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Abstract: Associated Lamé potentials V (x) = a(a + 1)msn2(x,m) + b(b + 1)mcn2(x,m)/dn2(x,m) are

used to construct complex, PT-invariant, periodic potentials using the anti-isospectral transformation

x→ ix+ β, where β is any nonzero real number. These PT-invariant potentials are defined by V PT (x) ≡

−V (ix + β), and have a different real period from V (x). They are analytically solvable potentials with a

finite number of band gaps, when a and b are integers. Explicit expressions for the band edges of some of

these potentials are given. For the special case of the complex potential V PT (x) = −2msn2(ix+ β,m), we

also analytically obtain the dispersion relation. Additional new, solvable, complex, PT-invariant, periodic

potentials are obtained by applying the techniques of supersymmetric quantum mechanics.
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In the past few years, Bender and others [1, 2] have looked at several complex potentials with PT-

symmetry and have shown that the energy eigenvalues are real when PT-symmetry is unbroken, whereas

they come in complex conjugate pairs when PT-symmetry is spontaneously broken. Recently, Mostafazadeh

[3] has clarified this issue by showing that there is a more general setting of pseudo-hermiticity (of which

PT-symmetry forms a special case) in which eigenvalues are either real or occur in complex conjugate pairs.

Scattering problems with complex, PT-invariant potentials have also been investigated [4, 5]. However,

there have been very few papers discussing periodic potentials with PT-symmetry. Only two types of

PT-invariant, periodic potentials have been considered in detail in the literature, namely, i sin2N+1(x) [6]

and delta function potentials with complex couplings [7, 8]. These potentials have been shown to possess

real band spectra with an infinite number of band gaps. It might be noted here that obtaining these results

required extensive numerical analysis and no analytic results for band edge energies were possible [9]. The

purpose of this letter is to construct and study several new classes of analytically solvable, complex, PT-

invariant, periodic potentials with a finite number of band gaps. Our approach will consist of (i) making

use of the anti-isospectral transformation x → ix + β [10], and (ii) constructing supersymmetric partner

potentials from techniques developed in supersymmetric quantum mechanics [11].

Anti-Isospectral Transformations: We begin with the simple observation that if ψ(x) is a solution

of the Schrödinger equation for the real potential V (x) with energy E, then ψ(ix + β) is a solution of

the Schrödinger equation for the complex potential −V (ix + β) with energy −E, where β is an arbitrary

constant. The new potential −V (ix + β), generated by the anti-isospectral transformation x → ix+ β, is

clearly PT-symmetric and will be denoted by V PT (x). Further, if ψ(x) and ψ(ix+ β) satisfy appropriate

boundary conditions, they are eigenfunctions of V (x) and V PT (x) respectively. Since the ordering of

energy levels for V PT (x) is the opposite of the ordering of energy levels for V (x), this is presumably why

the transformation x→ ix+ β is called “anti-isospectral”.

In this letter, we focus on periodic potentials by choosing V (x) to be the associated Lamé potential

V (x) = a(a+ 1)msn2(x,m) + b(b+ 1)m
cn2(x,m)

dn2(x,m)
, (1)

which has a real period 2K(m). Note that if either a or b is zero, this potential is called the Lamé potential.

Recall that when a and b are non-negative integers, the associated Lamé potential has many analytically
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solvable eigenstates and only a finite number of band gaps [12, 13]. Here, sn (x,m ), cn (x,m ), dn (x,m )

are Jacobi elliptic functions with elliptic modulus parameter m (0 ≤ m ≤ 1). They are doubly periodic

functions with periods [4K(m ), i2K ′(m )], [4K(m ), 2K(m ) + i2K ′(m )], [2K(m ), i4K ′(m )] respectively

[14, 15], where K(m ) ≡
∫ π/2
0 dθ[1−m sin2 θ]−1/2 denotes the complete elliptic integral of the first kind, and

K ′(m ) ≡ K(1−m ). The complex, PT-invariant potential obtained via an anti-isospectral transformation

applied to eq. (1) is

V PT (x) = −a(a+ 1)msn2(ix+ β,m) − b(b+ 1)m
cn2(ix+ β,m)

dn2(ix+ β,m)
. (2)

It is also periodic with a different real period 2K ′(m). Furthermore, it is analytically solvable with a finite

number of band gaps. It is important to understand that the key point for obtaining the above results

is that unlike trigonometric and other periodic functions, Jacobi elliptic functions are doubly periodic

functions. This allows both V (x) and V PT (x) to be simultaneously periodic, even though the periods are

different. Note that the arbitrary nonzero constant β in the anti-isospectral transformation, x → ix + β,

is chosen so as to avoid the singularities of Jacobi elliptic functions [14].

