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ANALYSIS OF EDGE DELAMINATIONS IN LAMINATES
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Abstract—The use of appropriate finite elements in different regions of a stressed solid can be expected
to be economical in computing its stress response. This concept is exploited here in studying stresses near
free edges in laminated coupons. The well known free edge problem of [0/90], symmetric laminate is
considered to illustrate the application of the concept. The laminate is modelled as a combination of three
distinct regions. Quasi-three-dimensional eight-noded quadrilateral isoparametric elements (Q3D8) are
used at and near the free edge of the laminate and two-noded line elements (Q3D2) are used in the region
away from the free edge. A transition element (Q3DT) provides a smooth inter-phase zone between the
two regions. Significant reduction in the problem size and hence in the computational time and cost have

been achieved at almost no loss of accuracy.

NOTATION

halfwidth of the laminate
E, modulus of elasticity for orthotropic material
in the i-direction, MPa

o

G total strain energy release rate

Gy, Gy, Gy mode I, mode II and mode III components of
strain energy release rate, respectively

[ length (Q3D2 element)

T=2H laminate thickness, m

G, shear modulus for orthotropic material, MPa

h ply thickness, m

uv,w displacement functions (function of y and z in
Q3D8 element, function of y only in Q3D2
element), m

U, o, W displacements in the x-, y- and z-directions,
m

X, 2 Cartesian coordinates, m

€ uniform axial strain in the x-direction

1, ¢ nondimensionalized coordinates (see Fig. Al)

0 angle between x-axis and longitudinal axis of

the ply (see Fig. 1a), degrees
Yy Poisson’s ratio for orthotropic material
g} vector of Cartesian strains
fa .
i) vector of Cartesian stresses

INTRODUCTION

Laminated composites are replacing metals in several
engineering applications. The inherent weakness of
the resin in a laminate demands new design require-
ments, such as estimation of interlaminar stresses
tear cut-outs, free edges, rivet holes, etc., and assess-
ment of the ‘delamination tolerance ability’ of the
Structure which, in turn, calls for accurate estimation
of the stress field and strain energy release rates.
Laminates are usually treated as a stack of plies
bonded together so that no slippage at the inter-
laminar surface is possible. Each ply is considered as
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a homogeneous orthotropic medium, with the axes of
orthotropy coinciding with the material axes. Mod-
elling of the stress field in such a material system is
not an easy task. Theoretical modelling of laminates
has been receiving a great deal of attention in recent
years. Pioneering works of Pagano and his associ-
ates [1, 2], displacment-based models studied by vari-
ous others [3], iterative modelling possibilities [4], etc.,
may lead to viable finite element forms in the years
to come. However, as it stands, the use of three-
dimensional elasticity in the finite element form ap-
pears to be the only feasible approach for obtaining
stresses in the required detail, to ensure laminate
integrity, until at least some of the recent theoretical
models are converted into finite element forms and
validated for application to laminate edge stress
situations.

There are several studies in the literature employ-
ing three-dimensional finite elements for estimating
stresses in the critical regions of the laminates [5-10].
Unfortunately, the use of three-dimensional elements
not only increases demands on computer memory
requirement but also increases the cost.

In view of the large computational effort involved,
some ingenuity in the choice of the finite element grid
helps in three-dimensional finite element analyses. A
graded finite element mesh is often resorted to, with
an adequate level of refinement in critical regions
involving high stress gradients. More recently global-
local analyses have been considered [11], wherein the
local solution with appropriate displacement bound-
ary conditions generated from the global solution
yields the stress field in the local regions. This is
essentially a two-stage analysis and much scope exists
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in terms of defining the local regions and the finite
element gnd in a successive manner to obtain all the
necessary ‘details. Usually both the local and the
global solutions are obtained using the same elements
which, of course, is not essential.

In this paper, we attempt an altcrnaiive possibility;
namely, in the region where the three-dimensional
eiements are essential, the three-dimensional elements
are employed with the rest of the region idealized in
terms of appropriate simpler elements. A transition
element connects both the regions smoothly to obtain
the solution in the critical region to the desired
accuracy in one stage. This approach has been util-
ized successfully in the past in studying boundary
stresses in box-beams[12], shells[13] and swept
plates [14]. In [15], some preliminary results of the
free edge problem using this approach were pre-
sented. In the present study, free edge stresses in a
[0/90], laminated coupon are obtained by employing
this approach. Quasi-three-dimensional eight-noded
elements (Q3D8) are used in the region near the free
edge and quasi-three-dimensional two-noded el-
ements (Q3D2) in the rest of the region, interconnect-
ing these two regions with transition elements. With
this idealization it has been possible to obtain the
edge stress field with much less computational effort,
when compared to the complete three-dimensional
idealization.

