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Abstract

We rewrite the Martin-Siggia-Rose (MSR) formalism for the statis-
tical dynamics of classical fields in a covariant second order form ap-
propriate for the statistical dynamics of relativistic field theory. This
second order formalism is related to a rotation of Schwinger’s closed
time path (CTP) formalism for quantum dynamics, with the main dif-
ference being that certain vertices are absent in the classical theory.
These vertices are higher order in an ~ expansion. The structure of
the second order formulation of the Schwinger Dyson (S-D) equations
is identical to that of the rotated CTP formalism apart from initial
conditions on the Green’s functions and the absence of these vertices.
We then discuss self-consistent truncation schemes based on keeping
certain graphs in the two-particle irreducible effective action made up
of bare vertices and exact Green’s functions.
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I. INTRODUCTION

Recently there has been a lot of interest in connecting hot relativistic
quantum field theory which is important for cosmology and heavy ion physics
with classical field theory. Although there have been several insightful stud-
ies in perturbation theory [1], a systematic analysis has not been given for
the Schwinger Dyson equations. One exception is the work of Wetterich
[6], but that work only concerns itself with equal time correlation functions.
Since formalisms already exist for obtaining Schwinger Dyson (S-D) equa-
tions for both the quantum [2] and classical problems [3], we thought it
timely to review the MSR formalism, and cast it in a form so that it could
be directly compared with the now more familiar CTP formalism [4]. We
show here that the second order formulation of the S-D Equations in the
MSR formalism is identical to that of the quantum theory (CTP formalism)
apart from initial conditions on the Green’s functions and the absence of
those vertices which are higher order in ~.

II. REVIEW OF FIRST ORDER IN TIME MSR FORMALISM

In the paper of Martin-Siggia-Rose (MSR) [3], an operator formalism
was developed which allows one to find the generating functional for both
the correlation and response functions for first order classical field equations
of the type:

ẋ(r, t) = A[x(r, t)] , (1)

where A[x(r, t)] is a local polynomial in the classical field x(r, t). In the work
of MSR, A[x(r, t)] could contain dissipative terms as well as prescribed noise
terms. The formalism presented in MSR is first order in time derivatives
and not apparently covariant. What we will show is that there is a covariant
subset of the MSR equations in terms of which all the MSR Green’s functions
can be recovered. This subset can be derived from a second order Lagrangian
formulation which can be related to the ~ → 0 limit of the CTP formalism
of Schwinger and Keldysh.

For the statistical classical field evolutions of N interacting classical fields
φa, a = 1, 2 . . . N then x(r, t) is the 2N component field consisting of φa and
the canonical momentum πa = φ̇a.

x =

(

φa

πa

)

. (2)

If for example we restrict ourselves to cubic interactions, then the vector A

2



is of the form

Ai = ci(r, t) + dijxj(r, t) +
1

2
eijkxj(r, t)xk(r, t) , (3)

where i = 1 . . . 2N . In the MSR formalism one introduces the operator

x̂(r, t) ≡ −
δ

δx(r, t)
,

such that the commutation rule

[x(r, t), x̂(r′, t)] = δ(r − r′) , (4)

is true. Defining an operator Hamiltonian H

H(t) =

∫

dr′ x̂i(r
′, t)Ai(r

′, t) , (5)

the equations of motion can be written in the compact form

ẋ(r, t) = [x(r, t),H(t)] . (6)

For Eq. (4) to be true at all times one needs that x̂ satisfies

dx̂(r, t)

dt
= [x̂(r, t),H(t)] , (7)

for consistency. Therefore x̂(r, t) is a functional of x(r, 0) and x̂(r, 0). The
formal solution to these equations is given by (in what follows we suppress
the spatial coordinate r)

x(t) = U−1(t, 0)x(0)U(t, 0)

x̂(t) = U−1(t, 0)x̂(0)U(t, 0) , (8)

where

U−1(t, t0) = T exp[−

∫ t

t0

H(t′)dt′] ; U(t, t0) = T ∗ exp[

∫ t

t0

H(t′)dt′] .

