arXiv:.cond-mat/9804212v1 20 Apr 1998

N Fermion Ground State of Calogero-Sutherland type
Models in Two and Higher Dimensions

Avinash Khare*
Institute of Physics, Sachivalaya Marg,
Bhubaneswar 751005, India.

Abstract

[ obtain the exact ground state of N-fermions in D-dimensions (D > 2) in
case the N particles are interacting via long-ranged two-body and three-body
interactions and further they are also interacting via the harmonic oscillator
potential. I also obtain the N-fermion ground state in case the oscillator
potential is replaced by an N-body Coulomb-like interaction.
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Recently there is a revival of interest in the area of exactly solvable many
body problems. A celebrated example of a solvable many-body system is the
well known Calogero-Sutherland (CS) model in one dimension [1-3] which has
found wide applications [4] in areas as diverse as quantum chaos and frac-
tional statistics.In these models, one not only knows the exact N-boson as
well as N-fermion ground states but also the complete excitation spectrum.
What about two and higher dimensional many-body problems ? So far as
I am aware off, the only N-body problem which is exactly solvable in D-
dimensions (D > 2) is that of N-bosons or N-fermions experiencing pairwise
(or one body) harmonic interaction. Apart from this example, there exist
several N-body problems [5-10] for which the N-boson ground state as well
as radial excitation spectrum over it is analytically known. In some of these
cases, a class of N-fermion excited states are also known analytically. How-
ever, to the best of my knowledge, apart from the oscillator potential, there
exist no other many-body problem in D-dimensions for which N-fermion
ground state is exactly known.

In this note, I obtain the exact ground state of N-fermions in D-dimensions
(D > 2) in case the N-particles are interacting via long ranged two-body and
three-body interactions and further they are also interacting via an external
harmonic oscillator potential. As a by-product, I also discuss its relevance
in the context of the N-anyon ground state. Finally, I also obtain the N-
fermion ground state in case the harmonic oscillator potential is replaced by
an N-body Coulomb-like potential [8].

Soon after the seminal work of Calogero [1], it was shown by Calogero
and Marchioro [5] that the N-boson ground state and radial excitations over
it can be obtained in the case of a three-dimensional N-body problem with
two-body inverse square interaction provided one also adds a long ranged
three-body interaction which is not present in one dimension. Recently we
[7] have generalized the Calogero-Marchioro result to arbitrary number of
dimensions and also considered the Sutherland variant of the model. The
model considered by us in D-dimensions is (D > 2) [7]

1 X, N1 Yooy 1,
H:_§ZVi+gZﬁ+G > ey +§Z7’i (1)
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where we have set h = m = w = 1 [11], r; is the position of the i'th particle,
r;; = r; —r; denotes the relative separation of the i’th and j'th particles,
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while g and G are the strengths of the two and three-body interactions,
respectively.

Unlike the N-boson ground state, it is in general far more difficult to
obtain the N-fermion ground state. This is because, in view of the Pauli
exclusion principle, the N-fermion ground state energy in D-dimensions, de-
pends very sensitively on the value of N and D. As a result, even in the
simplest case of N-fermions in an oscillator potential, no general expression
can be written for the ground state energy even though, for any given N and
D, one can immediately give its value.

To obtain the N-fermion ground state of the system as given by eq. (1),
we start with the ansatz

N f
=TI lri—r; "> 4. (2)

i<j
On substituting this ansatz in the Schrodinger equation Hy = FEv with H
as given by eq. (1), it is easily shown that 1, satisfies the equation

1o 7 on (ri = 1) - (Vi — Vi) A

(3)

provided g and G are related to AfD by

Ab=v@=[\/D* 49— D], )

Note that in this particular case V = %Zi r?. Now, since we want the N-
fermion ground state, let us further substitute the ansatz

Y1 = Pso(t = Z:Tg) (5)

where g is the N x N Slater determinant which is the N free-fermion ground
state state wave function. For example, one of the free 3-fermion ground state
wave function in d > 3 (while it is the unique one in D = 2) is given by

§ 0 = [(w1y2 — 2amn) + (22ys — x3y2) + (2391 — 21Y3)] - (6)

On substituting the ansatz (5) in eq. (3) we find that ¢ satisfies the equation

N(N —1)

A el + S (E- Vs =0 (@
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where eg is the ground state energy (including the center of mass) of N-

fermions in an oscillator potential. For example, in the case of 3 particles
(N=3), using eq. (6) it is easy to verify eq. (7) and show that

3D
e)(N=3D>2) = =3 +2. (8)

In the case of the oscillator potential (V' = %t), it is easily shown that the
exact solution to eq. (7) is

!
o(t) = ¢/ Ln® (1) (9)
while the corresponding energy is

N(N - 1)

Efz[z

AL+ eﬂ (10)

which gives us the exact N-fermion ground state (n=0) as well as the radial
excitation spectrum over it. Here FfD is given by

SEREILES VAN )

Several comments are in order at this stage.