Let us first apply our approach to the Lamé potentials (b = 0)

V (x) = a(a+ 1)msn2(x,m) , a = 1, 2, 3, ... , (3)

which are known to have 2a+ 1 eigenstates (band edges) and a band gaps. Let Ej(m) and ψj(x,m) with

j = 0, 1, . . . , 2a denote the band edge energies and wave functions. The anti-isospectral transformation

x→ ix+ β [10] yields the PT-invariant potential

V PT (x) = −a(a+ 1)msn2(ix+ β,m) , a = 1, 2, 3, ... , (4)

with real period 2K ′(m). The band-edge eigenvalues and eigenfunctions of V PT (x) are related to those of

the Lamé potential (3) by

EPT
j (m) = −E2a−j(m) , ψPT

j (x,m) ∝ ψ2a−j(ix+ β,m) , j = 0, 1, ..., 2a . (5)

Thus, the PT-invariant, periodic potential (4) also has precisely a band gaps and 2a + 1 band edges at

energies given by eq. (5). Special mention should be made of the remarkable fact that for any integer a,
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all bands and band gaps exchange their role as one goes from a Lamé potential to its PT-invariant version

V PT (x).

For any band structure problem, an important quantity is the discriminant ∆ [16] which gives infor-

mation about the number of band gaps as well as their widths. The question is whether one can relate

the discriminant for the potential V PT (x) with the discriminant ∆ for the corresponding Lamé potential.

Unfortunately, this is not directly possible by using eq. (5), since it only relates energies of states with

different numbers of nodes. However, we now derive a remarkable relation using which we can relate the

two discriminants ∆ and ∆PT .

We start from the Schrödinger equation for the Lamé potential (3)

− ψ′′(x) + a(a+ 1)msn2(x,m)ψ(x) = E(m)ψ(x) , (6)

where a prime denotes a derivative with respect to the argument. On using the relation [14, 15]

√
msn(x,m) = −dn[ix+K ′(m) + iK(m), 1 −m] , (7)

and then defining a new variable y = ix+K ′(m) + iK(m), the Schrödinger eq. (6) takes the form

− ψ′′(y) + a(a+ 1)(1 −m)sn2(y, 1 −m)ψ(y) = [a(a+ 1) − E(m)]ψ(y) , (8)

so that for the Lamé potentials (3) we obtain the remarkable relations

Ej(m) = a(a+ 1) − E2a−j(1 −m) , ψj(x,m) ∝ ψ2a−j(ix+K ′(m) + iK(m), 1 −m), j = 0, 1, ..., 2a. (9)

In passing, note that for the special choice m = 1/2, one has several interesting relations:

Ej(m = 1/2) + E2a−j(m = 1/2) = a(a+ 1) , Ea(m = 1/2) = a(a+ 1)/2 . (10)

On combining eqs. (5) and (9) we obtain

EPT
j (m) = Ej(1 −m) − a(a+ 1) , j = 0, 1, ..., 2a , (11)

and hence the corresponding discriminants are related by

∆PT (E,m) = ∆[E + a(a+ 1), 1 −m] . (12)
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As an illustration, in Figure 1 we plot the real and imaginary parts of the PT-invariant, complex

potential V PT (x) = −12msn2(ix+ β,m). Using the well known results for the Lamé potential with a = 3

[12] and eq. (5), the ground state (lowest band edge) eigenvalue and eigenfunction is

ψg(x) = sn(ix+ β,m)[2 + 2m− δ3 − 5msn2(ix+ β,m)] , Eg = −5 − 5m− 2δ3 , (13)

where δ3 ≡
√

4 − 7m+ 4m2. In Table I we have given all the seven band edge eigenvalues and eigenfunc-

tions. We have subtracted off the ground state energy from the potential so that the lowest band edge by

construction is at zero energy. Observe from the table that the band edges are both periodic as well as

anti-periodic with periods 2K ′(m) and 4K ′(m) respectively.

For the special case of the Lamé potential with a = 1, the dispersion relation is also analytically

known [17]. We now obtain the dispersion relation for the corresponding PT-invariant potential V PT (x) =

−2msn2(ix+ β,m). To that end, we start from the Schrödinger equation:

− ψ′′(x) + [1 +m− 2msn2(ix+ β,m)]ψ(x) = Eψ(x) , (14)

where we have subtracted the ground state energy Eg = −1 − m from the potential so that the new

potential [V PT ]−(x) = V PT (x) − Eg has zero ground state energy. On substituting y = ix + β, eq. (14)

takes the form

− ψ′′(y) + [−m+ 2msn2(y,m)]ψ(y) = (1 − E)ψ(y) . (15)

Now it is well known that two independent solutions of this equation are given by [17]

ψ(x) =
H(ix+ β ± α1) exp[∓(ix+ β)Z(α1)]

θ(ix+ β)
, (16)

where H, θ, Z are the Jacobi eta, theta and zeta functions, while α1 is related to the energy E of eq. (15)

by

E = msn2(α1,m) . (17)

On using the Bloch condition and the fact that while θ(ix+ β) is a periodic function with period 2K ′(m),

H(ix+ β) is only quasi-periodic [17], i.e.

