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Abstract-The use of appropriate finite elements in different regions of a stressed solid can be expected
to be economical in computing its stress response. This concept is exploited here in studying stresses near
free edges in laminated coupons. The well known free edge problem of [Oj90Lsymmetric laminate is
considered to illustrate the application of the concept. The laminate is modelled as a combination of three
distinct regions. Quasi-three-dimensional eight-noded quadrilateral isoparametric elements (Q3D8) are
used at and near the free edge of the laminate and two-noded line elements (Q3D2) are used in the region
away from the free edge. A transition element (Q3DT) provides a smooth inter-phase zone between the
two regions. Significant reduction in the problem size and hence in the computational time and cost have
been achieved at almost no loss of accuracy,
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NOTATION

halfwidth of the laminate
modulus of elasticity for orthotropic material
in the i-direction, MPa
total strain energy release rate

mode I, mode II and mode III components of
strain energy release rate, respectively
length (Q3D2 element)
laminate thickness, m
shear modulus for orthotropic material, MPa
ply thickness, m
displacement functions (function of y and z in
Q3D8 element, function of y only in Q3D2
element), m
displacements in the X-, y- and z-directions,
m
Cartesian coordinates, m
uniform axial strain in the x-direction
nondimensiona/ized coordinates (see Fig, AI)
angle between x-axis and longitudinal axis of
the ply (see Fig, la), degrees
Poisson's ratio for orthotropic material
vector of Cartesian strains
vector of Cartesian stresses

INTRODUCTION

,

- La~inated composites are replacing metals in several
engmeering applications. The inherent weakness of

i theresin in a laminate demands new design require-
ments,such as estimation of interlaminar stresses
nearcut-outs,free edges, rivetholes, etc.,and assess-
ment of the 'delamination tolerance ability' of the
structurewhich, in turn, calls for accurate estimation
of the stress field and strain energy release rates.

Laminates are usually treated as a stack of plies
bonded together so that no slippage at the inter-
laminar surface is possible. Each ply is considered as

a homogeneous orthotropic medium, with the axes of
orthotropy coinciding with the material axes. Mod-
elling of the stress field in such a material system is
not an easy task. Theoretical modelling of laminates
has been receiving a great deal of attention in recent
years. Pioneering works of Pagano and his associ-
ates [1,2], displacment-based models studied by vari-
ous others [3], iterative modelling possibilities [4],etc.,
may lead to viable finite element forms in the years
to come. However, as it stands, the use of three-
dimensional elasticity in the finite element form ap-
pears to be the only feasible approach for obtaining
stresses in the required detail, to ensure laminate
integrity, until at least some of the recent theoretical
models are converted into finite element forms and

validated for application to laminate edge stress
situations.

There are several studies in the literature employ-
ing three-dimensional finite elements for estimating
stresses in the critical regions of the laminates [5-10].
Unfortunately, the use of three-dimensional elements
not only increases demands on computer memory
requirement but also increases the cost.

In view of the large computational effort involved,
some ingenuity in the choice of the finite element grid
helps in three-dimensional finite element analyses. A
graded finite element mesh is often resorted to, with
an adequate level of refinement in critical regions
involving high stress gradients. More recently global-
local analyses have been considered [11], wherein the
local solution with appropriate displacement bound-
ary conditions generated from the global solution
yields the stress field in the local regions. This is
essentially a two-stage analysis and much scope exists
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in terms of defining the local r~gions and the finite

element gid in a successive manner to obtain all the
necessary details. Usually both the local and the
global solutions are obtained using the same elements
which, of course, is not essentiaL

In this paper, we attempt an alternative possibiEty;
namely, in the region where the three-dimensional
elements are essential, the three-dimensional elements
are employed with the rest of the region idealized in
terms of appropriate simpler elements. A transition
element connects both the regions smoothly to obtain
the solution in the critical region to the desired
accuracy in one stage. This approach has been util-
ized successfully in the past in studying boundary
stresses in box-beams [12], shells [I 3] and swept
plates [14]. In [15], some preliminary results of the
free edge problem using this approach were pre-
sented. In the present study, free edge stresses in a
[0/90]. laminated coupon are obtained by employing
this approach. Quasi-three-dimensional eight-noded
elements (Q3D8) are used in the region near the free
edge and quasi-three-dimensional two-noded el-
ements (Q3D2) in the rest of the region, interconnect-
ing these two regions with transition elements. With
this idealization it has been possible to obtain the
edge stress field with much less computational effort,
when compared to the complete three-dimensional
idealization.