The meaning of the expectation value 〈x(t)x̂(t′)〉 is as follows. Given an
initial probability function P [x(0)] then

〈x(t)x̂(t′)〉 =

∫

dx(0) x[t, x(0)] x̂[t′, x(0), x̂(0)] P [x(0)] . (9)
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Wherever x̂(0) appears, it is replaced by

x̂(0) → −
δ

δx(0)
,

and it acts on everything to the right of itself. This definition of the ex-
tended averaging procedure has three important properties.(1) The average
of a product of x’s agrees with the conventional definition. (2)The time
dependence of 〈x(t)x̂(t′)〉 is consistent with the above equations of motion.
(3) The expectation value of a product of x and x̂ which has an x̂ to the left
vanishes if P [x(0)] goes to zero fast enough at large |x|.

The last property is crucial for the tridiagonal form of the Green’s func-
tions and follows from the fact that

∫ ∞

−∞

d

dx
(xnP (x)) dx = 0 if lim

|x|→∞
xnP [x] = 0 .

Thus in particular in the absence of external sources 〈x̂(t′)x(t)〉 = 〈x̂(t′)x̂(t′)〉 =
0. The meaning of the hatted operators is understood in terms of the re-
sponse of the system to an external source. If one changes the Hamiltonian
by

δH =

∫

dr′x̂(r′t)δf(r′t) , (10)

one then finds [3] that the response of any observable A is given by:

δ〈A(t)〉

δf(t′)
|δf=0 = 〈T

(

A(t)x̂(t′)
)

〉

δ〈A(t)〉

δf(t′)δf(t′′)
|δf=0 = 〈T

(

A(t)x̂(t′)x̂(t′′
)

〉 , (11)

where T corresponds to the usual time ordered product operation. Since
x(t) and x(t′) always commute, it is clear that the generating functional for
both the fluctuation and response functions is given by

W [η, η̂] = ln Z[η, η̂] = ln〈T (S[η, η̂])〉

S[η, η̂] = exp

∫

dt dr [x(r, t)η(r, t) + x̂(r, t)η̂(r, t)] . (12)

In particular the one particle functions are

δW

δη(t)
|η=η̂=0 = 〈x(t)〉 ,

δW

δη̂(t)
|η=η̂=0 = 〈x̂(t)〉 = 0 . (13)
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The two particle Green’s function matrix is tridiagonal

G2(t) =

(

U(t) DR(t)
DR(−t) 0

)

(14)

where
Gxx(12) = U(12) = 〈x(1)x(2)〉 − 〈x(1)〉〈x(2)〉 ,

and

Gxx̂(12) = DR(12) = 〈T (x(1)x̂(2))〉 = Θ(t1 − t2)〈x(1)x̂(2)〉 .

One next doubles the space as in the CTP formalism by introducing the
field Φ(r, t)

Φ(r, t) =

(

x(r, t)
x̂(r, t)

.

)

(15)

Then the commutators of Φ satisfy in the( 2 × 2) space

[

Φα(r, t),Φβ(r′, t)
]

= i(σ2)αβδ(r − r′) . (16)

In this larger space the equations of motion are

Φ̇ = [Φ,H] , (17)

where the “non-Hermitian” operator H has the form

H =

∫

γ1
aΦa(1)d1 +

1

2
γ2

ab

∫

d1 Φa(1)Φb(1) +
1

3!
γ3

abc

∫

d1 ΦaΦbΦc , (18)

and the equations of motion in the presence of an external source J is

−iσ2Φ̇a = Ja(1) + γ1
a + γ2

ab Φb(1) +
1

2
γ3

abcΦbΦc , (19)

where

J(r, t) =

(

η(r, t)
η̂(r, t)

)

. (20)

The generating functional W [η, η̂] of Eq. 12 is now written in compact form
by writing

S = exp

[
∫

drdtΦ(r, t)J(r, t)

]

. (21)
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The expectation value of the equation of motion in the presence of an ex-
ternal source leads to the equation

− iσ2Ġ1(1) = J(1) + γ1(1) + γ2G1(1) +
1

2
γ3[G2(11) + G1(1)G1(1)] ,

GJ
m =

δmW

δJ(1)δJ(2) · · · δJ(m)
. (22)

All the higher n-point functions are obtained by functional differentiation.
The complete S-D equations are derived in the original MSR paper [3], and a
path integral representation was derived by Jouvet and Phythian [5]. These
coupled Green’s functions are in a 2N×2N matrix space and obey first order
in time equations rather than in the usual N×N space obeying second order
equations. To see how to obtain the second order formalism we will simplify
the discussion by considering a cubic plus quartic anharmonic oscillator.