1. Tt is worth noting that whereas the exact N-fermion ground state is
obtained when g = G+ Dv/G (see eq. (4)), the exact N-boson ground
state is obtained only in case g = G+(D—2)v/G [7]. The corresponding
ground state energies and eigenfunctions are

N(N -1
gl =YW D 5 )Ag+eg§ (12)

—TL 1= xy 1 sean ——zr (13)

1<J
Eb = NN=1) 1)/\3) 4 NP (14)
2 2
N 1 N
H |r; —r; |AD exp(—= Z (15)
1<jJ 23 =1



where
A%:\/_:%[ (D —2)2+4g — (D —2)]. (16)

Thus, as yet we do not have a model (apart from the pure harmonic
oscillator) in which the exact N-boson as well as N-fermion ground
state energies can be simultaneously obtained (for the same value of
the parameters) in a given dimension D. Instead, what we find is that
if for a given set of parameters, the ground state energy of N-bosons in
potential (1) can be obtained in D dimensions, then for the same set
of parameters one can obtain the ground state energy of N-fermions
but in D — 2 dimensions. Conversely, if one can obtain the ground
state energy of N-fermions in D-dimensions experiencing potential (1),
then for the same set of parameters, one can also obtain the ground
state energy of N-bosons in D + 2 dimensions. It is worth pointing out
that long time ago, a similar connection was obtained by Parisi and
Sourlas [12] between the critical exponents of the random field model
(which is one of the simplest disordered system) in D-dimensions and
the critical exponents of the same model in the absence of any disorder
but in D — 2 dimensions. Similarly, they also showed [13] that the
branched polymers in D-dimensions belong to the same universality
class as the Lee-Yang edge singularity in D — 2 dimensions.

. The fact that eq. (12) indeed represents the ground state energy of
N-fermions can be shown as follows. Firstly, for ¢ = G = 0 = AfD
(i.e. pure oscillator potential), obviously eg is the ground state energy.

Further, one can define the supersymmetric charges

+1

Lot ey (1)

i) g

. . Yi — Yj .0
Qyi:pyi—zymLZAfDZ 2_]+z

(logts) (18)
iy i 0y;

etc. and their Hermitian conjugates and show that the H as given by
eq. (1) can be written as

N
H=2Y(QfQu+Q/Qu.+..)+E] (19)
=1

|~
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where E{ is as given by eq. (12) while ¢ and G are related to A}, by
eq. (4). Further, one can show that the Q’s annihilate the N-fermion
ground state as given by eq. ([J). Clearly, since the operator on the
right hand side of eq. ([J) is positive definite and it annihilates the
ground state wave function, hence E(]; must be the N-fermion ground
state energy corresponding to the Hamiltonian (1).

. For large N, how does the N-fermion ground state energy behaves as

a function of N 7 This is easily answered by noting that for large N,
f

ey in D-dimensions is given by
D D1
J = DYYPN 4+ o(N7 ). 20
i = S (DYIPNF +o(N) (20)

Hence for any D(> 2), and for large N, the ground state energy of
N-fermions goes like

D
D+1

In particular, note that for large N, the ground state energy of N-
fermions is maximum in D = 2 and monotonically decreases with the
number of dimensions. On the other hand, the N-boson ground state
energy as given by eq. ([[4) is least in two dimensions and monotonically
increases with the number of dimensions.

fN—>oo N2

B Af (Dv)l/DND“ - —Af FONT)  (21)

. The bosonic excited state spectrum is easily obtained by running through
eqs. (2) to (9) putting ¢s = 1 and replacing AJ, by A} as given by eq.
(Id). One finds that the bosonic radial eigenstates are given by

N(N -1 ND
E, = [2n + ( )Ag’) + } (22)
2 2

N 1 N
'l/]n:H|I'Z—I‘]|D6{L’p 52 L,» (23)

1<j i=1

where N(N -1 ND
I = (2_ )AQ’)+ 51 (24)

I would now like to show that apart from the oscillator potential, the
exact N-fermion ground state energy can also be obtained in case one

6



replaces the oscillator potential in the Hamiltonian (1) by the N-body

potential
a
V(ry,ro, .. ,ry) = ————— (25)
YLy
To this end note that the steps as given by egs. (2) to (7) are indepen-

dent of the form of the potential. On substituting t(= >N, r2) = p? in

eq. (7), we find that in the case of the potential (23) it takes the form

& (o) + %[N(N — DA +26h — ) + 25— [ B =0 (26)

where eg as before is the ground state energy of N-fermions in D-
dimensions in an oscillator potential.. It is easily shown shown that
the solution to this equation is

o(p) = e VIE LT (2, B E |p) (27)