H(i[x+ 2K ′(m)] + β) = H(ix+ β) exp[−πK ′(m)/K(m)] , (18)
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it is easily shown that the complex, PT-invariant potential [V PT ]−(x) has a dispersion relation given by

k = ∓
π

2K ′(m)
± iZ(α1) + i

π

2K(m)
, (19)

where α1 is given by eq. (17).

We now turn to the associated Lamé potentials of eq. (1), where without loss of generality we consider

a > b with both being positive integers. We shall later comment about the case a = b. As has been shown

by us [12, 13], these are also exactly solvable problems with precisely a band gaps and 2a+ 1 band edges.

However, in many of these cases, some of the bands are unusual in that both the band edges have the same

period, since some band gaps vanish. In this sense, the associated Lamé potentials are much richer than

the Lamé potentials. On using the anti-isospectral transformation, it is easy to see that the band edges of

the potential (1) and its PT-invariant counterpart

V PT (x) = −a(a+ 1)msn2(ix+ β,m) − b(b+ 1)m
cn2(ix+ β,m)

dn2(ix+ β,m)
, (20)

are again connected by the relation (5). However, we are unable to relate the discriminants of the two

potentials since we have not been able to derive an analogue of the relation (9). As an illustration,

let us consider the (a=2, b=1) associated Lamé potential and its corresponding PT-invariant potential

V PT (x) = −6msn2(ix + β,m) − 2mcn2(ix+ β,m)/dn2(ix+ β,m) . The ground state eigenvalue and

eigenfunction is given by

ψg(x) =
cn(ix+ β,m

dn(ix+ β,m)
[3msn2(ix+ β,m) − 2 +

√
4 − 3m] , Eg = −5 −m− 2

√
4 − 3m . (21)

In Table 2 we have given all the band edge eigenvalues and eigenfunctions.

Finally, let us discuss the associated Lamé potentials (1) for the case a = b = integer. In view of the

well known Landen transformation formula [14, 18]

dn(x,m) + dn(x+K(m),m) =
1

α
dn

[

x

α
, m̃

]

, α =
1

1 +
√

1 −m
, m̃ =

[

1 −
√

1 −m

1 +
√

1 −m

]2

, (22)

the associated Lamé potentials with a = b can be rewritten, apart from an overall constant as Lamé

potentials and so the results derived above for the Lamé potentials will go through with a modified modulus

parameter m̃.
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Supersymmetric Partner Potentials: Additional analytically solvable finite band gap potentials can

be obtained from our previous results by using supersymmetry. The procedure is standard [11]. Consider a

periodic potential V−(x) whose ground state energy is zero, eigenvalues are E
(−)
n and eigenfunctions (band

edges) are ψ
(−)
n (x). Let the ground state wave function be denoted by ψg(x) ≡ ψ

(−)
0 (x). One constructs the

superpotential W (x) = −ψ′
g(x)/ψg(x). The original potential and its supersymmetric partner potential

are then given by V±(x) = W 2(x) ±W ′(x). The eigenvalues are the same for both potentials and their

un-normalized eigenfunctions are related by

ψ
(+)
0 (x) ∝ 1/ψ

(−)
0 (x) , ψ(+)

n (x) ∝
[

d

dx
+W (x)

]

ψ(−)
n (x) , n ≥ 1 . (23)

This technique is immediately applicable to PT-invariant potentials V PT (x) of the type given in eq. (20)

from which the ground state energy has been subtracted. The only caution to keep in mind is that the

ground state of V PT (x) corresponds to the highest eigenstate of V (x) as indicated by eq. (5).

Let us apply the above formalism to the Lamé potentials. First, for the special case a = 1, one has

V−(x) = 2msn2(x,m) −m , [V PT ]−(x) = −2msn2(ix+ β,m) +m+ 1 , ψg(x) = sn(ix+ β,m) ,

WPT (x) = −i
cn(ix+ β,m) dn(ix+ β,m)

sn(ix+ β,m)
, [V PT ]+(x) = −2msn2(ix+ β + iK ′(m),m) +m+ 1. (24)

Here, the result of invoking supersymmetry is basically a translation of the independent variable in

[V PT ]−(x). Such potentials are usually called self-isospectral potentials [19].

