Downloaded by sumana on 13 January 2011
Published on http://pubs.rsc.org | doi:10.1039/B605743H

COMMUNICATION

View Online

www.rsc.org/chemcomm | ChemComm

A novel synthesis of p-lactam fused cyclic enediynes by intramolecular

Kinugasa reactionf

Runa Pal and Amit Basak*

Received (in Cambridge, UK) 24th April 2006, Accepted 24th May 2006

First published as an Advance Article on the web 7th June 2006

DOI: 10.1039/b605743h

A general synthetic route to p-lactam-fused enediynes by
intramolecular Kinugasa reaction has been successfully devel-
oped. The method has widened the scope of Kinugasa reaction
in the synthesis of sensitive systems like the one described in this
communication.

The Kinugasa reaction,' a one-step synthesis of p-lactams via

[3 + 2] cycloaddition between a nitrone and an in situ generated
Cu(D)-acetylide, has attracted considerable attention in recent
years.” The reaction usually produces a mixture of cis and trans
B-lactams and studies have shown that the trans isomer originates
from the cis isomer.® The asymmetric version of the reaction is a
relatively new development. Miura er al* achieved moderate
enantioselectivity using a bisoxazoline-based catalyst. More
recently, Lo and Fu® reported a catalytic method proceeding with
high enantioselectivity using a chiral ferrocene ligand. We have
also reported® a highly diastereoselective Kinugasa reaction based
on the chiral auxiliary approach. The Kinugasa reaction offers
several advantages, which include mild reaction conditions and the
availability of a large repertoire of alkynes and nitrones. Crafting
of these functionalities on two arms of the same molecule to
facilitate an intramolecular reaction is comparatively easier than
the widely used Staudinger reaction’ which requires the use of an
acyl halide, a more reactive functionality. The recent report of the
intramolecular Kinugasa reaction by Shintani and Fu® has
encouraged us to explore the possibility of synthesizing p-lactam-
fused enediynes employing such a strategy. The latter class of
molecules has gained importance because of the ability of the
B-lactam ring to act as a molecular lock™! in stabilizing the
otherwise unstable enediyne moiety. Moreover, opening of the ring
by a suitable nucleophile can trigger Bergman cyclizaton'' if the
enediyne ring size is appropriate.'” In this communication, we
report the synthesis of f-lactam fused enediynes (lactendiynes) 1-5
(Fig. 1) by intramolecular Kinugasa reaction. In addition, we have
also synthesized the unsaturated fB-lactam based enediynes 6-7.
Our report demonstrated the potential of this reaction in the
synthesis of delicately functionalized ring systems.

One can conceive three possible strategies for the synthesis of
B-lactam fused enediynes in Scheme 1. Pathways a and b both
involve the formation of enediyne on to a preformed B-lactam
ring. Pathway c¢ reverses the sequence by forming the B-lactam on
to a cyclic enediyne. The third alternative pathway as represented
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Fig. 1 Design of macrocyclic enediynes.

in d involves the concerted formation of both the enediyne and
B-lactam rings. Both 14- or 34-fused systems have been
synthesized in Guanti’s laboratory'* following pathways a and b.
We have also reported'* the synthesis of 1,4-fused systems via
route a as well as ¢. Pathway d has not been explored as yet
although it has the advantage of not handling the sensitive
B-lactam or cyclic enediyne until the last step. For synthesis
following pathway d, intramolecular Kinugasa reaction to generate
both the systems in one step is certainly a possibility. The outcome
of the latter strategy brightened when it has been shown' from
our laboratory that isooxazoline fused enediynes could be
synthesized using an intramolecular 1,3-dipolar cycloaddition
involving a nitrone and an alkene, both belonging to the same
enediyne system.

We first attempted to synthesize the enediyne 1, the reason being
the easy access to the precursor. The retrosynthesis of the enediyne
1 (shown as an example in Scheme 2), involves the following
important steps: (i) the construction of the acyclic enediyne
framework by Sonogashira coupling,'® (ii) O-propargylation, (iii)
functional group modification to generate the nitrone and (iv) an
intramolecular Kinugasa reaction. The nitrone 12 essentially
existing in the Z-form, was subjected to Kinugasa reaction

Scheme 1 Possible approaches to B-lactam fused enediynes.
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Scheme 2 Synthesis of enediynes 1 and 2. Reagents and conditions: () (i)
NaH, propargyl bromide, THF, rt (85%); (ii) PPTS, EtOH (78%); (b)
PCC, DCM, rt (65%); (c) PhCH,NHOH, MeOH (80%); (d) Cul, Et;N,
CH;CN. Overall yield: 55%, trans = 30%, cis = 10%, elimination product
= 15%.