DESCRIPTION OF THE PROBLEM

The problem under consideration is that of analysis
of a typical multi-layered, long, rectangular, lami-
nated composite coupon subjected to remote uniform
axial strain loading (see Fig. 1). The laminate is
symmetric about the midplane and in each half it has
an arbitrary number of plies, each with different
thickness and fibre orientation. In such a laminate, a
quasi-three-dimensional state of stress exists and
the displacements u, v and w of any point on the
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cross-section represented by an x = constant ol |

(Fig. 1b) are given by (see [16])

“(x,}"z)zéox‘l' U(}’,Z)
v(x,y,2)=V(y,2)
W(xs}’al)= W(ysz) (l)

In such a case U, ¥ and W are functions of  apg
z only. The axial strain, ¢,, is uniform along g,
x-axis. Consequently the gradients of U, V apg W
with respect to the x co-ordinate are zero. Hence
finite element model required to solve this bag;
three-dimensional problem is essentially two-dimey,
sional.

The quasi-three-dimensional (Q3D) analysis p,
duces the problem size very significantly as compary
to three-dimensional analysis. A number of inveg;
gators have studied this problem and valuable gy,
are available. Hence this problem is chosen here
study the present concept of employing appropri
elements in different regions. For simplicity, a foy.
ply [0/90], laminate, as shown in Fig. 2a, with t
width b = 20A, has been considered as an illustratiy
example to demonstrate the economy attainable
the present approach. h is the thickness of ex
individual ply. Considering the double symmetry of
the problem, one quarter of the cross-section &
shown shaded in Fig. 2b is required to be consider
for the analysis.

The same material properties of laminate as use
in [17], repeated below, are used for the numer
studies.

E, =137.90GPa (20.00 x 10° psi)
Ey,=E;;=1448GPa (2.10 x 10° psi)

Vis = V53 = V3= 0.21.

(b)

Fig. 1. Laminate geometry and analysis domain. (a) A typical symmetric laminate. (b) x = constant plane.
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Fig. 2. (a) Four-ply [0/90]; long rectangular laminate. (b) Representative plane, x = constant.

subscripts 1, 2 and 3 for the individual uni-
directional ply correspond to the longitudinal, trans-
werse and thickness directions, respectively, i.e. the
material axes system.

CONVENTIONAL QUASI-THREE-DIMENSIONAL
FINITE ELEMENT ANALYSIS

The quasi-three-dimensional finite element ap-
proach was developed in [17, 18] employing quasi-
three-dimensional  three-noded constant  strain
triangular elements to investigate the stress field in
symmetrically laminated composites of finite dimen-
sions. The mechanical (uni-axial tension), thermal
and hygroscopic loads were considered. In [19], four-
and eight-noded isoparametric quasi-three-dimen-
sional quadrilaterals have been developed and several
quasi-three-dimensional solutions have been re-
ported [20-25] in the literature.

We first proceed to consider analysis of the [0/90],
laminate employing quasi-three-dimensional eight-
noded parabolic quadrilateral isoparametric finite
element -(Q3D8). A typical finite element mesh
adopted here is shown in Fig. 3, which represents the
shaded region shown in Fig. 2b. A uniform extension
case ¢, =1 was considered.

The finite element idealization 1s graded in such a
way that the smallest element size in the vicinity of the
interface and near the free edge or the delamination
tip, as the case may be, is (h/4 x h/4). An idealization
with 65 elements and 232 nodes was employed to
obtain numerical results. Distributions of displace-
ments and stresses, including interlaminar stresses,
were obtained. The symmetric edge delamination of
depth h/4 located at either z =0 or z = +h was also
considered to obtain stresses as well as the strain
energy release rates. The results of the above analyses
are used later as a benchmark solution for compari-
son with those obtained from the proposed scheme.
A close examination of the results is provided below
in order to indicate that the use of dissimilar elements
in different regions is appropriate in order to gain
certain computational advantages.

