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Abstract. On the basis of a highly simplified model for small

scale structure in the electron density distribution in the Galaxy,

we argue that the spread of expectation values for the dispersion

measure at given distance is proportional to the square root of

the dispersion measure as found from a smooth model for the

electron distribution. We show that this simple method leads to

appreciable improvement in the description of dispersion mea-

sures in a full population synthesis.
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1. Introduction

One method to study the evolution of the properties of radio

pulsars is radio pulsar population synthesis. In such a synthe-

sis, neutron stars are given initial properties, such as position,

velocity, rotation period and magnetic field, and these prop-

erties are allowed to evolve according to given prescriptions.

Observations of the resulting population are simulated, and the

simulated detected pulsars are compared with the real detected

pulsars.

A recent example of such a study is the synthesis by Hart-

man et al. (1997). Whereas the overall results of the synthesis

compare well with observations, a detailed comparison of the

simulated dispersion measures DM with the observed values

for real pulsars shows systematic differences. It is suggested by

Hartman et al. (1997) that this is due to small scale structure

in the electron distribution in the Galaxy. In the model for this

distribution by Taylor & Cordes (1993) several components are

present (a thin layer, a thick layer, spiral arms, the Gum nebula),

but each of these components is modelled with a smooth distri-

bution. In this paper we investigate a highly simplified model for

small scale variations in the electron density, in which all elec-

trons are in uniform clouds. Based on this model, we propose

a method to describe such fluctuations in population synthe-

sis (Sect. 2). From the observed distribution of high values of
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DM sin b (where b is the galactic latitude) we derive the char-

acteristic dispersion measure of one cloud (Sect. 3). We use this

to implement the method in the population synthesis (Sect. 4).

A discussion of our results is given in Sect. 5.

2. A simple model

To study the effect of small scale structure in the electron dis-

tribution in the Galaxy, we investigate a very simple model, in

which we compare a smooth, homogeneous distribution of con-

stant electron density ne with one in which all electrons are in

spherical clouds with radius Rc. In the clouds, the electron den-

sity is enhanced with respect to the density in the homogeneous

model by 1/f , where f is the filling factor. Denoting the number

density of the clouds with Nc, we have

f = Nc

4π

3
Rc

3. (1)

A line of sight that passes at distance rc ≤ Rc from the

center of one cloud has a dispersion measure dm1(rc) =

(2ne/f )
√

Rc
2 − rc

2. The average dispersion measure for a col-

lection of lines of sight passing through one cloud is given by

〈dm1〉 =

∫ Rc

0

2ne

f

√

Rc
2 − rc

2
2πrcdrc

πRc
2

=
4neRc

3f
(2)

and the variance on this value is given by

σ1
2 =

∫ Rc

0

(

dm1(rc) − 〈dm1〉
)2 2πrcdrc

πRc
2

=
〈dm1〉2

8
. (3)

We now divide the free path length L of photons travelling

between the clouds in small subdivisions δL > Rc, so that the

probability that a subdivision δL encounters a cloud is given by

p = δL/L � 1. The number of subdivisions required to reach

a pulsar at distance d is given by K = d/δL � 1. Thus, the

probabilityP (k) of encountering k clouds on the way to a pulsar

is given by a Poisson probability for K trials with individual

probabilities p, and with Kp = d/L:

P (k) =
(d/L)k

k!
e−d/L (4)
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independent of δL, as it should be.

The distribution of the dispersion measures after encounter-

ing k clouds is given by an k-fold convolution of the distribution

of the dispersion measures for an individual cloud. We now use

the central limit theorem to state that the resulting distribution

is a Gaussian Gk(DM ) with average 〈dmk〉 and variance σk
2

given by

Gk(DM ) =
1√

2πσk

e(DM−〈dmk〉)2/2σk
2

where 〈dmk〉 = k〈dm1〉 and σk
2 = kσ1

2 (5)

By comparing the exact distributions with the ones given by the

central limit theorem for the first few convolutions, it can be

verified that the approximate distribution already gives a fairly

accurate description for values of k as small as 2.

The dispersion measure to a radio pulsar at distance d has

a finite probability of being caused by passage through 0, 1, 2,

3, etc. clouds, and to calculate the average value 〈DM〉 and

the variance σDM of its distribution we must combine all these

possibilities. The maximum number of clouds that fit between

the pulsar and Earth is given by kmax = d/Rc. It is shown in the

appendix that for sufficiently large kmax

〈DM〉 = DMh and σDM
2 = DMh

9

8
〈dm1〉 (6)

where DMh is the dispersion measure from the homogeneous

model.

The above results suggest the following method to include

fluctuations in the electron distribution in the Galaxy in a pul-

sar population synthesis. A smooth model is used to compute a

dispersionDMh to the simulated pulsar at distance d; its disper-

sion measure DM is chosen from a Gaussian distribution with

average and variance given by Eq. 6.

