. Growth, characterization and annealing behaviour of Zn,Mn, _.S crystals

Single crystals of Zn,Mn, _,S were grown in a manner similar to that described for
Zn,Cd, _,S. Polycrystalline ZnS and MnS were mixed in calculated proportions for
different values of x (09 < x < 1). The crystals obtained were needle-shaped, up to
5mm in length and 1 mm thick. The crystals were examined by x-ray diffraction and
were found to contain perfect 2H, disordered 2H, 2H + 3C, polytypes and disordered
structures. The 6H structure was encountered more frequently than in ZnCd, S
crystals.

Needle-shaped crystals of Zn Mn, _ S were annealed in vacuum in the temperature
range 400-1100°C for 1 hr each and quenched in the manner described earlier for
Zn,Cd, _ S crystals. The structure of the crystals was re-examined by x-ray diffraction
after each annealing run. It was observed that nearly 759, of the 2H Zn,Mn, _,S
crystals transformed to a disordered twinned 3C structure in a manner similar to that
observed for pure ZnS (Sebastian et al 1982). In the remaining 257, crystals
disordered 6H structure was observed around 500°C as an intermediate state. On
further annealing at higher temperatures this disordered 6H structure transformed to a

Figure 2. The 10.L reciprocal lattice row of a 2H

i 8 Zng93Cdgo7S crystal recorded (a) before anuealing

i (b) after annealing at 800°C for 1 hr. The crystal has

transformed partially to a 6H structure. (Camera
radius 3 cm, CuK radiation x 4).

(a) (b)
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Figure 3. The 10.L reciprocal lattice row of a 2H
¥ ZnggMng,(S crystal recorded (a)before annealing
(b) after annealing at 600°C for 1 hr. The 2H reflec-
tions have nearly disappeared and diffuse reflections
have developed in positions of 3C and 6H reflections.
§ (Camera radius 3 cm, CuK radiation, x 3).

() (b)

disordered twinned 3C structure. All the crystals transformed back to a disordered 2H
structure on annealing above 1050°C. Figure 3 shows the 10 - L row of a perfect 2H
Zny,Mn,, S crystal before and after annealing at 600°C for 1 hr. Most of the crystals
which transformed to the twinned 3C structure showed an enhancement of intensity at
positions of 6H reflections along the 10+ L row. After each annealing run the crystals
were examined under an optical microscope to detect any change in the shape of the
crystals. No kinks or other macroscopic changes in the shape of the crystals were
observed after transformation.

4. Mechanism of the 2H-6H transformation

Daniels (1966) and Mardix and Steinberger ( 1966) proposed a periodic slip mechanism
to explain the 2H-3C transformation in ZnS and for the formation of long period
polytypes. This envisages the expansion of stacking faults around an axial screw
dislocation causing them to occur with a period equal to the Burgers vector of the screw
dislocation. However, periodic slip caused by the expansion of a single deformation
fault around a screw dislocation of 6 layered Burgers vector in a 2H structure would
give rise to an 18R structure as shown below

initial structure;
ABABABABABABABABABABABARB.....

CACACACACACACACACA. .. ..
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resulting structure:
ABABABCACACABCBCBCABABAB . .. .. =18R

The transformation to a 6H structure is only possible if two partial dislocations of
opposite signs occur at three layer separations and expand simultaneously around a
screw dislocation of 6-layered Burgers vector. Moteover, crystals undergoing a 2ZH-6H
transformation by the periodic slip mechanism should develop macroscopic kinks. The
absence of such kinks and the strong diffuse intensity observed on x-ray diffraction
photographs along the 10- L reciprocal lattice row indicate that the transformation has
occurred by the non-random nucleation of stacking faults at three-layer separations
(Secco d’Aragona et al 1966; Sebastian et al 1982). In this" case the Burgers
vector of the partial dislocation bounding each stacking fault can be in any of three
symmetry related directions. Since each fault nucleates independently, the three
directions would occur with equal probability producing no macroscopic kinks. Even
in crystals which do not contain a screw dislocation, the faults can nucleate
preferentially at 3-layer separations in order to effect the 2H-6H transformation. A
similar transformation from the 2H to the 6H structure has been observed earlier by
Krishna and Marshall (1971) in SiC and possible mechanisms were investigated in
detail by Pandey et al (1980).

