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Abstract

We consider self-duality in a 2 + 1 dimensional gauge theory containing

both the Born-Infeld and the Chern-Simons terms. We introduce a Born-Infeld

inspired generalization of the Proca term and show that the corresponding

model is equivalent to the Born-Infeld-Chern-Simons model.

∗email: prasanta@iopb.res.in
†email: khare@iopb.res.in

1

http://arXiv.org/abs/hep-th/0009130v2


Many years ago Townsend et. al. studied self-duality in gauge theories in 4k − 1
dimensions [1]. In particular, in 2+1 dimensions they considered the Proca equation
for the massive gauge field:

∂µFµν + m2Aν = 0 , (1)

where Fµν = ∂µAν − ∂νAµ . As a consequence of the antisymmetry of the field
strength, it follows from above that ∂µA

µ = 0, and hence there are two, indepen-
dent, propagating modes of equal mass. They observed that any gauge field which
is proportional to the dual of it’s field strength does satisfy the above equation. In
particular any gauge field which satisfy

Aµ =
1

2m
ǫµνρF

νρ , (2)

is a solution of the second order Eq. (1). They called Eq. (2) as the self-duality
equation. This equation propagates one massive mode instead of two and it can be
viewed as a square root of the second order Eq. (1). The self-dual Eq. (2) can be
derived from the Lagrangian

LP =
1

2
m2AµA

µ − 1

4
mǫµνρAµFνρ . (3)

It is straightforward to see that the above Lagrangian is not gauge invariant. However,
interestingly it was soon observed [2] that the above model is equivalent to gauge
invariant, topologically massive, electrodynamics characterized by the Lagrangian
[3, 4]

LM = −1

4
FµνF

µν +
1

4
mǫµνρAµFνρ . (4)

The corresponding field equation is

∂µF µν +
1

2
mǫναβFαβ = 0 , (5)

and following [2] it is easily shown that the field Eqs. (5) and (2) are equivalent. In
fact, in [2] the authors have even shown the equivalence of the two Lagrangians LP

and LM as given by Eqs. (3) and (4) respectively.
Long back Born and Infeld proposed [5] a nonlinear generalization to the Maxwell

Lagrangian in order to cure the short distance divergence appearing in quantum
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electrodynamics. Recently it has attracted considerable attention both in field theory,
because of it’s remarkable form, as well as in string theory for it is the action which
governs the gauge field dynamics of the D-branes [6]. Because of its importance in
the open string theory, Gibbons and Rasheed studied various duality invariances of
the Born-Infeld theory [7]. In particluar, they have shown that the SO(2) electric-
magnetic duality rotation, that appears as a symmetry at the level of equations
of motion in the Maxwell theory in four spacetime dimensions, also holds in the
Born-Infeld theory. Because of the importance of duality in understanding various
non-perturbative aspects of field theroy as well as string theory, the above results
have been generalized to nonlinear theories with more then one Abelian gauge field,
theories with interacting scalar fields as well as to the supersymmetric theories [8]-
[19] . However most of the discussion about the duality invariance has been restricted
to theories in four space time dimensions or more generally to the even dimensional
theories.

On the other hand, several interesting generalizations of the self-dual Chern-
Simons-Proca model [1] and its equivalence [2] with the three dimensional massive
electrodynamics [3, 4] has been studied in literature. Soon after the work of Deser
and Jackiw, it has been realised that the self-duality can also occur in case both
the Maxwell as well as the Proca term can simultaneously be incorporated in ad-
dition to the Chern-Simons term[20]. The above model has also been used in the
study of bosonization in higher dimensions [21, 22]. Recently it has been shown that
there exists a unified theory [23] from which the self-dual model[1], the massive elec-
trodynamics [3, 4] as well as the Maxwell-Chern-Simons-Proca systems [20] can be
recovered as special cases. However, to the best of our knowledge, the reuslts of Deser
and Jackiw have not been generalized to the Born-Infeld theory. The purpose of this
note is to consider the generalization of this equivalence in case the Maxwell term is
replaced by the celebrated Born-Infeld Lagrangian.