III. SECOND ORDER MSR FORMALISM

For the anharmonic oscillator with equation of motion

ẍ + m2x + gx2 + λx3 = 0 ,

the above discussion leads to

H = x̂p − p̂(m2x + gx2 + λx3) . (23)

This yields the first order equations

dx

dt
= [x,H] = p ,

dp

dt
= [p,H] = −(m2x + gx2 + λx3) ,

dx̂

dt
= [x̂,H] = p̂(m2 + 2gx + 3λx2) ,

dp̂

dt
= [p̂,H] = −x̂ . (24)

The first order equations for the Green’s functions are obtained by tak-
ing the expectation value of these equations with sources added and then
using functional differentiation. The expectation value is over an initial dis-
tribution function ρ[x0, p0]. A simple example is is to choose our ensemble
of initial conditions at t = 0 from a thermal distribution of the free Hamil-
tonian, i.e.

ρ = Ne−βH0 , H0 =
1

2
p2 +

1

2
m2x2 ,

∫

ρdxdp = 1 . (25)

One can show that out of the twelve nonzero Green’s Functions in the first
order formalism only two are independent. These can be chosen as Gxx, and
Gxp̂.
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The harmonic oscillator values of these Green’s functions are easily de-
termined from the operator solutions

x(t) = x0 cos mt +
p0

m
sin mt , p̂(t) = p̂0 cos mt −

x̂

m
sinmt , (26)

and the initial density matrix. For the thermal initial conditions described
above we obtain

〈x(t)x(t′)〉 =
1

βm2
cos m(t − t′) , 〈x(t)p̂(t′)〉 =

1

m
sin m(t − t′) . (27)

The response function is

〈T (x(t)p̂(t′))〉 = D0
ret(t − t′) = θ(t − t′)

1

m
sinm(t − t′) . (28)

In general, in the absence of sources

Gp̂p̂(t − t′) = 0 , Gp̂x(t − t′) = Gxp̂(t
′ − t) = D0

adv(t − t′) .

The independent second order equations (adding sources) are

[
d2

dt2
+ m2]x + gx2 + λx3 = jx ,

[
d2

dt2
+ m2]p̂ + 2gxp̂ + 3λx2p̂ = jp̂ . (29)

Here p̂(0) is treated as an operator - δ
δp

when one averages over the initial
probability function in phase space.

These equations are derivable from the Lagrangian

LMSR =
1

2

(

p̂ [
d2

dt2
+ m2] x + x [

d2

dt2
+ m2] p̂

)

+ gx2p̂ + λx3p̂ − jp̂x − jxp̂ .

(30)

The vertices of the classical theory are

γp̂xx = γxp̂x = γxxp̂ = 2g , γp̂xxx = γxp̂xx = γxxp̂x = γxxxp̂ = 6λ .

A formal path integral formalism can be generated for the generating
functional

Z[jp̂, jx] = 〈

∫

dxdp̂e−
∫

L(x,p̂)dt〉 , (31)
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where the expectation value is over the initial density matrix.
We want to compare LMSR with the Lagrangian for the CTP formalism.

The result of the CTP formalism [2] is that the action is the difference of
two terms, one for each branch of the closed time path contour. Explicitly
for the anharmonic oscillator

LCTP =
1

2

(

x+[
d2

dt2
+ m2]x+ − x−[

d2

dt2
+ m2]x−

)

+
1

3
g[x3

+ − x3
−] +

1

4
λ[x4

+ − x4
−] − j+x+ + j−x− . (32)

Introducing the change of variables

x+ = x +
~p̂

2
, x− = x −

~p̂

2
, (33)

we obtain in this new basis

L
(2)
CTP

~
=

1

2

(

p̂ [
d2

dt2
+ m2] x + x [

d2

dt2
+ m2] p̂

)

+ gx2p̂ + λx3p̂

+
g~

2

12
p̂3 +

λ~
2

4
xp̂3 − jp̂x − jxp̂ , (34)

where

jp̂ = j+ − j− , jx =
j+ + j−

2
.

