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ABSTRACT

I show that unlike the standard lowest
order WKB, the supersymmetry—-insgpired
WKB quantization condition gives
correct n-dependence for all the
energy elgenvalues (except ground
state) of the potential V(x) = A%x® +
3ax2. I also display a number of
other potentials for which S5SWKB 1is
then shown to give exact eigenvalues.
Finally, I conjecture that for the
cla of modela _given by V(x) =
agd+ arhyax? (4 = 0,1,2,...),
the exact energy elgeanvalues obey the
SWKB-predjct energy dependence
E, - (n+l)§ﬁ+f7ﬁ+1.
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In a recent paper Comtet et al. have applied semi-classical methods to
supersymmetric (SUSY) quantum mechanics and have proposed a modified semi-clas-—
sical quantization condition (SWKB). 1In particular, they have. argued that for

quantum mechanical models which can be written in the form

2 2. /7
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one can formally treat ¢2 term as O(ho) while ﬁ¢ﬁ term 1s explicitly an 0(#)

effect. In this way, for those models for which SUSY is unbroken [i.e., ground
) ‘. .

state energy E; )=0 and ground state wave function %; )(x) is normalizable} they

were led to the SWKB quantization condition

b
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Here a and b are turning points defined by ¢2(a) = E = ¢2(b). The attractive
point of the SWKB is that it is not only exact for large-n eigenvalues, but by
construction it is also exact for Eé_) and ¢é-)(x). Using this modified condi-
tion, Comtet et al.l) have shown that SWKB gives exact eigenvalues for one- and
three—~dimensional harmonic oscillator*), Morse, Coulomb*) and Rosen-Morse poten-
tials. Note that the standard lowest—-order WKB prescription does not give exact
answers for Rosen-Morse or multidimensional Coulomb and oscillator potentials
unless it is supplemented by Langer—like correction which is in general different

)

for different potentials2 .

Encouraged by these successes, Comtet et al.l) have then raised the question
if SWKB is exact for only solvable models or if it is more generally a property
of potentials for which energy eigenvalues can be expressed Iin terms of functions

of simple powers of n.

The purpose of this note iz to explore this question in some detail. Im

particular, using SWKB, I study a class of models characterized by
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*)Actuallﬁ it is also exact in arbitrary number of dimensions.



and show that for d = 0 and d + © the energy spectrum is almost exactly repro-
duced. Further, for the case of d = 1, [i.e., vix) = A2x% + 3Ahx2], I show that
even though SWKB does not reproduce the correct eigenvalues, it nevertheless
correctly predicts their n-~dependence (except for the ground state). Finally, I
apply SWKB to the potentials
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and show that SWKB gives exact spectrum in all three cases.

Consider the class of Hamiltonians

o\z lgc\"r
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all of which have double—well structure with two degenerate minima and hence an
instanton. Nevertheless, for all these models SUSY is clearly unmbroken. In
fact, it is easy to see that all of them have Fn(—) = 0 and the ground state wave

function

) _ o {-—- 1Y ilc*4r2»_]
Y o=Nexpl T3 ®

is clearly normalizable. On applying the SWKB quantization condition given by

Egq. (2) to this class of models it follows that [note o(x) = Ax2d+l]
2 A+
1\
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Since SUSY relates the spectra of H_ and Hy we therefore conclude that the energy

eigenvalues of the Hamiltonian

H____lc\ 2 4a+2.

- 24
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are given by

A 3 dx2
=) Gra fon o V(555 1a+\)

m N+ ( LAX3
fasz )

in the SWKB approximation.

Several comments are in order at this stage

(8
2 A+
A\

(9)

{a) As expected, in the limit d = 0, when H; is essentially the harmonic oscil-

lator Hamiltonian, E§+) is exact.

(b) What 1s however remarkable is the fact that even for d + « when Hy is that

of a square well peotentilal, E§+) is almost exact. We obtain

) 2.2 2
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which has the correct n-dependence for all wvalues of n. This has to be

contrasted with the conventional WKB which does not reproduce the correct

n—dependence unless n 1g very large.