DESCRIPTION OF THE PROBLEM

The problem under consideration is that of analysis
of a typical multi-layered, long, rectangular, lami-
nated composite coupon subjected to remote uniform
axial strain loading (see Fig. I). The laminate is
symmetric about the midplane and in each half it has
an arbitrary number of plies, each with different
thickness and fibre orientation. In such a laminate, a
quasi-three-dimensional state of stress exists and
the displacements u, v and w of any point on the

(0)

cross-section represented by an x = constant pI
(Fig. Ib) are given by (see [16]) ""

U(X,y,Z)=EOX + U(y,z)

v(x,y,z)= V(y,z)

w(x,y,Z)= W(y,z).
(1)

In such a case V, V and Ware functions of Yand
Z only. The axial strain, Eo, is uniform along the
x-axis. Consequently the gradients of U, V andIf
with respect to the x co-ordinate are zero. Hencethe
finite element model required to solve this basically
three-dimensional problem is essentially two-dilllen.
sional.

The quasi-three-dimensional (Q3D) analysis re-
duces the problem size very significantly as compared
to three-dimensional analysis. A number of investi-
gators have studied this problem and valuable data

are available. Hence this problem is chosen hereto
study the present concept of employing appropriate
elements in different regions. For simplicity, a four.
ply [O/90)slaminate, as shown in Fig. 2a, 'withthe
width b = 20h, has been considered as an illustrative
example to demonstrate the economy attainablein
the present approach. h is the thickness of each
individual ply. Considering the double symmetryof
the problem, one quarter of the cross-section as
shown shaded in Fig. 2b is required to be considered
for the analysis.

The same material properties of laminate as used

in (17), repeated below, are used for the numerical
studies.

Ell = 137.90GPa (20.00 x 106psi)

E22 = E33 = 14.48GPa (2.10 x 106psi)

Gl2 = G23 = GI3 = 5.86 GPa (0.85 x 106psi)

VI2= V23 = vl3 = 0.21.

c(J Eo

/

z

a
0 (b)

Fig. I. Laminate geometry and analysisdomain. (a) A typical symmetric laminate. (b) x =constant plane.

.",f,i'i?i.

."

Sub

directi
verse
materi

c

The

proac
three-

trian~

synur
slOns.
andh
and
SlOna

quasI
porte

We

lami!
node
elem

ador
shad
case



= const:.tnt Plane

J, z)

unctions of Y and
niform along the
s of U, V and If

re zero. Hence the

()Ive this basically
ltially two-dimen.

!3D) analysis reo

antly as compared
lUmber of investj.
md valuabledata

is chosen hereto

oying appropria~
simplicity, a four.

Fig. 2a, with the
i as an illustrative

amy attainable in
thickness of each

tuble symmetry of
~ cross-section as
d to be considered

:- laminate as used

for the numeriall

)6 psi)

X 106psi)

0.85 x IQ6psi)

~ I

~

Istant plane.

Analysis of edge delaminations in laminates

J

(0)

233

z (b)

<b

Fig. 2. (a) Four-ply [0/901,long rectangular laminate. (b) Representative plane, x = constant.

Subscripts I, 2 and 3 for the individual uni-
directionalply correspond to the longitudinal, trans-
verseand thickness directions, respectively, i.e. the
materialaxes system.