This formal manipulation can be justified by first obtaining the SD equations
in the (+,−) basis and making a rotation by π/4 as discussed in Ref. [1].

We notice that there are five extra vertices in the quantum case

γp̂p̂p̂ =
g~

2

2
, γxp̂p̂p̂ = γp̂xp̂p̂ = γp̂p̂xp̂ = γp̂p̂p̂x =

3λ~
2

2
.

not present in the MSR Lagrangian. Note that ~ arises from the fact that
the classical p̂ is the derivative operator -d/dp which for quantum mechan-
ics becomes ~

i
d/dp. It may be noted that apart from these extra vertices in

the quantum case, ~ dependence also enters in the initial conditions on the
Green’s functions. This dependence is explicit in the commutator contribu-
tions and also occers in the ~ dependence on the initial distribution which is
now a Bose-Einstein distribution rather than a Maxwell-Boltzmann one. As
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an illustration consider the quantum version of Eq. (26) for the Harmonic
oscillator with an initial Bose distribution. Then we obtain

xQ(t) = xQ
0 cos(mt) +

pQ
0

m
sin(mt). (35)

From this we find

〈x(t)x(t′)〉 = 〈x2
0〉 cos(mt) cos(mt′) + 〈

p2
0

m2
〉 sin(mt) sin(mt′)

−i
~

2
sin[m(t − t′)], (36)

where

〈x2
0〉 =

~

2m
+

~

m
[exp(~βm) − 1]−1. (37)

and

〈p2
0〉 = m2〈x2

0〉.

So we see that ~ enters in many ways in the initial conditions for the
Green’s functions, and also in the structure of the S-D equations where cer-
tain vertices are proportional to ~

2. The way one derives the S-D equations
from the action is identical for both classical and quantum mechanics. Thus
we obtain the same structure classically, but there are fewer vertex functions.

We now derive the S-D equations for a generic cubic self-interacting field
theory whether classical or quantum. For N interacting scalar fields, we
introduce the column vector Φα composed of Φ1

i = φi and Φ2
i = π̂i where

i = 1, 2, · · ·N . We also need the metric gαβ which is just σ1
αβ as far as

connecting the Φ1 and Φ2 sectors. Then we can write generically for cubic
interactions:

L =
1

2
φα(D−1

0 )αβΦβ +
1

3!
γαβρΦ

αΦβΦρ − JαΦα , (38)

where

D−1
0 αβ(x − y) = gαβ [2 + m2]δ(x − y) .

The generating functional is formally

Z = 〈T (exp[JαΦα])〉 = eW [J ] . (39)
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Defining the “classical” field Φα and the connected 2 point function G via

Φα =
δW

δJα
, G(1, 2)αβ =

δΦα(1)

δJβ(2)
,

one has that in the presence of sources

D−1
0 αβΦβ(1) +

1

2
γαβρ[

δΦβ(1)

δJρ(1)
+ Φβ(1)Φρ(1)] = Jα(1) ,

D−1
0 αβGβρ(12) +

1

2
γαβσ[

δGβσ(11)

δJρ(2)
+ Φβ(1)Gσρ(12) + Φσ(1)Gβρ(12)]

= δρ
αδ(1 − 2) . (40)

To obtain the S-D equation for the inverse two point function we first use
the connection between the connected 3-point function and the 1-PI vertex
function [8] obtained by first Legendre transforming from J to Φ and using
the chain rule

δ

δJα(1)
=

∫

d2 G(12)αβ δ

δΦ(2)β
, (41)

〈T

(

Φα(1)Φβ(2)Φρ(3)

)

〉c =
δGαβ(12)

δJρ(3)