Oé2

E, = — 5, n=0,1,2,.. (28)
2n+wAg+eg_%}

where '), is as given by eq. (11). For g = G = 0 (i.e. A, = 0), this
gives us the exact N-fermion ground state and radial excitations over it
in the potential (B5). This then provides another instance where exact
fermionic ground state can be obtained in the case of both the oscillator
and the N-body potential () thereby providing one more support to
the conjecture that whenever an exact eigenstate can be obtained in
the oscillator potential, similar exact eigenstate can also be obtained
in the case of the N-body potential as given by (B3) [8].

All these results are easily extended to the Calogero variant i.e. by re-
placing the one body potential ¥, 77 by £ >0, r2 in Hamiltonian (1) as
well as in eq. (BJ). Everything goes through except for the fact that now
the energy is that of N-fermions minus the center of mass energy (=D/2).
For example, it is easily shown that the N-fermion ground state and radial

excitations over it are given by

R N 1
Vn = Zl;[] e, — 1y |0 ¢s€xp(—§ﬁ YL (=D _r})  (29)



- | N N(N —1 D

It is worth pointing out that in the special case of three dimensions (D =
3), Calogero and Marchioro [5] had obtained these results long time ago [5]
in case N = 3,4. However, on comparing their Egs. (12) to (18) with our
results, we find that there are misprints/mistakes in their expressions. For

example, according to them the 3-fermion energy is \/g (2n + 3AfD:3 +4)

while the correct expression should be \/§(2n + 3A),_4 + 5) as seen from
eq. (BJ). The fact that our expression is correct is easily seen by noting
that in the limit of ¢ = G = 0 (hence A, = 0), the ground state energy
of 3-fermions (in an oscillator potential) in 3-dimensions is known to be 5
(and not 4) after center of mass has been taken out. Similarly, according
to them F{):g(]\f = 3) — % = BAJ,;:g + 3 while the correct expression is
3A},_; 4 4 as is easily verified by using eqs. (11) and (B9). Similarly, their
4-fermion energy and eigenfunctions are not correct. As is clear from eq.
(BO), the correct expression for energy is v/2(2n + 6A%_, 4+ 15/2) and not
V2(2n +6A%_, +6) as claimed by them. Note that the ground state energy
of 4-fermions in 3-dimensions in pure oscillator potential is 15/2 (and not 6)
after the center of mass has been taken out. Similarly, it may be noted that
I _o(N =4) - s = 6AS,_y + 2 (see eq. (9)) and not 6AS,_s+ 5 as claimed
by them.

The results obtained in this paper have direct relevance to the problem
of N-anyons in an oscillator potential [10,14]. For example, one can now
understand as to why N-anyon linear state starting from the N-fermion
ground has not been analytically obtained so far. To see this, let us recall
that the N-anyon Hamiltonian in the oscillator potential is related to the
Hamiltonian (1) at g = G(= o? say) by

N
L
Hanyon =H+« Z _2] (31>

j>i=1 Tij

where [;; = r;; X p;j, is the angular momentum operator. However, as is clear
from eqs. ([Lf) and (4), at g = G, only N-boson ground state can be obtained
exactly but not the N-fermion ground state (it may be noted that anyons
can only exist in two dimensions ). In this context it may also be noted that
N-bosons, in their ground state, always have zero angular momentum and
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hence the noninteracting N-anyon ground state starting from the N-boson
ground state is identical with the interacting N-boson ground state in the
Calogero-Marchioro model (with g = G).

What about the noninteracting N-anyon ground starting from the N-
fermion ground state 7 Using eq. (4) it is clear that it cannot be a linear
state since such a linear state is possible if g # G while in the anyon model
g is always equal to G.

However, we can use the exact N-fermion ground state obtained in this
paper to get some information about the nature of the N-anyon ground state
in an oscillator potential. In particular, note that the N-anyon Hamiltonian
is related to the Hamiltonian (1) at G = o2, g = o? + 2a by

N Vo1
Hupyon = H —a ) %—20&2—2. (32)
j>i=1 Tij i<j Tij
Now what one could do is to treat second and third terms on the right hand
side of eq. (BJ) as perturbation. In that case, to the zeroth order, there is an
exact linear 3-anyon state starting from the 3-fermion ground state. One now
has to calculate the effect of the last two terms by using perturbation theory
and study the nature of crossing with the exact N-anyon state starting from
the N-boson ground state. We hope to study this question in the near future.
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