Consider the Lagrangian

LBI = β2

√

1 − 1

2β2
FµνF µν +

1

4
mǫµνρAµFνρ . (6)

Here we have ignored an irrelevant constant factor proportional to square of the
Born-Infeld parameter β which does not contribute to the equation of motion. This
Lagrangian reduces to the topologically massive Lagrangian as given by Eq. (4) in
the limit β → ∞ when the constant factor is taken into account. The corresponding
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field equation is

∂µ





F µν

√

1 − 1
2β2 FαρF αρ



+
1

2
mǫναρFαρ = 0 . (7)

The question one would like to ask is: what is the self-dual analogue of Eq. (2)?
We will now show that the corresponding “generalized self-dual equation” is

Aµ =
ǫµνρFνρ

2m
√

1 − 1
2β2 FµνF µν

. (8)

Before we prove our assertion, let us note that Eq. (8) reduces to the self dual Eq. (2)
in the β → ∞ limit. We call it the “generalized self-dual equation” because of it’s
similarity with the self-dual equation even though in the literature the term self-dual
is usually used while dealing with the linearized equations. To show that Eq. (7)
follows from Eq. (8), differentiate both sides of Eq. (8) and multiply by ǫβγµ. We get

ǫβγµ∂γAµ =
1

2m
ǫβγµǫµνρ∂γ





Fνρ
√

1 − 1
2β2 FµνF µν



 , (9)

from which Eq. (7) follows.
Following [1] it is worth enquiring if there is a corresponding Born-Infeld self-dual

Lagrangian from which self-dual Eq. (8) will follow as a field equation. It is easily
seen that such a Lagrangian is

LBIP = β2

√

1 +
1

β2
fµfµ − 1

2m
ǫαµνfα∂µfν . (10)

Here we have changed the notation from Aµ to fµ = mAµ in order to avoid confusion
with the system described by Eq. (6). The corresponding field equation is

ǫµνρ∂νfρ −
mfµ

√

1 + 1
β2 fµfµ

= 0 . (11)

Let us now show that the above equation is equivalent to the generalized self-dual
Eq. (8). Taking the square of Eq. (11) we get

1

2
fµνf

µν =
m2fµf

µ

1 + 1
β2 fµfµ

, (12)
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which implies
√

1 − 1

2β2m2
fµνfµν =

1
√

1 + 1
β2 fµfµ

. (13)

Substituting this again in Eq. (11) we get the generalized self-dual equation which
can be identified with Eq. (8) after the field redefinition. Thus both the theories
described by Eqs (6) and (10) admit identical solution for the self-dual gauge field.

In fact the equivalence of the two theories is at a more basic level. In particular
we show that the corresponding Hamiltonians of the two theories are equivalent after
the constraints are taken into account. Let us start from the Born-Infeld Lagrangian
(6). The corresponding canonical momentum is

Πi =
δLBI

δȦi

= − Ei

√

1 − 1
2β2 FµνF µν

+
1

2
ǫijAj . (14)

For convenience we define

R =

√

1 − 1

2β2
FµνF µν , Di =

Ei

R
. (15)

After some straightforward calculation we can write the expression for R as

R =

√

√

√

√

√

1 − 1
β2 B2

1 − 1
β2D

2
, (16)

where B = F12 .
Now the Hamiltonian density is

HBI = ΠiȦi − LBI

= −EiȦi

R
− β2R

= −β2

R

(

1 − 1

β2
B2

)

= −β2

√

√

√

√

(

1 − 1

β2
D2

)(

1 − 1

β2
B2

)

. (17)
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The equal time commutation relation is

i
[

Πi(r), Aj(r′)
]

= δijδ(r − r
′) (18)

from which we can derive the following equal time commutators:

i
[

Di(r), Dj(r′)
]

= mǫijδ(r − r
′) (19)

i
[

Di(r), B(r′)
]

= −ǫij∂jδ(r − r
′) (20)

i [B(r), B(r′)] = 0 . (21)

These relations along with the Gauss law constraint

∂iΠ
i +

m

2
B = 0 , (22)

can be solved in terms of a scalar field φ as

Di = −ǫij ∂̂jφ̇ − m∂̂iφ (23)

B =
√
−∇2φ , (24)

where ∂̂j = ∂j/
√
−∇2 .