3. Confrontation with observations

Before going to the population synthesis, we confront our sug-

gestion with observations, and in doing so determine the pa-

rameter 〈dm1〉. According to the smooth model by Taylor

& Cordes (1993) for the electron distribution in the galaxy,

all pulsars above or below the thick electron layer, i.e. with

|z| ∼> 1.75 kpc, have a maximum DM given roughly by

DMmax sin b ' 16.5 pc cm−3. However in the sample of cur-

rently known radio pulsars we do not see a sharp cut–off in the

DM sin b distribution. We can interpret this as a distribution of

pulsars with DMh sin b = DMmax sin b but a real DM around

DMh as in our simple model. Some of these pulsars may in

fact have an even smaller DMh, but we argue that this is only

a relatively small fraction since they come from a thin layer

whereas the pulsars with DMh = DMmax can come from all the

volume above the layer. A test with the full population synthesis

confirms this.

So we assume all the pulsars withDM sin b > DMmax sin b
to have DMh = DMmax. For each of these pulsars we can deter-

Fig. 1. Histogram of ∆ (see Eq. 7) for pulsars above the electron layer.

The solid line is a Gaussian with σ∆ = 2.0 ( pc cm−3)1/2. Data from

the Princeton Pulsar Catalogue, updated by Camilo on May 3, 1995

(see Taylor et al. 1993).

mine the difference between the realDM andDMh. According

to our simple model we expect ∆, defined as

∆ ≡ (DM −DMh)√
DMh

(7)

to follow a Gaussian distribution with fixed width of
√

9/8〈dm1〉 (see Eq. 6).

In Fig. 1 we plotted the histogram of ∆ with (the right hand

side of) a Gaussian with σ∆ = 2.0 ( pc cm−3)1/2. From this

figure we conclude that the data are consistent with our simple

model and that 〈dm1〉 ' 3.6 pc cm−3.

4. Inclusion in population synthesis

In the population synthesis as computed by Hartman et al. (1997)

the dispersion measure is assumed to be an exact measure of the

distance and therefore the derived and actual distance of a radio

pulsar are the same. We implement our simple model in this

synthesis as follows. The synthesis gives the actual distance of

a simulated radio pulsar, and from this distance a flux measured

at Earth is derived. From the actual distance, we calculate the

smooth dispersion measure DMh according to the model by

Taylor & Cordes (1993), and then randomly choose the sim-

ulated dispersion measure DM from a Gaussian distribution

centered on DMh and with width σDM given by Eq. 6, where

we use 〈dm1〉 = 3.6 pc cm−3. The value of DM is also used to

compute the scatter broadening of the pulse profile. From DM
and the Taylor & Cordes model we find a derived distance, and

a derived luminosity. These values are used for the pulsar in

the remainder of the simulation, and in particular its derived

distance is used to determine whether the pulsar is within the

volume selected for the comparison with observation.

In Fig. 2 we compare the results relating to the simulated and

observed distributions of the dispersion measures for the syn-

thesis model B, with decay time τ = 100 Myr, with and without

inclusion of small scale structure in the electron distribution.

It is seen that our simple model leads to a significantly better

description of the distributions of the dispersion measure DM ,
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Fig. 2. Comparison between cumulative distributions of the dispersion measure DM , galactic latitude b and the product DM sin b of real pulsars

(dots) and 2000 simulated pulsars (solid line) for the population synthesis according to model B from Hartman et al. (1997), without (upper

row) and with (bottom row) the model for the variance in the dispersion measure. The Kolmogorov-Smirnov probabilities Q that the real and

simulated distributions are drawn from the same population are indicated in the frames. (The values of Q vary somewhat between runs with

different random number initializations; the improvement shown in this figure is more dramatic than for most other initializations.)

of the vertical component of the dispersion measure DM sin b,
and of the galactic latitude distribution b.

5. Discussion

5.1. Distance distribution

The inclusion of a spread in the DM in the population synthesis

has two effects on the results of the simulation. The first is that

the DM distribution of the simulated population changes (see

Fig. 2). The second effect is a change of the sample of simulated

pulsars that is retained for comparison with the real pulsars, be-

cause these pulsars are selected on the basis of the derived dis-

tance instead of the actual distance. In the new simulation both

real and simulated pulsars with DM > DMmax are placed at a

derived |z| = 1.75 kpc. Pulsars with an actual distance projected

on the Galactic Plane d0proj > 4 kpc thus can have a projected

derived distance < 4 kpc (see Fig. 3). In fact, at |z| > 2 kpc,

almost half of the pulsars in the simulated comparison sample

has d0proj > 4 kpc. More importantly, the derived luminosity is

based on the derived distance, and is lower than the real lumi-

nosity for pulsars above the electron layer. Thus, the luminosity

distribution derived from the fluxes in the simulation shifts to-

wards lower values; to compensate for this, a higher intrinsic

luminosity distribution of the pulsars is required. (In terms of

Eq. 3 of Hartman et al. (1997) for the luminosity distribution,

the best value of a changes from 1.5 in their model B to 0.9 in

our model.)