CONVENTIONAL QUASI- THREE-DIMENSIONAL
FINITE ELEMENT ANALYSIS

The quasi-three-dimensional finite element ap-
proachwas developed in [17, 18] employing quasi-
three-dimensional three-noded constant strain
triangularelements to investigate the stress field in
symmetricallylaminated composites of finite dimen-
sions.The mechanical (uni-axial tension), thermal
andhygroscopic loads were considered. In [19], four-
and eight-noded isoparametric quasi-three-dimen-
sionalquadrilaterals have been developed and several
quasi-three-dimensional solutions have been re-
ported[20-25] in the literature.

Wefirst proceed to consider analysis of the [O/90]s
laminateemploying quasi-three-dimensional eight-
noded parabolic quadrilateral isoparametric finite
element-(Q3D8). A typical finite element mesh
adoptedhere is shown in Fig. 3, which represents the
shadedregion shown in Fig. 2b. A uniform extension
caseto= I was considered.

The finite element idealization is graded in such a
way that the smallest element size in the vicinityof the
interface and near the free edge or the delamination
tip, as the case may be, is (h/4 x h/4). An idealization
with 65 elements and 232 nodes was employed to
obtain numerical results. Distributions of displace-
ments and stresses, including interlaminar stresses,
were obtained. The symmetric edge delamination of
depth h/4located at either z = 0 or z = th was also
considered to obtain stresses as well as the strain

energy releaserates. The results of the above analyses
are used later as a benchmark solution for compari-
son with those obtained from the proposed scheme.
A close examination of the results is provided below
in order to indicate that the use of dissimilar elements

in different regions is appropriate in order to gain
certain computational advantages.

To begin with, the displacements v and wall over
the cross-section of the laminate are examined in

detail (see Figs 4-7). The value v along the y-axis is
shown plotted in Fig. 4, for various z = constant
planes. Figure 5 shows variation of v along the z-axis,
for various values of y. It is clear that the variation
of v along the z direction is negligibly small except
near the-freeedge, i.e. within a distance of about 4-6h
from the freeedge. The variation of w shown in Figs 6

b = 20 h

0

r
2h

12h 14h

Fig. 3. Finite element model: Q3D8 analysis.
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Fig. 4. Displacement v along the width of the laminate.
-0-20_-

2 4 6

and 7 leads to a similar observation. w variation

across the thickness at various y = constant planes
(shown in Fig. 7) suggests that the near-linear vari-
ation w across the thickness is established within a

distance which is of the order of a ply thickness h
from the free edge. It may be noted that at the free
edge (y = 20h), w variation acrossthe thickness is a
bit unusual and seems to involve a normal strain £z
discontinuity at the interface, which is of course
admissible from elasticity considerations. It is clear
that this phenomenon is associated with a very small
region near the free edge. Stress variations along the
y- and z-axis (not shown here) also indicate that
the nature of stresses is three-dimensional only in

12 14 16 18 20 '1/

a small region near the boundary. This provides
the basis for the present approach, namely to use
three-dimensional elements in a small region nearthe
boundary and more simple elements elsewhere.

-0'"

-0,12

-0,08

COMBINED USE OF Q3D2, TRANSITION AND Q3D8
FINITE ELEMENTS

It is now clear that rigorous three-dimensional
idealization employing Q3D8 elements is essential
only in a small portion near the free edge (regionIII,
Fig. 8a) and in the rest of the cross-section (region0
a more simple treatment would be adequate. In [261

this concept has been utilized. A simple continuum
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Fig. 5. Displacement v across the thickness of the laminate.
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solution based on CLPT was obtained in region I and

matched with the finite element solution in region III.
In the present studies, region I is idealized in the finite
element form 50 that it ~comes som;;what general in
terms of developing the computer program. Figure 8b
shows a typical finite element idealization.

RegionI:
RegionII:
RegionIII:

Q3D2 elements (Appendix)
Q3DT elements (description follows)
Q3D8 elements (eight-noded quasi-
three-dimensional isoparametric quad-
rilateral elements [19]).