41 Theoretical models

The 2H to 6H transformation in close-packed structures can occur by two different
mechanisms involving the non-random insertion of either layer displacement faults or
deformation faults (Pandey et al 1980)in the 2H structure. If layer displacement faults
nucleate at three-layer separations the 2H structure would convert to a 6H structure as
shown below

initial structure: ABABABABABABAB.....

resulting structure: ABC BAC ABCBACAB... ..

The layers indicated by underlining have changed their positions. The same trans-
formation can also be effected by the insertion of deformation fauits at three layer
separations as depicted below

initial structure: ABABABABABAB.....
CACJACACACA.....
BABABAB.....

resulting structure: ABCACBABCACB. . ...

Pandey et al (1980) have theortically calculated the diffraction effects that would be
expected from crystals undergoing transformation by both the mechanisms on the
assumption that faults do not occur at less than three layer separations but otherwise
have the same probability of occurrence at all layers. On the basis of this one-parameter
model the main differences in the diffraction effects expected from crystals undergoing

Sy

g g

[



Structural disorder and solid state transformations 375

2H-6H transformation by the layer displacement and deformation mechanisms are as
follows

(i) Thereflections H-K # 3nand L = 0, £ 1 (mod 2) of the 2H structure remain sharp
and unbroadened throughout the transformation for the layer displacement
mechanism while these are considerably broadened for transformation by the
deformation mechanism

(ii) For transformation by the layer displacement mechanism a diffuse reflection
develops initially around the position L = + % (mod 2) and then splits into two
reflections which migrate towards the L = + % (mod 2) and L = + % (mod 2)
positions as the transformation proceeds towards 6H. At an intermediate stage of
transformation the new 6H reflections are thus shifted towards each other i.e.,
towards the L = 13 (mod 2) position. For transformation by the deformation
mechanism, the new reflections characteristic of the 6H structure appear initially
near positions L = + 4, + # (mod 2) and then approach towards L = + §, + %
(mod 2) as the transformation progresses towards the 6H structure. At an
intermediate stage of transformation these reflections are thus shifted away from
each other i.e, away from the L = + 4 (mod 2) positions.

Therefore the nature of stacking faults involved in the structural transformation can
be determined by studying the peak broadening and peak shifts of x-ray diffraction
maxima recorded from partially transformed crystals.

4.2 Analysis of the observed intensity profiles and comparison with the one-parameter
model

The point intensity distribution along the 10- L reciprocal lattice row of several
partially transformed crystals in different stages of transformation was recorded on a
four-circle computer-controlled single crystal diffractometer using the method de-
scribed earlier by Pandey and Krishna (1977). MoK« radiation was used to record the
intensity diffracted by the crystal. The crystal and the counter were held stationary
during each observation and the crystal was oriented by the computer to diffract the
10- L row for different values of L (in steps of AL = 0-01) into the counter. The
divergence of the incident beam was adjusted to cover the mosaic spread in the crystal.
The sharp reflections H — K = 0 (mod 3) were used to orient the crystal and to define
the hexagonal unit cell. Figure 4 shows the diffractometer record of intensity along the
10- L reciprocal lattice row as recorded from a 2H Zn,,,Cd,,S crystal after annealing
at 800°C for 1 hr. The crystal is in the initial stage of transformation and the 6H peaks
have just begun to appear. The 2H reflections are quite sharp and the new 6H reflections
are shifted from their correct positions. Figure 5 shows a similar intensity record
obtained from a Zng,,Cd,S crystal at a more advanced stage of the 2H-6H
transformation. The 6H peaks are more clearly developed and are much less shifted
from their correct positions. Similar diffractometer records were obtained on annealin g
2H crystals of Zn Mn, _,S at different stages of transformation. The intensity profiles
obtained experimentally from partially-transformed crystals show that the new 6H
reflections appear at an earlier stage of transformation and are shifted in the direction
predicted by the deformation mechanism. However, the 2H and 6H peaks are much
sharper than what is expected on the basis of the one-parameter model and the shift of
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Figure 4. Single crystal diffractometer plot of intensity versus L along the 10- L reciprocal
lattice row recorded after annealing a perfect 2H Zngg3Cdgo7S crystal at 800°C for L hr.
Vertical dashed lines indicate the correct 6H positions from which the new 6H peaks are clearly
shifted. The 2H peaks are very sharp and intense and the crystal is in an early stage of
transformation.
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Figure 5. Single crystal diffractometer plot of intensity versus L along the 10- L reciprocal
lattice row recorded after annealing a perfect 2H crystal of Zngg4CdgosS at 800°C for 1 hr.
Vertical dashed lines indicate the correct 6H positions. The crystal is at a more advanced stage
of transformation.