To begin with, the displacements v and w all over
the cross-section of the laminate are examined in
detail (see Figs 4-7). The value v along the y-axis is
shown plotted in Fig. 4, for various z = constant
planes. Figure 5 shows variation of v along the z-axis,
for various values of y. It is clear that the variation
of v along the z direction is negligibly small except
near the {ree edge, i.e. within a distance of about 4-6h
from the free edge. The variation of w shown in Figs 6

= 20h

)

h/4

2h

h/4

T

oy

4 4

12h 14h 16h

“{ha
I7h I8h 19h 2or.T

Fig. 3. Finite element model: Q3D8 analysis.
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Fig. 4. Displacement v along the width of the laminaie.

and 7 leads to a similar observation. w variation
across the thickness at various y =constant planes
(shown in Fig. 7) suggests that the near-linear vari-
ation w across the thickness is established within a
distance which is of the order of a ply thickness A
from the free edge. It may be noted that at the free
edge (y = 20h), w variation across the thickness is a
bit unusual and seems to involve a normal strain ¢,
discontinuity at the interface, which is of course
admissible from elasticity considerations. It is clear
that this phenomenon is associated with a very small
region near the free edge. Stress variations along the
y- and z-axis (not shown here) also indicate that
the nature of stresses is three-dimensional only in

Y :20h
I97Shio5h 9.0 190 18.5h  18h 178

3
>

a small region near the boundary. This provide
the basis for the present approach, namely to yg
three-dimensional elements in a small region near the
boundary and more simple elements elsewhere.

COMBINED USE OF Q3D2, TRANSITION AND Q3D3
FINITE ELEMENTS

It is now clear that rigorous three-dimensionl
idealization employing Q3D8 elements is essential
only in a small portion near the free edge (region III,
Fig. 8a) and in the rest of the cross-section (region I
a more simple treatment would be adequate. In [26]
this concept has been utilized. A simple continuum

Q308 (696 da.f.)
Q3D2(424d.o.t)

{ | X 14h 12h 8h " 4h @
AR e
AR
e AR
0* PLY
\ N\l : ', | )
NN NN B s
ST g
—N\Sh T | |
T | 075
A\
90° PLY
T\
| Tll ‘ll | |
! : i N 1 i FRERE 1 X
-2 - ITI -0 -_O; I-;;a =07 -06 -0-5 -0-4 -0-3 -0-2 =-0-l o]
g 28fe = Y

Fig. 5. Displacement v across

the thickness of the laminate.
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solution based on CLPT was obtained in region I and
matched with the finite element solution in region III.
In the present studies, region I is idealized in the finite
element form so that it becomes somswhat gencral in
terms of developing the computer program. Figure 8b
shows a typical finite element idealization.

Region I: Q3D2 elements (Appendix)
Region II:  Q3DT elements (description follows)
Region III:  Q3D8 elements (eight-noded quasi-

three-dimensional isoparametric quad-
rilateral elements [19]).

This idealization is denoted by b1/h-b2/h-b3/h,
indicating the range of regions I, II and III, respect-
ively. For example, 16-1-3 idealization indicates that
region I covers the laminate width of 16A (Q3D2
elements), region II convers the distance of A
(Q3DT: transition zone) and region III covers a width
of 3h (Q3D8: quasi-three-dimensional eight-noded
elements).

Q3DT: TRANSITION ELEMENT

In the present approach, different regions are mod-
elled using elements with different nodal variables. In
order to achieve smooth connectivity of the different
regions an element with different types of nodes on its
boundary becomes necessary. Such an element or
zone is called here an ‘interphase or transition el-
ement or zone’. Such elements were used earlier in
[12-15].

Figure 9 describes the concept in the present case.
The transition region is first formed as an assembly
of n Q3D8 elements and then suitable constraints are

20-0h ( FREE EDGE)

200

90° PLY
e ———
5‘-—-—-—.__1 | 1 1 1 'Y 1
<+ @©
t ¥ $ 5 3 & 3 3
! T ? ? i T ? ?
w

Fig. 7. Displacement w across the thickness of the laminate.