=

∫

d4 d5 d6Gαα′(14)Gββ′ (25)Gρρ′ (3, 6)Γ
α′β′ρ′(456) . (42)

where the 1-PI three point function is defined by

Γαβρ(123) =
δG−1

αβ (1, 2)

δΦρ(3)
. (43)

The usual S-D is obtained by multiplying Eq. 40 on the right by G−1 to
obtain

G−1
αβ(1, 2) = D−1

0αβ(1, 2) + Σαβ(1, 2) + γαβρΦ
ρ(1)δ(1 − 2) , (44)

and

Σαβ(1, 2) =
1

2

∫

d3d4γαρσGρλ(13)Gσν (14)Γ(342)λνβ . (45)

We also have

Γασρ(1, 2, 3) = γασρδ(1 − 3)δ(1 − 2) +
δΣασ(1, 2)

δΦρ(3)
. (46)
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However Σ is a proper self energy and can be related [7] to the effective
action Γ2[G] for the 2-PI irreducible graphs of the theory via

Σ(12)αβ = 2
δΓ2[G]

δGαβ(1, 2)
, (47)

so that it is just a function of the bare vertices and the full Green’s functions.
Using

δΣ(12)αβ

δΦρ(3)
=

∫

d5d6
δΣ(12)αβ

δGσλ(5, 6)

δGσλ(5, 6)

δΦρ(3)
, (48)

we obtain that

Γαβν(1, 2, 3) = γαβνδ(1 − 2)δ(1 − 3)

−

∫

d4 d5 d6 d7 Γαρσ(145)Gρη(46)Gσλ(57)H(67; 23)ηλ;βν . (49)

The scattering Kernel H is defined by

δΣαβ(12)

δGσλ(5, 6)
= H(1256)αβσλ .

Self consistent approximations [7, 8] are determined by keeping a certain
class of graphs in Γ2[G], the sum of all 2-PI graphs made from bare vertices
and full propagators. For cubic interactions, the Bare Vertex Approximation
(BVA) is obtained by keeping the graph

∫

d1d2γijkGil(12)Gjm(12))Gkn(12)γlmn ,

which then leads to the self energy being the one loop diagram, and the
scattering Kernel being single particle exchange. By using the variational
definitions of Σ and H one is guaranteed an internally consistent approxi-
mation. As an example of the difference between the quantum and classical
S-D equations, let us restrict ourselves to a cubic anharmonic oscillator and
make the bare vertex approximation. The S-D equation for the correlation
function becomes

Gxx(12) = G0
xx(12) +

∫

d3d4G
(0)
xi (13)γijkGjl(34)Gkm(34)γlmnGnx(42) ,

(50)
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which can be identified with Kraichnan’s Direct Interaction Approximation
[9]. Expanding we can write this in terms of classical and quantum contri-
butions. We have in symbolic form

Gxx = G0
xx + G0

xxΣcl
AGp̂x + G0

xp̂Σ
cl
RGxx + G0

xp̂[Σ
cl
F + ΣQ

F ]Gp̂x . (51)

The classical contributions to the self-energy in the BVA are

Σcl
F (12) =

1

2
γ2

p̂xxG
2
xx(12) , Σcl

R(12) = γ2
p̂xxGxp̂(12)Gxx(12) ,

Σcl
A(12) = γ2

p̂xxGp̂x(12)Gxx(12) , (52)

and the quantum contribution is

ΣQ
F (12) =

1

2
γp̂xxγp̂p̂p̂[G

2
xp̂(12) + G2

p̂x(12)] , (53)

which has formal order of ~
2 since γp̂p̂p̂ is of order ~

2.
We have recently shown that the classical BVA gives excellent agreement

with Monte Carlo simulations in 1 + 1 dimensional φ4 field theory [10].

IV. CONCLUSIONS

We have shown how the classical S-D equations can be derived from the
quantum S-D equations by comparing the CTP formalism with the MSR
formalism. Our hope is that this result will allow researchers to make clearer
the connection between quantum field thory and classical field theory at high
temperatures. We are in the process of comparing the BVA for the quantum
and classical cases at high and low temperature to understand for what range
of temperatures the classical approximation is valid.
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