' +
(c) The SWKB eigenvalues E(_) also satisfy the scaling relation satisfied by the

exact eigenvalues for H +, i.e.,

(X c\-\-\( )
E (@axn YR, N )= [(:»_a»f\)*f\h] £ (g

(+)

In view of the fact that En

)

A+ 7 (1)

is exact for d = 0 and almost exact for d + «
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it is natural to enquire if it also giﬁes exact eigenvalues for all d. Unfortu—
nately none of these models (0 < d ¢ =) are exactly solvable. However, the model

characterized by

2 4% 2. é
H:-’h;\—;i-\-x + A X (12)

has been extensively studied in the 11terature3) and very accurate energy eigen-—
values have been numerically calculated by Banerjee3) for A varying from 0.00001
to 40000 and for m = 0,1,..., 10, 100 and 1000. On using Eqs. (8), (11) and (12)
it follows that at A = 1/9 the Hamiltonian given by Eq. (12) and Hy for d = 1,
A = 1/3(h = 1) coincide and hence have the same eigenvalues. In Table 1, I have
therefore compared the SWKB eigenvalues (for d = #. = 1, A = 1/3) as given by Eq.
(9) with the exact ones of BanerjeeB) {(for A = 1/9 =~ 0.1). From Table 1 it is
clear that SWKB does not reproduce the correct eigenvalues. However, when
I calculated the errors in wvarious eigenvalues, I was surprised to find that for
all the excited levels the SWKB value was always lower by (910.5)% (for the
ground state it was higher by 5.5%). In other words, except for n = 0, the n-

/

dependence of the energy eigenvalues as predicted by SWKB (Ena(n+1)3 2) mist bhe

exact. In Table 2, I have compared the exact and SWKB expressions for En+1/En

when n = 1, 2, ..., 9 and also Ey3/E;, Ejg¢/E; and Ejgqq /E; and quite remarkably
they agree to within 0.6%.

It may be noted here that the conventional lowest order WKB fails to predict

En /En that accurately (specially for low values of n; and n,). One may legiti-
2 1
mately argue that since A is as small as 1/9, the conventional WKB expression .is

in any case not expected to work. I have also compared the modified predictions

3)

of Hioe et al. which are valid for any A with the exact ones and 1 find that

even the modified WKB fails to predict En /En accurately (specially when n, >>
’ 2 1
ﬂl)o

One might wonder if the n—dependence as predicted by SWKB is merely wvalid

for the SUSY value of 1/9 or is true for any value of A for the Hamiltonian (12).
3)

Using Banerjee's estimates™’, I find that as one conslders A values which are
lesser (greater) than A = 1/9, En /En is lesser (more) than the corresponding
2 .

1
SWKB prediction {the errors are as large as 50% when ny >> n;). I find this
) : (+)

rather remarkable 7. 1 am, however, puzzled by the fact that the E does -not

obey the SWKB predicted n—dependence.

*)This is somewhat analogous to the divergence behaviour in field theories. Only
when A = A_ (when the theory is supersymmetric) do the divergences cancel while
if A > (<)Ar., then the bosonic divergence term is larger (smaller) than the
corresponding fermionic one.
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In view of the success of SWKB in predicting the correct n-dependence of the
energy elgenvalues for d = 0,1, and «, I comjecture that the exact energy eigen-
values for H, as given by Eqs. (5) and (8) indeed have the SWKB predicted n-

dependence (note that Ef_) also satisfies this dependence)

) ) 2o
= Fm L (nx) ;M= 1,2, (13)

+
Before finishing this discussion about Ei') let me point out some of their
possible applications. If one considers model field theories (in 1+l dimensions)
characterized by

LANT 24
Vi) = P\z & —(2a+VDRD

(14)

then all of them have degenerate absolute minima and hence kink solution. Now it
is well knownA) that in the thermodynamic limit the classical partition function
of such theories (in 1+1) is essentially given by the ground state energy of the
Schrbdinger-like equation for the above potential which we have calculated here.
Further, such potentials in (0+l) dimension will have an instanton solution.
Hence one could compute the instanton contribution to Ef—) - Eé_) splitting and
compare it with the exact value and study the wvalidity of instanton

approximation.