This idealization is denoted by b Ijh-b2jh-b3jh,
indicating the range of regions I, II and III, respect-
ively.For example, 16-1-3 idealization indicates that
region I covers the laminate width of 16h (Q3D2
elements), region II convers the distance of h
(Q3DT: transition zone) and region III covers a width
of 3h (Q3D8: quasi-three-dimensional eight-noded
elements).

Q3DT: TRANSmON ELEMENT

In the present approach, different regions are mod-
elled using elements with different nodal variables. In
order to achieve smooth connectivity of the different
regions an element with different types of nodes on its
boundary becomes necessary. Such an element or
zone is called here an 'interphase or transition el-
ement or zone'. Such elements were used earlier in
[12-15].

Figure 9 describes the concept in the present case.
The transition region is first formed as an assembly
of n Q3D8 elements and then suitable constraints are
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Fig. 8a. Idealization of the laminate into three regions.

- 1 RE~ON r-- REGION m

-+b2 +-- b3

z

REGIONI

b,

y

Fig. 8b. A typicalfinite elementidealizationof the three regionswith (Q3D2-Q3DT-Q3D8) elements.

imposed on nodes located on the boundary with
regionI so that thesenodes are converted, on trans-
formation, into a singlenode, that can conveniently
beattached to thenodeof the regionI. The procedure
involvesthe followingsteps.

The nodal displacement vector for the jth node
of the untransformed or uncondensed transition
elementof Fig. 9a is given as

bJ = {u v w}j.

The vector of the global nodal displacements of the
transition element before transformation would thus
be

qT ={qf qr},

where

qf={bl 152... bj... bm}, m=3n+2

(2)

and

qf = {bm+ 1 15m+ 2 ... 15m+ p}, p = 2n+ 1,

. Q3D8
NODE

r---
I
I
~---
I
I
~---
I
I

r'--
I

1

. Q3D2
NODE

(0) e.for. cond. nlot ion (b) Afte r condenlotion

Fig. 9. Transition elementbefore and after condensation.
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wheref/: represents degreesof freedom remaining
tatteredandq2representsdegreesof freedomto be

uno<flfiedto achieve connectionwith region I.
JJ1Let [K] be the assembled stiffness matrix of the
int~rpbaseregion and {;-}the load vector correspond-
ingto thedispla~ment vector {q}. The strain ~!lergy
of this region can then be expressed as

U = Ij2{q7}[KJ{q}.

The vector of displacements that would represent
thetransitionzone whileassemblingthe global stiff-
nessmatrix, i.e. after suitable transformation, would
beconsidered in the form

{47}= {4f 4f},

~

(0) 18 - 0.5 - 1.5

237

where

41= ql and q2=bm+ I ,

where bm+ I isthe vector of nodaldegrees of freedom
corresponding to the connecting Q3D2 node of
region I givenby

(4) {"J:.:+d = {u v w}m+ I .

(5)

The transformation between vector {q2} and {42}
can be obtained through simple kinematically con-
sistent relationships between three displacements as-
signed to each of the p nodes (m + I to m + p) and
three degrees of freedom offered by the Q3D2 node,
i.e. the (m + I)th node.

1 .
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Fig. 10. Idealizations to study the effect of location of transition region.

ideal ization



238

O' PLY

90" PLY

),32 0.28

C. G. SHAH and A. V. KIwh'NA MURTY

2'0

1'5

-! 8- 0,5-1,5

1'0

Z
h

0'5

0.24 0,20 0,08 0'040-16

W

0.12

Fig. II. w variation at y = b (convergence study).

In matrix form this will appear as
Tl
T2

Tp

wherea typical submatrix Tj of the (m + j)th Q3D8
nodewouldbe

[

1 0

Tj= 0 1
0 0

{q2} = [T1J{q2}=

"3

The strain energy of the transition (super) element
(Fig. 9b) after condensation can now be written
as

{Q2}' (6) u = 1/2{Q1[T~[K][T]{Q}.
1j where

[T] =[~ ;J

0

]
0 .