236

imposed on nodes located on the boundary with
region I so that these nodes are converted, on trans-
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REGIONI

REGION IL

REGION IL

ORGINAL LAMINATE

1 o) Im

A

IDEALIZATION

Fig. 8a. Idealization of the laminate into three regions.

A

L y

e EE—

Fig. 8b. A typical finite element idealization of the three regions with (Q3D2-Q3DT-Q3D8) elements.

b1

b, . - b3

formation, into a single node, that can conveniently be
be attached to the node of the region I. The procedure r_

involves the following steps.

The nodal displacement vector for the jth node  where

of the untransformed or uncondensed transition
element of Fig. 9a is given as

and
8F={u v w}j. ) q{={5m+1ém+2...5m+p}, p=2n+l
- ey
|
|
- i—‘—'-—--—ﬁ-—.
] e Q308 1
NODE
’ ]—--——-._____
A Q3D2 l
b NODE |
= I__.._...__._.._..

(o) Before condensation

{q

e REGION I — | REGION }«—— REGION @ =~ —

The vector of the global nodal displacements of the
transition element before transformation would thw

qi={6162... 6 ... om}, m=3n+1

Fig. 9. Transition element before and after condensation.

{(b) After condensation

Y
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ohere g; represents degrees of freedom remaining
wn;}[md and ¢, represents degrees of freedom to be
¢ fied to achieve connection with region L.

m]_,et [K] be the assembled stiffness matrix of the
interphase region and {r} the load vector correspond-
:n; to the displaccment vectcr {g}. The strain energy
of this region can then be expressed as

U =1/2{g"}[K){q}. @

The vector of displacements that would represent
the transition zone while assembling the global stiff-
ness matrix, i.e. after suitable transformation, would
pe considered in the form
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where

§i=¢, and 'fz‘—’gm-]s

where J,,, , is the vector of nodal degrees of freedom
corresponding to the connecting Q3D2 node of
region I given by

{E;T-i-l} "_‘{u v w}m+l‘

The transformation between vector {q,} and {g,}
can be obtained through simple kinematically con-
sistent relationships between three displacements as-
signed to each of the p nodes (m + 1 to m + p) and
three degrees of freedom offered by the Q3D2 node,

{41 =1{47 47}, (5) i.e. the (m + 1)th node.
iAf
.
Iy N A—A—a——-&-a—.?///
!:-.. 1 oI t«e—T1I
(18h) (0-5h  (1-5h)
(a) 18 - 05 - |-5 idealization
V
v,
s a a A a Y,
[ 1 e e M sl
(17h) (h) (2h)
(b) 17 - 1| -2 idealization
7
/]
¥y
s
5- i b & 7.
s 1 ot I Se——— m ——e
(16h) (h) (3h)
(¢c) 16 -1 -3 idealization

Fig. 10. Idealizations to study the effect of location of transition region.
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Fig. 11. w variation at y = b (convergence study).
In matrix form this will appear as The strain energy of the transition (super) element
- Tl (Fig. 9b) after condensation can now be written
T2 as
{@}=[THat=| | &} (6) U=1/2{g"{TTKI[THG}
T;
. where
' I 0
L Tp | iTi= [0 T]
where a typical submatrix Tj of the (m + j)th Q3D8 5
node would be is of dimension 3(m + p) x 3(m + 1), where I is the
10 0 unit matrix of dimension 3 m. Thus
Tji=|0 1 0
0 0 {m+j Ki=TKT and ri=T7%,
20
Q308 .
16-1-3 :
17=-1-2
18-05-1-5
0. PL? i |5
0z
h
90° PLY 1 -
1 1 | 1 1 0-0
1:3 -2 I-1 I-0 09 08 0-7 o6

v
Fig. 12. v variation at y = b (convergence study).
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here Kr is the st?ffncss matrix and r; is the load
sector of the transition zone.

RESULTS AND DISCUSSIONS

Figures 10a, b and ¢ show the finite element
dealization used in the present study. Figures 11 and
17 show the values w and v across the thickness at a
{)pical section y =b for the thn.ae ﬁn.1tc elcmgnt
idealizations. Ciearly, as the three-dimensional region
size increases, i.e. as the transition zone moves away
from the free edge, the results approach the classical
shree-dimensional results. In the present case 16-1-3
idealization gives results very close to the benchmark
salues. Tables 1 through 4 display the convergence
wrend with reference to the stresses. These compari-
sons clearly indicate the adequacy of 16-1-3 idealiz-
stion for bringing out the edge stress behaviour of the

laminate.