the 6H reflections is also much smaller. Therefore it is evident that the 2H-6H
transformation in Zn,Cd,_,S and Zn,Mn,_,S crystals does not take place in
accordance with the one-parameter model proposed by Pandey et al (1980).
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5. Development of a two-parameter model

From the experimental results described above it appears that the probability () of
faults nucleating at 3-layer separations is much larger than the probability («) of their
occurrence at larger separations. The former () corresponds to the probability of the
growth of a 6H nucleus within the 2H phase and the latter (x) to the probability of fresh
nucleation of a fault in the 2H structure. It is possible to develop the theory of x-ray
diffraction from 2H crystals undergoing transformation to the 6H structure by (i) the
deformation mechanism and (ii) the layer displacement mechanism using two para-
meter model. A choice between the two mechanisms can then be made from a
comparison of the theoretically-predicted diffraction effects with those actually
observed provided only one of the mechanisms is operative in the crystal at a time. The
need for a two parameter model for Zn$S was recognized by Jagodzinski (1949), Miiller
(1952) and Singer (1963). More recently Lele and Pandey (1982) employed a 2-
parameter model to theoretically investigate the 3C-2H transformation in cobalt.

We develop below the theory of x-ray diffraction from crystals undergoing the
2H-6H solid state transformation by (i) the deformation mechanism and (ii) the layer
displacement mechanism under the following assumptions:

(i) The crystal is infinite in size and free of distortions.

(ii) The scattering power for all the layers is the same.

(iii) There is no change in the layer spacings at the faults.

(iv) The faults extend right across the crystal boundaries.

(v) The faults occur preferentially at 3-layer separations with a fault probability g
which is different from the probability « of random nucleation at larger
separations. The probability of faults occurring at less than 3 layer separations is
negligible.

3.1 The theory of x-ray diffraction from crystals undergoing the 2H-6H solid state
transformation by the deformation mechanism

In the perfect 2H structure we distinguish two types of layers with subscripts 0 and 1
according as the stacking offset vector is + §; or —S; where S; denotes S; = +a[1100],
S, = $a[0110] and S, = 4 a [1010]. The perfect 2H structure can thus be written as

AoB AoBAgB 1 AyB, . . ..

There are six other types of layers in a 2H crystal undergoing transformation to the
6H structure by the deformation mechanism. Let the subscripts 0! and 1! denote the
first layer of the slipped stack according as it follows a 0 type or 1 type layer. It is
assumed that the next two layers after a 0 or 1! type layer are unfaulted. Therefore the
layer following a 0! or 1 layer is designated as 0? or 12. The next layer after this is
denoted as 0° or 1° in order to distinguish it from 0 or 1, since there is a probability g
that the growth of a 6H nucleus may commence from these layers. We can now compute
the probability Py, ;, of arriving at the mth layer with the subscriptj (j = 0, 1,0, 1%, 0%,
12, 0® and 1) with the help of the following probability trees which consider the
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transitions from (m — 1)th layer to the mth layer with each type of layer at the origin
(Sebastian and Krishna 1983b):

B
Ap<l-a
a~Cl .
B, {l-a !
& N
a Cy A2 Co3 -8 Ao
BByl Ag2—B;3 -8
B Cyl—a,2
(rn-l]'h loyer m™ layer (m-l]'h loyer m™" layer

Z B, B
Cit
a ! Ag!
B
c0|‘-[—A,2 A,Z_———qcog)
!
c’I ‘BOZ 802-|—CI3

As shown in the probability trees, the layer type following B, (or 4,) layers in the
absence of a deformation fault is 4, (or B,) and occurs with the probability
(1 —a). Therefore in the presence of a deformation fault the layer following B, (or 4,)
is Col (Or Cll).