Cm+j

is of dimension 3(m + p) x 3(m + I), where I is the
unit matrix of dimension 3 m. Thus

KT= TTKT and rf= TTr,

2'0

O' PLY 1.5

1.0 Z

h

90. PLY
05

0'0
06H 1'0 0'8 0,71'2 0,9

V

Fig. 12. v variation at y = b (convergence study).
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hereKT is the stiffnessmatrix and 'r is the loadw ..
vectorof the transition zone.

RESULTS AND DISCUSSIONS

FigureS lOa, band c show the finite element
idealizationused in the p~esent study. Fig.ures 11and
12show the values wand v across the thIckness at a

;ypicalsection y =b for the three finite element
idealizations.Clearly, as the three-dimensional region
sizeincreases, i.e. as the transition zone moves away
fromthe free edge, the results approach the classical
three-dimensionalresults. In the present case 16-1-3
idealizationgivesresults very close to the benchmark
values.Tables 1 through 4 display the convergence
trendwith reference to the stresses. These compari-
sonsclearly indicatethe adequacy of 16-1-3 idealiz-
ationforbringingout the edge stressbehaviour of the
laminate.

Table2. Stress Gxvariation along the width (z = 1.125h,
0° ply)

17-1-2

139.5400
139.5400
139.5400
138.2100
138.1450
138.0760
138.0450
138.0170
137.9640
137.8310

(7)

(8)

y/h

0.00
8.00

16.00
18.00
[8.50
19.00
19.25
19.50
19.75
20.00

18-0.5-1.5

139.5400
139.5400
139.5400
138.1400
138.1020
138.0470
138.0250
138.0030
137.9560
137.8290

16-1-3

139.5300
139.5400
138.3900
138.2340
138.1590
138.0850
138.0490
138.0190
137.9660
137.8300

Q3D8

138.4200
138.4200
138.3860
138.2400
138.1630
138.0850
138.0510
138.0200
137.9660
137.8300

Table3. Stress Gyvariation along the width (z = 1.125h,
0° ply)

17-1-2

2.0291
1.9486
1.8513
1.7559
1.5810
1.1438
0.6532

y/h

[8.000
[8.500
[9.000
[9.250
19.500
19.750
19.875

18-0.5-1.5-
1.8399
1.8469
1.7862
I.7072
1.5494
1.1294
0.6509

16-1-3

2.0770
1.9898
1.8787
1.7711
1.5905
1.1474
0.6523

Q3D8

2.0993
2.0032
1.8836
I.7784
1.5940
1.1482
0.6518
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Figure I3 shows a comparision of interlaminar
stresses in the spanwise direction and Fig. 14 shows
the same in the thicknesswise direction. The results
are in close agreement.

Figures 15a and b show the finite element idealiz-
ation at the delamination tip, used to calculate the
strain energy release rates. Following [27], the indi-
vidual components of strain energy release rates in
Mode I of fracture are computed as

1
G1= - -[FzB(WD- WD,)+ FzA(WC- Wd],2[\

where FZBis the force in the z-direction at node B, WD
is the displacement in z-direction at node D, etc. (see
Fig. 15). Expressions used for GII and GlIl are ob-
tained by replacing Fz with Fy and Fx and W with
V and U, respectively.

Various components of forces and displacements at
the required locations as estimated in the three
idealizations considered are shown in Tables 5 and 6

for symmetric edge delaminations of depth h/4 at
z = 0 and z = i:.h, respectively. The comparisons
indicate that with the 16-1-3 idealization it is possible
to estimate strain energy release rates reasonably
accurately. Considering that the total number of

3-0

20

<Tz

- 03D8 (DOF 696)

__n 0302 -T-e ( OOF 360)
16.-1-3 SCHEME

17 20

1'0

18 i..,
h

ayz
-1-0

Fig. 13. Gzand Gyzvariations along y-axis near free edge.