Finally, let me apply the SWKB to - the three potentials as given by
Eqs. (4a), (4b) and (4c) which are all exactly solvable models. Consider first
the potential (4a). We treat it as a radial problem with r > 0 and calculate

s—wave energy eigenvalues using SWKB. On chbosing

A

¢(_9z)—_—_.—-.P\CO£\'\(%) -\“-ZK (15)
where
L T Lo B |

and using it in the SWKB condition as given by Eq. (2), we find that
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which is the exact (s~wave) energy expressions). Note that the conventional
lowest—-order WKB reproduces this expression only when a Langer-like correction

term a?/16 cosech? ar/2 is added to the potentifal (4a)2).

lLet me now consider the potential (4b) which occurs during the stabllity
analysis of ¢2(¢2-a2)2 kink solution and which has been extensively discussed in
Ref. 6). On using

C\DC‘I) = Rtowm oL x % (18)

where

R N Y V]

(19)

and applying the SWKB formula, I find that

2.

2 ¥
Lo/ - ) 1=
E; ‘¥ilb<iL b
- 2 (20)
* [ FEove/mo - (nvd ]

6)

which is the exact expressiom “. As far as I know, it has not been noticed so
far in the literature that the conventional lowest order WKB also reproduces this
exact En provided one adds the Langexr—like correction term —-a2/4 sechZax to the

potential (4b).

Finally, let me consider the PSschl-Teller potential as given by Eq. {4c).

On using



4:(3() = Rxan«x —- B cot ol (21)

where

F\::Jf%.[wrl \+ 4Va /h"‘f] ; B.—_J“*_"i‘.[\—»lwr‘fvu/hldl-]

(22)

and applying the SWKB quantization condition, I find that

2.
£ = (Ax® + 2nRe)

7)

which is the exact expression ‘. In this case, I find that the conventional
lowest order WKB can be made to reproduce this expression by the addition of the

Langer—like correction term al/4 (coseczax + seczax) to the potential (4¢).

Summarizing, it appears that at least for those quantum mechanical wmodels in
which SUSY is unbroken, the SWKB may prove even more useful than the conventional
WEB. It would be very interesting 1f one could generalize the SWKE to fileld
theories and then try to obtain the energy spectrum of, say, supersymmetric Sine-

Gordon model.
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Table 1:

Comparison of the exact and SWKB predictions for the energy eigenvalues

of Hy for d
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=1 and A = 1/3.

n Exact E, SWKB E,
0 1.109087 1.161874
1 3.596036 3.286274
2 6.644391 6.037272
3 | 10.237873 9.294989
4 14.307040 12.990141
5 18.801758 17.075984
6 23.685275 21.518199
7 28.928957 26.2%90197
8 34.509674 31.370586
9 40.408244 36.741668
10 46.608420 42.388485

100 1293.415788 1179.345169

1000 40341.683937 | 36796.79457
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Table 2: Comparison of the exact and SWKB predictions for the ratio of the
energy eigenvalues of Hy for d = 1 and A = 1/3

EnzlEnl Exact value (2:E§/Z?i:§372
E,/Ey 1.847699 1.837117
E4/E, 1.540829 1.539600
E, /Eq 1.397462 ' 1.397542
Eg/E, 1.314161 1.314534
Eg/Eg 1.259737 1.260144
E;/Eg 1.221390 1.221765
Eg/E; 1.192911 1.193242
Eg/Eg 1.170925 1.171214
Ejo /Eq 1.153438 1.153689
Eg /E) 12.961054 12.898643
Ejgo ,E; 359.678209 358.869927
Ejgog,B; | 11218.375 11197.115
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