The probability Py, ; may now be computed as follows

Pmoy =1 —=0)Ppy 1, +(1 =B P13 1)
Py == &) Ppuy,00+ (1 = B) Py ,0%s )
Pongty = aPim_1,1y+ B Py 13, 3)
P(m,l‘) = aP(m—1,0)+ﬁP(m—1,03)’ )
Pingyy = Pin-1,11 (5)
Pmiz) = Pin-1,0 (6)
Pingy = Pimoy 135 0
Pin13) Pim-1,00y (8)
The function J,, ; can be written (Prasad and Lele 1971) as
Jmp = €XP ((@n); = 3. P, eXP (i h)s )
where XD (1 Pm) = eXp (i P 1) XD (L icho), (10)

and ¢o = 2n/3 is the phase difference between the (m — 1)th and mth layers and takes
plus or minus sign depending on the layer sequence being cyclic A — B C — 4 or
anticyclic 4 - C —» B — A. Using (1) to (10) and putting

exp (+i¢p) = w; and exp (—id,) = 0,
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we get
Jmoy =0 =01 1y@z+ (1= By 1302, (11)
Jmy ==y 01+ 1 =B g1 (12)
Jomoty = 0J g1 @1+ B -1, 101, (13)
Jm1ty =0 gn_1,0@2 + B n—1,0 @25 (14)
Timety = m1,11®25 (15)
Tem1zy = J n-1,00015 (16)
Tngy = I m-1,15 02, (17)
Jm13) = m-1,0®1- (18)

Let the solution of the system of difference equations (11) to (18) be of the form
Jomy =Cjp", mz=0, (19)

where C; and p are functions of « and . Substituting in equations (11) to (18) and

eliminating the various C’s we finally get the so-called characteristic equation
p°—(1—a)? p® +a(l —P)p* = f*p? + (a* + > — 2aB) = 0. (20)

Holloway (1969) obtained an analytic solution for the diffracted intensity in terms of
coefficients and boundary conditions of the characteristic equation. His intensity
expression is

n~1j—1

{ .}:1 kzo @y Tj-rexp (n—j)inL —ay
I=f*C -+ /== +C.C. (21)
2 " ’
Y, ajexp(jinL)
j=0

where a, is the coefficient of p” in the characteristic equation, T’s are the boundary

conditions, C is a scale factor and

3nL
12 =f§n+f§+2fz,,fscos~§—.

In the present case
n=8,a=1,a=—(1—0a)? a, =a(l—p),
a; = —f* and a, = (.~ )?,
a7=a5=a3=01 =O.

The boundary conditions (I'’s) can be found out by the following method. First we
find the probability W of finding a layer with subscript j on passing through an
arbitrary region of the crystal. From the probability tree we get

Wo = (L—a) W, + (1= ) W,

Wi = (1 —a) W+ (1 — ) W,

%1 =aW +Bu’i3= W = W,

W’ix = aW(,+ﬂ%; = %z = W’ia,

Wo+ Wi+ Wo + W + W + W + W +Wis = L

i
i
b
:

i

=2
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Solving the above equations we get

1-8
=W =" __ 22
L R S 2
o
%1=M1=%z=mz=%z=mz=m. (23)

The boundary condition (which is the sum of the product of the phase factor and the
probability factor from all the origins) can now be obtained by considering all possible
sequences starting with layers of each type 0, 1,0%, 11,02, 12,0 and 1° at the origin and
writing T,, in each case i.e,

T =3, W {exp (ign); )
J .
Thus
2-28

Ty = -4 Ty=— '
Pt 27 21— 8+30)

1-B. (1-30)(1-p)
Ty= =o' Ty=- U
T 2(1-B+30) T 1=B+30
T. = _ 1 -3a—p—3a®+ 60+ 3028
T 2(1 ~ B+ 3a) o
r _ 2—120—2f+ 120 + 18af — 6a® — 12628 + 60> B
s 2(1 - B+ 3a) ’
Toe 1 — 60— B+ 3a® + 1208 — 302 f — 30 8% — 3a* + 3a* B
g 2(1—f + 3a) '

Substituting the coefficients (a’s) and the seven boundry conditions(7”s) in (21) and
carrying out the summations we get the intensity expression as

I=f2C{[{+(T, exp (TinL)+ T, exp (6inL) + (T; + a¢T;) exp (SinL)
+ T4+ a¢Ty)exp (4inL)+ (Ts + agly +a,Ty ) exp (3inL)
+ (T +agTy + asT;) exp (UnL) + (T; + agTs + a,Ts + a,T; )
x exp (inL) —aq)/(ap + a, exp (2inL)
+asexp (4inl) + agexp (6inL) + exp (8inL))] + C.C.}. (24)

On simplifying (24) we get the final intensity expression for a 2H crystal undergoing
solid state transformation to the 6H structure as

I- f2c(1 +§) 25)