[able 1. Stress Gxvariation (y = b) across the thickness

Z/h 18-0.5-1.5 17-1-2 16-1-3 Q3D8

0.500 14.8464 14.9281 14.9514 14.9591
1.625 137.8290 137.8310 137.8300 137.8300

Table4. Stress (Jyvariation along the width (z = O.875h,- 90°ply)
y/h 18-0.5-1.5 17-1-2 16-1-3 Q3D8

18.000 -4.1227 -3.8684 -3.6224 - 3.4648
[8.5()() - 3.9126 -3.6981 - 3.5356 -3.4170
[9.000 -3.4981 - 3.3478 - 3.2679 - 3.1804
[9.250 -3.1090 -3.0032 - 2.9244 - 2.8888
19.500 - 2.5275 - 2.4673 - 2.4230 - 2.4020
19.750 - 1.5234 - 1.5061 - 1.4922 - 1.4855
[9.875 -0.4156 -0.4212 -0.4228 -0.4234-
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Fig. 14. 1I2and lIyz variations along z-axis at y = b.

degrees offreedom involved in 16-1-3 analysis is 360,
which is much less than for the corresponding com-
plete three-dimensional analysis, the present scheme
may be considered expedient for the edge stress and
edge delamination problem.

(0 )

DELAMINATION

Table 5. Forces, displacements and strain energy
rates. Edge delamination of depth h /4 at z :::-

SchemejPt 18-0.5-1.5 17-1-2 16-1-3 (Q
Forces Fz in the G cakulation

B -0.2168 -0.3023 -0.3325 -{
A -0.1588 -0.2248 -0.2476 -{

Displacements w in the G calculation
D 0.0781 0.1103 0.1221
C 0.0541 0.0761 0.0840

Strain energy release rates (mode I: 100%)
G[ 0.0510 0.1009 0.1228

Table 6a. Forces, displacements and strain energy
rates. Edge delaminations of depth h /4 at z :::

SchemejPt 18-0.5-1.5 17-1-2 16-1-3 C

Forces Fy in the G calculation
B 0.2969 0.3039
A 0.1551 0.1716

0.3056
0.1755

Displacements v in the G calculation
D -0.0703 -0.0711 -0.0713 -I
C -0.0380 -0.0386 -0.0387 -I

Strain energy release rates (mode II)
Gu 0.0535 0.0564 0.0571
% 50.74 44.85 44.04 4

Table 6b. Forces, displacements and strain energy
rates. Edge delaminations of depth h/4 at z :::

Scheme/Pt 18-0.5-1.5 17-1-2 16-1-3 (

Forces Fz in the G calculation
B -0.2177 -0.2514 -0.2575 -
A -0.1012 -0.1303 -0.1369 -

Displacements w in the G calculation
D 0.0906 0.1017 0.1032
C 0.0619 0.0699 0.0711

Strain energy release rates (mode I)
G[ 0.0520 0.0694
% 49.26 55.15

0.0726
55.96 5

CONCLUSIONS

Problems involving three-dimensional anal
quire a large number of degrees of freedom a
attempt to reduce the size of the problem with<
of accuracy will be of great help. In this pa
attempt is made to achieve this objective by e
ing appropriate elements in the different reg

( b)

TIP ELEMENT SIZE = t.
Fig. 15. Nodes used in the strain energy release rate computations. (a) Finite element mesh at free edge.

(b) Delamination.
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Analysis of edge delaminatiofis in laminates

the structure. Edge st:ess analysis of laminated test
couponswith and wIthout delamination has been
considered to illustrate the concept. Displacements,
streSSdistributio.ns and strain energy release rates

~e estimated usmg the present approach and com-~ -

pared ,:ith those ob~ained from t.he full quasi-thre~-
dimensIOnal analysis. Results mdicate that thIS
approach is highly promising.

Acknowledgement-The authors are grateful to Dr I. S.
Rajufor the useful discussions they had with him and
for the computer code which he made available to the
authors.