conditions with some modification. Thus it was dissolved in
deoxygenated acetonitrile at 0 °C at a high dilution (0.003 M) and
treated with cuprous iodide (0.5 eq.) and triethylamine (1 eq.). The
mixture was stirred for 24 h while the temperature was kept within
the range of 15-20 °C. The desired B-lactams 1 and 2 were isolated
by careful chromatography over Si-gel using hexane—ethyl acetate
of increasing polarity as eluent. The structures of both the
compounds were determined by NMR, IR and mass spectrometric
data."® The stereochemistry was confirmed by extensive decoupling
experiments. Thus for compound 2, upon irradiation of the H-5
methylene, the signal for the H-3 which appeared as a broad
signal, collapsed to a narrow singlet with half-width of 2.3 Hz,
which indicated trans stereochemistry .'> For compound 1, similar
irradiation collapsed the signal for the H-3 into a doublet of
coupling constant 5 Hz confirming the cis stereochemistry. A third
slower running compound was isolated which was characterized
(appearance of characteristic'” broad singlets at § 5.75 and 5.21 for
the exomethylene hydrogens) as the elimination product 7. The
other nitrone 15 when subjected to similar reaction conditions gave
only cis and trans B-lactams 3 and 4, respectively (Scheme 3). The
structures of these compounds were also confirmed by extensive
decoupling experiments.

Since both 1 and 2 are stable towards triethylamine, 7 must have
been produced during the collapse of the isooxazoline intermediate
formed by initial cycloaddition.”® The mechanism of formation of
7 is shown in Scheme 4, which is based on the elimination of
propargyl alcohol in a SN'-fashion. This mechanism is supported
by the fact that when the higher homologous nitrone 16 was
subjected to Kinugasa reaction conditions, no elimination product
was observed because that would involve breakage of the C-C
bond.
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Scheme 3  Synthesis of enediynes 3 and 4. Reagents and conditions: (a) (i)
MsCl, EtzN, CH,Cl,, 0 °C (85%); (i) LiBr, THF (80%); (b) NaH,
homopropargyl alcohol, THF (70%); (c) PCC, DCM, rt (65%); (d)
PhCH,NHOH, MeOH (80%); (e) Cul, Et;N, CH3CN. Overall yield: 60%,
trans = 45%, cis = 15%.
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Scheme 5 Synthesis of enediynes 5 and 6. Reagents and conditions: () (1)
Dess—Martin oxidation (>90%); (b) TMS-acetylene, BuLi, THF, 0 °C
(85%); (c) KF, MeOH (80%); (d) TBDPSCI, DMAP, DCM (80%); (e)
PPTS, EtOH (80%); (f) Dess-Martin oxidation (>90%); (g) 3% HCIl-
MeOH (75%); (h) THF-H,O, HCI (85%); (i) PhCH,NHOH, MeOH
(>90%); () Cul, EtzN, MeCN. Overall yield: 65%, trans : elimination
product =4 : 1.

Having been successful in the synthesis of B-lactam fused
oxaenediynes, we turned our attention to utilize this approach in
the synthesis of carbocyclic enediynes of smaller size which would
be more meaningful to do as enediynes having ring size of 9 or 10
spontaneously cyclize under ambient conditions. For the synthesis
of 10-membered enediyne, we performed the Kinugasa reaction
with the bis-acetylenic system. Unfortunately our attempts failed,
we could not isolate any PB-lactam containing products. The
conjugated bis-acetylenic system is perhaps less reactive towards
the Kinugasa reaction. Our attention was then diverted to
synthesize the 1l-membered enediyne system 5. For this the
precursor nitrone 31 was prepared in 10 steps as shown in
Scheme 5. When this nitrone was subjected to Kinugasa reaction
conditions, to our satisfaction we could isolate two P-lactam
containing products. One is the frans fused system 5 and the other
was the elimination product 6. Gratifyingly the reaction was much
cleaner and the yields were better than what were obtained in case
of the synthesis of the oxacycles; the selectivity was also high. For
the structure of the major product 5, the large coupling constant
between the carbinol hydrogen and H-3 and the small coupling
constant between H-3 and H-4 indicated the geometry as shown.
Both the structures were confirmed by extensive decoupling
experiments, '*C and HRMS analysis. Apparently the diaster-
eomer 32 having frans relationship between the H-3 and carbinol
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OH, undergoes elimination under the reaction conditions which
cannot happen for the major isomer 5.

In conclusion, we have successfully developed a general
synthetic route to B-lactam-fused enediynes by an intramolecular
Kinugasa reaction. The method has widened the scope of the
Kinugasa reaction in the synthesis of sensitive systems like the one
described in this communication. The mechanism of formation of
an elimination product was also successfully established.
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