Table 1. Stress g, variation (y =b) across the thickness

Zk 180515  17-1-2 16-1-3 Q3D8
0.500 14.8464 14.9281 149514 14.9591
1.625 137.8290  137.8310 137.8300  137.8300

Table 2. Stress o, variation along the width (z = 1.125h,

0° ply)

yho 180515 17-1-2  16-1-3  Q3DS8

000  139.5400 139.5400 139.5300  138.4200
800  139.5400 139.5400 139.5400  138.4200
1600  139.5400 139.5400 138.3900  138.3860
1800  138.1400 1382100 1382340  138.2400
1850  138.1020 138.1450 138.1590  138.1630
1900  138.0470 138.0760 138.0850  138.0850
1925  138.0250 138.0450 138.0490  138.0510
19.50  138.0030 1380170 1380190  138.0200
1975 1379560 137.9640 137.9660  137.9660
2000 137.8290 137.8310 137.8300  137.8300

Table 3. Stress o, variation along the width (z =1.1254,

0° ply)
yih 18-0.5-1.5  17-1-2  16-1-3  Q3D8
18.000 1.8399 20291 20770  2.0993
18.500 1.8469 1.9486 19898  2.0032
19.000 1.7862 1.8513  1.8787  1.8836
19.250 1.7072 1.7559 17711  1.7784
19.500 1.5494 1.5810  1.5905  1.5940
19.750 1.1294 1.1438  1.1474  1.1482
19.875 0.6509 0.6532  0.6523  0.6518
Table 4. Stress ¢, variation along the width (z =0.875h,
90° ply)
yho 18-0.5-1.5 17-1-2  i6-1-3 Q3D8
8000 41227 -3.8684 36224 —3.4648
8500 —39126 —3.6981 —35356 —3.4170
19000 _—34981 —33478 —32679 —3.1804
19250 —3.1090 —3.0032 -29244 —2.8888
19500 25275 —2.4673 —24230 —2.4020
:3-750 —1.5234 —1.5061 —14922 —14855
8715 —04156 04212 —04228 —0.4234

Figure I3 shows a comparision of interlaminar
stresses in the spanwise direction and Fig. 14 shows
the same in the thicknesswise direction. The results
are in close agreement.

Figures !5a and b show the finite element idealiz-
ation at the delamination tip, used to calculate the
strain energy release rates. Following [27], the indi-
viduai components of strain energy release rates in
Mode I of fracture are computed as

1
G=— E[Fzs(wp_ Wp)+ Fz (W.— W)l

where Fz, is the force in the z-direction at node B, W,
is the displacement in z-direction at node D, etc. (see
Fig. 15). Expressions used for Gy and Gy are ob-
tained by replacing Fz with Fy and Fx and W with
V and U, respectively.

Various components of forces and displacements at
the required locations as estimated in the three
idealizations considered are shown in Tables 5 and 6
for symmetric edge delaminations of depth h/4 at
z=0 and z = +h, respectively. The comparisons
indicate that with the 16-1-3 idealization it is possible
to estimate strain energy release rates reasonably
accurately. Considering that the total number of

30
~20

—— Q3D8 ( DOF 696)

---=- Q3D2-T-8( DOF 360)

o, 16-1-3 SCHEME

—10
UZ
20

—~-10

Fig. 13. o, and o, variations along y-axis near free edge.
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degrees of freedom involved in 16—1-3 analysis is 360,
which is much less than for the corresponding com-
plete three-dimensional analysis, the present scheme
may be considered expedient for the edge stress and
edge delamination problem.