REFERENCES

-

l. N. J. Pagano, Stress field in composite laminates. Int. J.
Solids Struct. 14, 385-400 (1978).

2. N. J. Pagano and S. R. Soni, Global-local laminate
variational model. Int. J. Solids Struct. 19, 207-218
(1983).

3. A. V. Krishna Murty, Theoretical modelling of lami-
nated composite plates. Proc. IndianAcad. Sci. Sadhana
II, 357-365 (1987).

4. K. Vijayakumar and A. V. Krishna Murty, Iterative
modelling for stress analysis of composite laminates.
Int. J. CompoSci. Technol.32, 165-181 (1988).

5. D. J. Wilkins, R. A. Eisenmann, R. A. Camin, W. S.
Morgolis and R. A. Benson, Characterising delamin-
ation growth in graphite epoxy. Damage in Composite
Materials, ASTM STP 775 (1982).

6. L. Carlsson, Interlaminar stresses at a hole in a com-
posite member subjected to in-plane loading. J. Compo
Mater. 17, 238-249 (1983).

7. A. S. D. Wang, N. N. Kishore and C. A. Li, A three-
dimensional finite element analysis of delamination
growth in composite laminates, part 2. The finite
element code and users' manual, NADC-TR-84018-60
(1983).

8. K. Ericson, M. Persson, L. Carlsson and A. Gustavs-
son, On the prediction of the initiation of delamination
in a [0/90], laminate with a circular hole. J. Compo
Mater. 18, 495-506 (1984).

9. M. N. Janardhana, K. C. Brown and R. Jones, Design-
ing for tolerance to impact damage at fastner holes in
graphite/epoxy laminates under compression. J. theor.
appl. iract. Mech. 5, 51-55 (1986).

10. P. L. N. Murthy and C. C. Charmis, Composite inter-
laminar fracture toughness: three-dimensional mod-
elling for mixedmode I, II and fracture. In Composition
Materials: Testing and Design (Eighth Conference)
(Edited by 1. D. Whitcomb), pp. 23--40.ASTM STP 972
(1988).

II. O. Hayden Griffin Jr and M. A. Vidussoni, Global/local
finite element analysis of composite materials. In CAD
in Composite Material Technology (Edited by C. A.
Brebbia) (1988).

12. S. Sreedharmurthy and A. V. Krishna Murty Vibrations
of aircraft wing-type structures. Report No. ARDB-
STR 5004, Department of Aerospace Engineering,
Indian Institute of Science (1976).

13.A. V. Krishna Murty and K. N. Shivkumar, Combined
use of solid of revolution, thin-shell and interphase
elements for the analysis of cylindrical shells. J. struct.
Mech. 8,42-59 (1980).

14. B. R. Somashekar, A. V. Krishna Murty and C. S.
Nanjunda Ram, A study of swept cantilever
wings employing interphase element concept for struc-
tural reduction. J. aeronaut. Soc. India 35, 77-105
(1983).

241

15. A. V. Krishna Murty and C. G. Shah, Finite element
analysis of delaminated composite panels. Proc. ICES-
88, Vol I, Atlanta, GA, 10-14 April 1988.

16. R. B. Pipes and N. 1. Pagano, Interlaminar stresses
in composite laminates under uniform axial extension.
J. CompoMater. 4, 538-548 (1970).

17. A. S. D. Wang and F. W. Crossman, Some new results
of edge effects in symmetric composite laminates.
J. Compo Mater. 11,92-106 (1977).

18. A. S. D. Wang and F. W. Crossman, Edge effect in
thermally induced stresses in composite laminates.
J. CompoMater. 11,300--312 (1977).

19. I. S. Raju and 1. H. Crew Jr, Interlaminar stress
singularities at a straight free edge in composite lami-
nates. Ccmput. Struct. 14,21-28 (1981).

20. 1. D. Whitcomb, I. S. Raju and J. G. Goree, Reliability
of the finite element method for calculating free edge
stresses in composite laminates. Comput. Struct. 15,
23-37 (1982).