_ where

X =BR, +aoB R, +a,BRs+a,B R, + asB,R, +
B3R, +ayByRg +a,B,R,+ a4B;R, +agB, +
B3R3 +aoB3Rs +a;,B3Ry +a,B3R, + asB3iR, +
B,R4+ayB,Ry+a,B,R,+a,B, + agB4R, +
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BsRs +aoBsRs + a,BsR, +a,BsR, + agBsR; +
BsRs+aoBsR, + a;Bs + a,BgR, + agBoR, +
B3R, +aoB;R; 4+ a;B;R, +ayB;R; + asB,Rs +
BgRg +aoBg + a,BgR, + a,BgR, + asBgRg.

y= G1 + Gsz + G3R4 + G4R6 + G5R3 -+ G6R2

By =2T\, B, =2T,, By=2(Ts+acT,), B, = 2(Ty + agT),
Bs =2(Ts +aeTs+a,T,), Bg=2(Ts+acT,+ a,T5),

By = 2T; +ael's +a,Ts + a;Ty), By = —2a,,

R, =cosnl, R,=cos2znL, R3 =cos3nL,

R4 =cosd4nL, Rs=cos5nL, Rg = cosénlL,

R, =cos7nL, Rg=cos8znL,

Gl=1+a(z)+a%+ai+a§, Gz=2aza0,
G3 = 2apa,, G, =2a,aq, Gs = 2ay, Gg =2a,a,,
Gy =2a,05, Gg = 2a,, Gy =2a4a5, Gyo = 2a,, Gy = 2ae.

5.1a  Prediction of diffraction effects. The variation of the diffracted intensity with
L(hy)along the 10 - L reciprocal lattice row for different values of o and f as calculated
from (25) in steps of AL = 0-01 are depicted in figure 6a,b,c,d,e and f. The X-ray
diffraction effects from a 2H crystal undergoing transformation to the 6H structure by
the deformation mechanism are as follows

(i) Reflections with H—K =0 (mod 3) and L =0 (mod 2) are unaffected by the
transformation and remain sharp throughout the transformation.
(ii) The following diffraction effects are predicted for reflections with H — K #0

(mod 3).

(@) Reflections with L = 0, 41 (mod 2) are broadened. These correspond to the
positions for the 2H structure.

(b) There are changes in the integrated intensities of different reflections,

(c) For small values of a(x = 0-02-0-:06) the 2H reflections remain sharp and the
new 6H peaks appear as f increases to a value between 0-4 and 0-6. The 6H
peaks which are initially broad become sharper as B increases to 0-9. For this
range the resulting final structure shows considerable intensity at the 2H
positions in comparison with the intensity at the 6H positions. The final
resultant structure (§ = 0-9) shows the co-existence of the 2H and the 6H
structures.

(d) For a = 01 to 0-2. The 2H reflections are broad and the new 6H peaks start
appearing when § = 0-4. The 6H peaks at L = + 4, +  (mod 2) are shifted
away from each other. As f increases these 6H peaks gradually move from the
shifted positions to the positions L = + 4, + % (mod 2) and all the reflections
become sharper.

(e) For a = 0-3-0-4. The 2H reflections are heavily broadened with a dip in the
middle of the reflection. When f increases to 0-4 each reflection splits into three
and as f increases above 0-4 two of them move away from the central peak to
the normal 6H positions.
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Figure 6{e).

>

INTENSITY IN ARBiTRARY UNITS

Figure 6(f).

Figure 6. Calculated variation of the diffracted intensity along the 10- L reciprocal lattice
row for a crystal undergoing transformation by the deformation mechanism with § = 0-2, 04,
06, 0-8 and 0+9. The dashed vertical lines indicate the correct 6H positions. The calculated
curves have been shifted vertically for different values of f for clarity. () & = 002, (b) & = 0-04,
() =006, (d)a =01, (&) a =03, (fla =04.
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5.2 The theory of x-ray diffraction from 2H crystals undergoing solid state
transformation to the 6H structure by the layer displacement mechanism

Employing the notation described in the previous section the probability tree for the
layer displacement mechanism can be written as follows for the two-parameter model

Aq

Blé B
a CI-—BIZ—AOES@ Ay
B CO-——AOZ——BIB<B

B

C,. —B,2

(m- 1" layer m™ layer (m-1)"™ |ayer m™ layer
A A
¢l ¢!
B d B
Col c.