Table 5. Forces, displacements and strain energy
rates. Edge delamination of depth 4/4 at z =

—

Scheme/Pt 18-0.5-1.5 17-1-2 16-1-3  (Q

Forces Fz in the G caiculation

B —0.2168 —0.3023 —0.3325 —(

A —0.1588 —0.2248 -0.2476 —(
Displacements w in the G calculation

D 0.0781 0.1103 0.1221 (

& 0.0541 0.0761 0.0840 ¢
Strain energy release rates (mode [: 100%)

G, 0.0510 0.1009  0.1228 ¢

Table 6a. Forces, displacements and strain energy
rates. Edge delaminations of depth #/4 at z =

Scheme/Pt 18-0.5-1.5 17-1-2 16-1-3 C

Forces Fy in the G calculation

B 0.2969 03039  0.3056

A 0.1551 0.1716 0.1755
Displacements v in the G calculation

D —0.0703 —0.0711 —-0.0713 —

& —0.0380 —0.0386 —0.0387 —
Strain energy release rates (mode II)

Gy 0.0535 0.0564  0.0571

Yo 50.74 4485 44.04 4

Table 6b. Forces, displacements and strain energy
rates. Edge delaminations of depth 4/4 at z =

Scheme/Pt 18-0.5-1.5 17-1-2 16-1-3 C

Forces Fz in the G calculation

B —-0.2177 —0.2514 —-0.2575 -

A —0.1012  —0.1303 —0.1369 -
Displacements w in the G calculation

D 0.0906 0.1017 0.1032

C 0.0619 0.0699 0.0711
Strain energy release rates (mode I)

G, 0.0520 0.0694  0.0726

% 49.26 55,15 55.96 5

CONCLUSIONS

Problems involving three-dimensional anal
quire a large number of degrees of freedom a
attempt to reduce the size of the problem withc
of accuracy will be of great help. In this pez
attempt is made to achieve this objective by ¢
ing appropriate elements in the different reg

(a) (b)
!
— N —— A —e A
Ifﬁ
] [ . 1 ¢ 1o}
pal A B c o !

DELAMINATION TIP ELEMENT SIZE = &

Fig. 15. Nodes used in the strain energy release rate computations. (a) Finite element mesh at free edge.
(b) Delamination.
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the structure- Edge st‘ress analysis F)f Igminatcd test
ébupons with and without delamination has been
considered to illustrate the concept. Displacements,
tress distributions and strain energy release rates
are estimated using the present approach and com-
ared with those obtained from the full quasi-three-
djmensionai analysis. f.(e‘suhs indicate that this
approach is highly promising.
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APPENDIX: ELEMENT Q3D2

A simple element, appropriate for idealization of region
I of the laminate under consideration (Fig. 8a) is given here.
The geometry and the coordinate system of a typical element
are shown in Fig. Al.

Displacement field
A=A+ A8, (A1)
where
{o}={u Vv W},
€9 X 1
Ag={ 0 45= 1
0 4
Shape functions
{0} =44q{q}, (A2)
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Fig. Al. Co-ordinate system and geometry for Q3D2 element.
where Stress field
FF 0 0 F 0 {o} =[DHe}" (A3
49=10 F, 0 0 F 0 (A3 (D is the three-dimensional elasticity matrix of the kg
0 0 FF 0 0 F layer.
Considering the expression for the strain energy U in
@} ={w v, wi u, v, w} form
F,=1-n F=n U=If2JAV€T0dV (A)
The strain—displacement relations are and using eqns (A1)A6), one obtains the stiffness maty
as
e=TA, N G 1
where K= El J:_k . L Bq(n,{)D*Bq(n, {) dn d{,
d/ox 0 0 where N = number of plies in the laminate and a consistent
0 1/1-8/n 0 load vector due to uniform axial strain as
1 0 0 1/H -8/a¢ W N )
- 0 I/H -a/of 1/1-d/on 4 *EI L_.L €*'D*Bg(n, ) dn dC.
1/H -éfa] 0 é/ox . . ——
A two-point Gauss quadrature integration is adequate for
- 1/1-0/on 0/0x 0 numerical computation to obtain the elements of the stiff
ik Bl ness matrix and the load vector.
train fie Figures 4 through 7 show some results obtained using
" . only this element to idealize the complete region of the
{e}*={e*} + [Bql{q}, (A4)  cross-section. A total of 13 elements graded appropriately
(see Fig. A2) is employed, involving only 42 equations a
where

e*={e, 00 0 0 0}
Bg=TAAq.

z,0,w

—_

3

20h

against 696 in the three-dimensional solution. Close agres
ment with the three-dimensional solution for displacements
except near the free edge may be noted. Clearly this element
is adequate to model 75-80% of the laminate in the region
away from the free edge.

onri3iq

g 9
o b 2n

Fig. A2. Finite element idealization of the laminate using Q3D2.