21. 1. D. Whitcomb and I. S. Raju, Superposition method
for analysis of free edge stresses. J. CompoMater. 17,
492-507 (1983).

22. 1. K. O'Brien, Characterisation of delamination onset
and growth in a composite laminate. Damage in
Composite Materials, ASTM STP 775, pp. 140-167
(i 982).

23. K. S. Kim and C. S. Hong, Delamination growth in
angle-ply laminated composites. J. Compo Mater. 20,
423--438 (1986).

24. 1. K. O'Brien, I. S. Raju and D. P. Garber, Residual
thermal and moisture influences on the strain energy
release rate analysis of edge delamination. J. Compo
Techno/. Res. 8(2), 37--47(1986).

25. I. S. Raju, J. H. Crews Jr and M. A. Aminpour, Strain
energy release rate components for edge-delaminated
composite laminates. Engng Fract. Mech. 383-396
(1988).

26. W. S. Chan, C. Rogers and S. Aker, Improvement
of edge delamination strength of composite lami-
nates using adhesive layers. Composite Materials:
Testing and Design, ASTM STP 893, pp. 266--285
(1986).

27. I. S. Raju, Q3DG-a computer program for strain
energy release rates for delamination growth in
composite laminates, NASA CR-178205 (1986).

APPENDIX: ELEMENT Q3D2

A simple element, appropriate for idealization of region
I of the laminate under consideration (Fig. 8a) is given here.
The geometry and the coordinate system of a typical element
are shown in Fig. A l.

Displacementfield

L\=~ + A"b, (AI)

where

{b}={UVW},

~~rn A'{ I J

Shape functions

{b}=Aq{q}, (A2)

1"'''1 0.1269. L..
.0840 0.0872

0)
.1228 0.1322-
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z, ~,w z
C: H

y

"1=T

/
x,u

L y,T], v
0

Fig. AI. Co-ordinatesystem and geometry for Q3D2element.

where Stressfield

{erY= [D]k{£t (As)
(A3)

[Dt is the three-dimensional elasticity matrix of the kth
layer.

Considering the expression for the strain energy Uinthe
form

F, = 1-" F2=".
u= 1/2L£TCTdV

and using eqns (Al}-(A6), one obtains the stiffnessmatrix
as

(A~

The strain-displacement relations are

£ = r .1,
K = f (" (I Bq T(",ODkBq(",0 d" dC

k=IJ,. -, Jowhere

where N = number of plies in the laminate and a consistent
load vector due to uniform axial strain as

N i"

I
I

rT = L £*TDkBq(",0 d" d(.
k=1 ',-10

(A4)

A two-point Gauss quadrature integration is adequatefor
numerical computation to obtain the elements of the stiff.
ness matrix and the load vector.

Figures 4 through 7 show some results obtained using
only this element to idealize the complete region of the
cross-section. A total of 13 elements graded appropriately
(see Fig. A2) is employed, involving only 42 equationsas
against 696 in the three-dimensional solution. Closeagree.
ment with the three-dimensional solution for displacements
except near the free edge may be noted. Clearly this element
is adequate to model 75-80% of the laminate in the region
away from the free edge.

where

£* ={Eo 0 0 0 0 O}

Bq = r A6Aq.

z ,~,w

y,TJ,v 2' 3
20h

4

4
~~A6.A
10II 12 13 14

2h ~
5 6 7

Fig. A2. Finiteelement idealizationof the laminateusing Q3D2.

[F' 0 0

F2

0 0]

Aq = 0 FI 0 0 F2 0

0 0 F. 0 0 F2

{qr = {u. VI WI U2 V2 W2}

a/ox 0 0
0 1/1. 0/0" 0

[rJ= I
0 0 I/B' %{
0 l/H'%{ 1/1. a/a"

l/B' a/a{ 0 a/ax

1/1'0/0" %x 0....

Strainfield

{£}k = {£*}+ [BqJ{q},