c,! ! B2 B2 ' A3

Co! ‘ Ag2 B2 ! B, 3

To compute the probability Py jy of arriving at the mth layer with the subscript
J(G=0,1,0%,1%,02 1% 0% and 1%) with the help of the probability trees, we consider the
transitions from the (m — 1)th layer to the mth layer starting with each type of layer (i.e.
0, 1, 0%, 1%, 0%, 12 0% and 1) at the origin. Thus we have

Py =(1 ~®) P y,1y + (1 — ) P(m_l,ﬁ);

Py =1 =0) Py g+ (1= ) P10

Pionoy = aPp_1 0+ B Py oy,

Pim1y =Py 1y+BPy_y 13,

Pnety = Pim—1,09 Pim1) = Pim—1, 1195 P03y = Pl 1,12

P(m'IS) = P(m_l’oz).
Following the procedures described earlier for the deformation mechanism we get the
following difference equations

Tmoy = (=) Ju_y 102+ (1 = )y 1903, (26)
Jmy =1 =) J 1,901 + (1 = B) 1,001, @7
J(M,O‘) = aJ(m-—l,O)wZ +ﬁ-](m_1,03)(02, (28)
Im1ty = 0y 1)@y +BJ iy 00y, (29)
Tont) = Jin1.0 015 (30)
J(m,l’) = J(m_vl,ll)wz, _ ' (31)
Ton0y = Jinot, 11 (32)
Tty = Jn_1,09®1. (33)

Mater. Sci—{7
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Let the solution of the system of difference equations (26) to (33) be of the form

Jmp=Cjp"  m20 (34
Substituting this value of J ,, ; in (26) to (33) and eliminating the various C's we finally
obtain the characteristic equation

PP —(1—a)?p® = 20(1 = f) p* ~ f2p* + (@ —B)* = 0. 35)
Adopting the method described earlier we get from the probability tree

W = (1~ W +(1~B) W,

W, = (=) W+ (1— ) W,

W = W+ BV = W = W,

W = oW+ W = Ws = W,

But Wy+ W+ Wy + Wia + Woe + Wa + Wi + Ws = 1.
Solving the above equations we get

1-8
Wy =W, =
0 YT 228460
o
Mo = Wie = Won = W = W = W =7 — e

Proceeding in the manner described earlier for the deformation mechanism, we get the
following boundary conditions

1 2-28
fo=b hi==p = e
T = 1—B+30—3af 2—2p+6a> —6a*p
S b Lt

2-28+60 Tt 2-28+6a

T 1-B+3a~3a?+30® +3a?f — 33p
5= = ’

3_26+ 6o
T - 2— 2B+ 60 — 1203 + 60* — 622 + 120> — 60*B + 6
6 2—-2f+6a ’
T 1— B +30—3e® 4+ 90® — 9o* + 3o — 3a2p — 90° B + 90* B — 3a + 60> B*
7 = - .

2-2f+6a

The applicability of Holloway’s method is restricted by the condition that none of the
roots of the characteristic equation has unit modulus. In the present case two of the
roots have unit modulus as shown below.

Equation (35) can be written as

(PP =)[p®+Qa—a?)p* + (—a? -F2ozﬁ)p2 +(—a?+2eB—p*)] = 0. (36)
Therefore two of the roots have unit modulus i.e.

pe=1and p; = —1,

.. vy
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and ag=1,a,=2a~a% a, = —a?+2apf,
do=~a’+2af—p% a5 =gy =a, =0,

Recently Lele (1980) obtained an analytical solution for the diffuse diffracted intensity
when the characteristic equation found from the difference equation has roots with unit
modulus. In this method we obtain a self-consistent set consisting of the characteristic
equation and the boundary conditions which do not have the effect of any roots with
unit modulus and thus can be used as input for the calculation of the diffracted intensity
by Holloway’s method. The diffracted intensity corresponding to the roots with unit
modulus consists of sharp peaks and has to be superposed on the diffuse intensity
corresponding to the roots with non-unit modulus.
Multiplying the terms inside the square bracket (36) with (p+1) and (p— 1)
respectively we get
P+ 0%+ (20— a?) p® + (200 — 0?)p* +(— o+ 2up)p® + (—a? + 2ap)p?
+(—a2+2ab’—ﬂ2)p+(-a2+2aﬂ—ﬂz)=0, (37
and
P71 =P+ Qe —0)p — 2 —0?)p* + (—a®+20B)p° — (~a? + 2ap) p?
+(—cx2+2o¢ﬂ—ﬁ2)p—(—a2+2txﬂ—ﬂ2)=O. (38)
From (37) and (38) we get the following coefficients
b6 = 1, b5 = 2“-“2, b4 = 2(1-—(12, b3 = _‘a2+2aﬁ, bz = —d2+20t,8,
by=—o?+2af— B by = —o?+ 20— g2,
bs=—1,b5=2a—o? b, = = (Qa—a?), by = (— o +2ap),
by = —(—o® +2ap), by = —a2+2aﬂ—ﬂ2, by = —(—a2+2aﬂ—ﬁz).
Following Lele (1980),
C —Tm-—1+b"_2T"_2... +blT1+bOTO
° Po b0y +bipo+by ’