5.2. Cloud size

Because some of the parameters we use can be derived inde-

pendently, we can determine the actual cloud size given by our

model. FromEM andDM measurements Reynolds (1991) de-

rived a filling factor f ' 0.2 (see also Anantharamaiah & Bhat-

Fig. 3. Actual distances projected on the Galactic Plane d0proj, as func-

tion of actual distance to the Galactic Plane z0 of the pulsars in the

sample obtained with Model B of Hartman et al. (1997) with the vari-

ations in the DM . The high z pulsars cover a large fraction of the

pulsars with large actual distances

tacharya 1986). For an average electron density 0.025 cm−3

(e.g. Weisberg et al. 1979) together with the obtained value of

〈dm1〉 and Eq. 2 we find

Rc =
3

4

f

ne

〈dm1〉 ' 21 pc (8)

Remarkably, this is similar to the sizes of clouds containing both

neutral and ionized hydrogen that have been found by Reynolds

et al. (1995).

FromRc we can check the assumption made in the appendix,

that we can replace kmax with infinity in the summation over the

Poisson probabilities. This is strictly only possible if kmax �
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d/L, i.e. L � Rc. From the filling factor and the equation for L
(see Appendix) we find L/Rc = 4/(3f ) ' 6.7. However since

the Poisson distribution drops off rapidly, the error in replacing

kmax with ∞ in the summations in the Appendix is smaller than

1 %.

For small distances, and therefore small DM , we make

an error in applying this model since the individual inhomo-

geneities become important. However, the sizes of the clouds

are relatively small compared to the scales involved in the sim-

ulation (∼ kpc), and the number of pulsars in our simulations at

distances less than the free path length L is negligible.

5.3. DM variations in other pulsar simulations

Lorimer et al (1993) model the spread in the dispersion measures

expected at a given distance, by assuming that the logarithm

of the ratio DM/DMh has a Gaussian distribution with width

log 2. (In a model of constant electron density this is identical to

the assumption by Gunn & Ostriker (1970) that the logarithm of

the ratio of real to derived distance of radio pulsars has a Gaus-

sian distribution.) In the description by Lorimer et al. (1993)

the spread in the DM is roughly proportional to DM itself. In

principle, the relation between DM and σDM can be derived

from the deviation of the directly measured distances (i.e. by HI

absorption, association with an object of known distance, or par-

allax) from the distances derived from the dispersion measure,

but in practice the number of accurate distance measurements

is too small.

Because of the wide applicability of the central limit the-

orem, the simple model discussed in Sect. 2 suggests that

σDM ∝
√
DM for a wide variety of models for small scale

structure in the electron density distribution. Our simulations

show that such a variance adequately describes the currently

available observations.
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Appendix A

For a line-of-sight passing through k clouds, the distribution of

dispersion measures is given by a Gaussian Gk(DM ) (Eq. 5).

The average value of the distribution of dispersion measures

to a distance d is found by averaging the distributions for all

k-values, weighted with the Poisson probability of getting k
clouds:

〈DM〉 =

∫ ∞

0

∞
∑

k=0

P (k)Gk(DM )DMdDM

=

∞
∑

k=0

P (k)

∫ ∞

−∞

Gk(DM )DMdDM

=

∞
∑

k=0

P (k)k〈dm1〉 =
d

L
〈dm1〉 (A1)

where we use the fact that the integration over the dispersion

measure is independent of the summation over k and we can

extend the integration to −∞ because the mean is sufficiently

displaced from 0. We now substitute 1/L = NcπR
2
c and 〈dm1〉

from Eq. 2 to find

〈DM〉 = ned =

∫ d

0

neds ≡ DMh (A2)

In a similar fashion we may estimate the variance of the

dispersion measure distribution for distance d:

σDM
2 =

∫ ∞

0

∞
∑

k=0

P (k)Gk(DM )
(

DM − 〈DM〉
)2

dDM

=

∞
∑

k=0

P (k)

∫ ∞

−∞

Gk(DM )DM 2dDM − 〈DM〉2

=

∞
∑

k=0

P (k)
(

σk
2 + 〈dmk〉2

)

− 〈DM〉2

=

∞
∑

k=0

P (k)
(

kσ1
2 + k2〈dm1〉2

)

− 〈DM〉2

=
9d

8L
〈dm1〉2 =

9

8
〈DM〉〈dm1〉 (A3)
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