Now we consider the system described by Lagrangian (10). The conjugate mo-
mentum Πi

f is given by

Πi
f ≡ δLBIP

δḟ i
= − 1

2m
ǫijf j , (25)

which implies the canonical commutation relation

i
[

f i(r), f j(r′)
]

= mǫijδ(r − r
′) . (26)

This along with the Gauss law constraint

f0
√

1 + 1
β2 fµfµ

= − 1

m
ǫij∂ifj , (27)

can also be solved in terms of the field φ as

f i = −∂̂iφ̇ + mǫij ∂̂jφ (28)

f0
√

1 + 1
β2 fµfµ

= −
√
−∇2φ . (29)
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Solving Eq. (29) for f0 we get

f0 = −
√
−∇2φ







√

√

√

√

√

1 − 1
β2 f

2

1 − 1
β2 (

√
−∇2φ)2





 . (30)

Now the Hamiltonian density is given by

Hf = Πi
f ḟ

i − LBIP

= − 1

2m
ǫij (f0∂ifj + (∂ifj)fo) − β2

√

1 +
1

β2
fµfµ

=
f 2

0
√

1 + 1
β2 fµfµ

− β2

√

1 +
1

β2
fµfµ (31)

where we have used the Gauss law to obtain the last step. On using Eq. (30) the
Hamiltonian density Hf takes the form

Hf = −β2

√

√

√

√

(

1 − 1

β2
f 2

i

)(

1 − 1

β2
(
√
−∇2φ)2

)

. (32)

which is identical to the Hamiltonian density HBI because of Eqs. (23), (24) and
(28). This gives us the following identification of the fields fµ in terms of the field
Aµ.

fµ =
F µ

R
, (33)

where

F µ = ǫµαβ∂αAβ

while R is given by Eq. (15).
Before finishing this note it is worth enquiring if there is a single “generalized

master Lagrangian” from which the Lagrangians (6) and (10) follow. In this context
it is worth pointing out that in [2], the authors have noted the common origin of the
Lagrangians (3) and (4). In particular they have shown that these Lagrangians follow
from a single “master Lagrangian”. Let us consider the Lagrangian

LMas = β2

√

1 +
1

β2
fµfµ − ǫµαβfµ∂αAβ +

1

2
mǫµαβAµ∂αAβ . (34)
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Here we treat fµ and Aµ as independent variables. Varying this “generalized master
Lagrangian” with respect to fµ and after a little algebra we get Eq. (33). On elimi-
nating fµ from LMas by using Eq. (33), we get the Lagrangian LBI as given by Eq.
(6). On the other hand, on varying Eq. (34) with respect to Aµ we get

ǫµαβ∂αfβ = mF µ . (35)

On using this to eliminate Aµ from Lagrangian (34) gives the Lagrangian LBIP as
given by Eq. (10). Note that in the limit β → ∞ the Lagrangian (34) reduces to the
“master Lagrangian” of [2].

To conclude, we have studied the generalized self-duality in the topologically mas-
sive Born-Infeld theory and shown that the equivalence of Maxwell-Chern-Simons tho-
ery [3, 4] with the Chern-Simons-Proca theory [1] also holds in the nonlinear Born-
Infeld theory. Here it is worth mentioning that the 2 + 1 dimensional Born-Infeld
action is the world volume action for D2-brane which can appear in the type IIA
superstring theory and can have Ramond-Ramond coupling via the Chern-Simons
term. More generally, the action for n Dp-branes at small separation is descried by
the Dirac-Born-Infeld action

Sdbi =
∫

dp+1σTr
(

eΦ
√

−det(G + B + F )
)

(36)

which can couple to the Ramond-Ramond background via the Chern-Simons term

Scs =
∫

p+1
Tr

[

e(B+F )∧C
]

(37)

(Here we have used the stringy notation, where B is the Neveu-Schwarz 2-form pulled
back on the world volume, C is the Ramond-Ramond field. Φ is the dilaton, G the
pull back of the metric on the world volume of the brane and σ is the coordinate on
it.) It will be remarkable, if similar results, as given in our present work, can also hold
for the above more genreal D-brane action for arbitrary p in presence of the B-field.
Clearly, further investigation is required to explore this point.
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