we get
_ Ta+beTs+ ... +b,T,
- pi+bspt ... +bips+by
Substituting the values of 7’s and b’s and Ps =1 we get
C. - L1=0—B—p*+ B —ap? 1208

T N1--p+3a)(1 + 20+ 4o — 302 — §7)°

Similarly,
c =T7~7kbgT6+ oo+ by Ty +byT,
P1+bspS+ ... +bp,+bp
3 —3B + 9~ 3%+ 6af — 15052 +24a’f— 120 4 383

= 41~ B+ 30) (1+ 20 +4af— 302 — f7) '
The boundary conditions which no longer have the effects of any roots with unit
modulus are given by

6

n—1
Km=Tm_ Z ij}"’

j=n-p

T
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where the roots, p;, j = {n— p) to (n—1) have unit modulus. Thus we have

Ky =T;—(Ce¢ps +Cypp) =T, ~(Cs—Cr)
K, =T, ~(Cs+Ca); K3 =T;—(Cs—Cr),
Ky=T,~(Cs+Cr), Ks= Ts—(Ce—Ca).
Substituting the five boundary conditions (K’s) and the coefficients (as) of the

characteristic equation in Holloway’s expression
-1 j-1

i y ¥ a,-, K;-p exp (n—j)inL —do
1=pcl | 3s et rccl,
Y. a;exp (jinL)
j=0

where C.C. stands for the complex conjugate, we get

[ =£2C{(} +[K,exp (SinL)+ Ky exp (4inL) + (Ks +a4K ) exp (3inL)
+ (K4 +a.K)exp 2inL)+ (K5 +0a,K3 +a,K)exp (inL)
—ay]/(ao + az exp (2inL) + a4 €xp (4inL)+exp (6inL))) + cC}

expression for a 2H crystal undergoing solid

On simplifying we get the final intensity :
by the layer displacement mechanism as

state transformation to the 6H structure

I= fzc(l + -’3) (39)

x = B,R, +a,B;Ry + ;B Ry + aoBRs+
B,R, +0a4By+a;BaRy + aoB;R4 +
B3Ry +a4B3R; +asBiR + apB3R3 +
B4R, +asB4R; + ;B4 + aoB4Ry +
BsRs+a4BsRy+a,BsR; +aoBsRy +
BgRg+a4BsR4y+a,B6R, + aoBs,

y=1+ad+aj+ai +2a002R; +20004Rs

+2ayRs+2a,04R; + 20, Ry +204Ry.

B, =2K;, Ry =cosnl,
B, =2K,, R, =cos2nL,
By = AK;+a4K;), Ry=cos 3nL,
B, = 2(K5+a4K2), R, =cos4nL,
Bs = 2(Ks+a,K3+a,K,), Rs=cos SnL,
Bs = —2ay, Rg = cosbnL.

where

52a Prediction of diffraction effects. The variation of the diffracted intensity along the
10- L reciprocal lattice row for different values of e and B (calculated from (39) in steps
of AL = 0-01) is depicted in figure 7a,b,c. The intensity corresponding to roots with
unit modulus consists of sharp peaks and has to be superposed on the diffuse intensity
shown in the figure. The diffraction effects from 2H crystals undergoing transformation
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3

—ge INTENSITY IN ARBITRARY UNITS

i ! I
| 1 | =0-2
. S ! S A P
1 ! B el bomeog—=—"" .
10-0 10t 10-2
(2H) (2H) —_— (2H)
Figure 7(c).

@
Figure 7. Calculated variation of the diffracted intensity along the 10- L reciprocal lattice #
row for a crystal undergoing transformation by the layer displacement mechanism with B

=02, 04, 0:6, 08 and 09. The dashed vertical lines indicate the correct 6H positions. The

calculated curves have been shifted vertically for different values of § for clarity. (a) ¢ = 0:02,
Ba=01, (¢)a =02

to the 6H structure by the lay

er displacement mechanism may be summarised as
follows

(i) The reflections with H —K = 0 (mod 3)and L = 0 (mod 2) are unaffected by the

transformation and remain sharp throughout the transformation.

(ii) The following diffraction effects are predicted for the reflections with H — K & 3n i

(a) reflections with I, = 0, +1 (mod?2) are not broadened,

(b) There are changes in the integrated intensities of the different reflections.

(©) Fora = 002to 0-1: The new 6H peaksappearat L = + §, + % (mod 2) when g
increases to a value of about 0-2. Initially these reflections are broad and as
increases to 0-9 they become sharper. .

(d) For a =02 to 0-4: When B =02 new heavily broadened peaks appear at
L= 1} (mod 2). When B increases to a value between (-4 and 06 these peaks
broaden and split into two. As B increases to a still larger value (0:6-0:9) these
reflections which have split into two peaks move away from each other towards the
normal 6H positions, viz. L=+, +4 (mod 2) and become sharper. o

(¢) The 2H peaks are present throughout the transformation as in the case of Wmﬁgé

deformation mechanism. The one-parameter model does not show such a co-
existence of 2H and 6H peaks.
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6. Comparison of theoretically Predicted diffraction effects with those
experimentally observed

A study of the x-1ay photographs and the corresponding intensity profiles of the
crystals in different stages of the transformation shows that the transformation
commences with a broadening of the 2H reflections. This broadening is small when o is ‘
small but quite considerable for larger values of 4. The experimentally obtajned g
intensity profiles (diffractometer records of intensity) approximate to the theoretical i

profiles computed for the deformation mechanism, In many crystals the new 6H peaks

deformation mechanism are

= 00601, 8=06-08 (figure 4),
a=006-0.1, B =08-09 (figure 5).

7. Discussion of results

It is found that the phenomena of polytypism and one-dimensional disorder cease to
oceur in Zn,Cd, __ S crystals for x < 094, Only perfect 24 structure occurs for
x < 093. This is in agreement with earlier studies performed on melt grown crystals
(Kozielski 1976). A higher cadmium content stabilizes the 2H phase. Similar studies
performed with ZnS and ZnSe which form solid solutions of the type ZnS, _ Se, over
the entire composition range from x =0 to 1, have shown (Kozielski 1976) that

solid solutions of the type ZnS,; _,Te, are also known to display (Kozielski 1976)
polytypes and one-dimensional disordered structures, Apparently in all these systems
the stacking fault energy (sre) is a function of composition and disorder effects cease
when SFE becomes greater than a certain critica] value.

It is known (Sebastian et al 1982) that 2H ZnS transforms to a disordered

edge. Consequently it is expected that deformation faults are also involved in the
2H-6H solid state transformation observed in Zn.Cd, __S and Zn,Mn, _.S crystals.
The transformations occur by the non-random insertion of deformation faults but the
one-parameter model developed ( Pandey et gl 1980) for a similar transformation in SiC
is not applicable to these materials. The two-parameter model described above does
explain the observed intensity distribution approximately for 8 > . The peak shift and
peak broadening of the reflections with H—K # 3 depend on the relative magnitudes
of aand B. The partially transformed Zn,Cd, _,Sand Zn Mn, _,Scrystalsare found to
possess a small value of a (& = 0-02 to 0-2) and a large value of B (8= 04t009) during

S
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the 2H-6H transformation. This implies that the 2H-6H transformation in these
materials commences with the random insertion of a few deformation faults (small &)
which quickly develop into 6H nuclei by preferred faulting at 3-layer separations (large
B). For larger values of a the reflections withH~K # 3nand L= 1}, + % will become
broadened and show peak shifts. The case when a=§ corresponds to the one-
parameter model developed by Pandey et al (1980). For o < B, a small number of 6H
nuclei would grow into thick 6H regions. Therefore the 6H reflections would appear at
an early stage of transformation and the 2H reflections will not broaden considerably.
This is what we observe in the case of the 2H-6H transformation in Zn,Cd, _,3and
ZnMn, _.S.

The diffractometer records in figure 5 show an enhancement of intensity at 3C
positions which is observed in many crystals. It indicates that there is a finite probability
of faults occurring also at two-layer separations: The assumption that the probability of
faulting at less than three-layer separations is zero, is therefore an approximation and
the actual favlting in such a system is more complicated.
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