For higher a values, the two supersymmetric partner potentials are quite different in shape from each

other [12], even though they both have the same band edge eigenvalues. Let us now explicitly consider

the case a = 3. Here, using the ground state eigenfunction of the PT-invariant potential V PT (x) =

−12msn2(ix+ β,m) − Eg, where Eg is given in eq. (13), we find that the corresponding superpotential is

WPT (x) = −i
cn(ix+ β,m)dn(ix+ β,m)

sn(ix+ β,m)
+ 10im

cn(ix+ β,m)sn(ix+ β,m)dn(ix+ β,m)

[2 + 2m− δ3 − 5msn2(ix+ β,m)]
, (25)

so that the supersymmetric partner potential is [V PT ]+(x) = [WPT (x)]2 + [WPT (x)]′ . In this way, one

has discovered another PT-invariant complex potential with a finite number of band gaps. It is plotted in

Figure 2.
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We can obtain yet other analytically solvable, complex, PT-invariant potentials by exchanging the or-

ders of applying anti-isospectral transformations and supersymmetry. For example, we could first determine

the supersymmetric partner of a solvable associated Lamé potential and then compute the corresponding

PT-invariant potential. The results for the a = 1 Lamé potential are:

V+(x) = 2msn2(x−K(m),m) −m , [V+]PT (x) = −2msn2(ix+ β −K(m),m) +m+ 1 , (26)

where the potentials have been adjusted so as to have zero ground state energy. Again, for this a = 1

example, one finds that [V+]PT (x) is essentially the same as [V PT ]+(x) with a constant complex shift of

the independent variable x.

The situation is much richer and more interesting for Lamé potentials with higher a values. For instance,

it is shown in ref. [12] that the supersymmetric partner potential of the a = 3 Lamé potential is given by

V+(x) = −12msn2(x,m) +
2m2 sn2(x,m)cn2(x,m)

dn2(x,m)

[2m+ δ1 + 11 − 15msn2(x,m)]2

[2m+ δ1 + 1 − 5msn2(x,m)]2
, (27)

and the corresponding PT-invariant complex potential [V+]PT is simply obtained from here by using the

anti-isospectral transformation x→ ix+β and subtracting off the ground state energy Eg given by eq. (25)

from it. This potential [V+]PT is plotted in Figure 3. Clearly its band edge energy eigenvalues are simply

related to those of V+(x) and hence to the a = 3 Lamé potential by relation (5). Hence the band edge

energy eigenvalues of [V+]PT are identical to those of [V PT ]+ and [V PT ]− even though the three potentials

are distinct. For the example under consideration, this is just the statement that the three different complex

PT-invariant potentials [V PT ]−(x), [V PT ]+(x), [V+]PT (x) plotted in Figures 1,2,3 all have the same band

structure.

In Table 2 we have given the expression for the band edge eigenvalues and eigenfunctions for the PT-

invariant complex potential V PT (x) = −6msn2(ix + β,m) − 2mcn2(ix+ β,m)/dn2(ix+ β,m) suitably

adjusted by subtracting its ground state energy Eg = −5−m− 2
√

4 − 3m so that the lowest band edge is

at zero energy. Using the ground state wave function of this potential, the corresponding superpotential

turns out to be

WPT = i
sn(ix+ β,m)dn(ix+ β,m)

cn(ix+ β,m)
− im

cn(ix+ β,m)sn(ix+ β,m)

dn(ix+ β,m)

− 6im
sn(ix+ β,m)dn(ix+ β,m)cn(ix+ β,m)

3msn2(ix+ β,m) − 2 +
√

4 − 3m
. (28)
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Hence the corresponding supersymmetric partner potential [V PT ]+(x) = [WPT (x)]2 + [WPT (x)]′ is easily

calculated. On the other hand, yet another PT-invariant potential with the same band edges can be

obtained by starting from the partner potential of the (a = 2, b = 1) associated Lamé potential V (x) =

6msn2(x,m) + 2mcn2(x,m)/dn2(x,m), and applying the anti-isospectral transformation. We get

[V+]PT (x) = −2msn2(ix+ β,m) − 6m
cn2(ix+ β,m)

dn2(ix+ β,m)
+ 5 +m+ 2

√
4 − 3m . (29)

It is worth noting that again the two potentials [V+]PT and [V PT ]+ are quite different even though they

have the same band edge eigenvalues. Further, while the initial associated Lamé potential is self-isospectral,

its PT-transform is not so. In fact, this seems to be true in general. In particular, whereas the associated

Lamé potentials with b = a − 1 are isospectral, we find that the corresponding PT-invariant periodic

potentials are not self isospectral except when a = 1.

Finally, let us comment that for the PT-invariant potential i sin2N+1(x), Bender et al. [6] found that

the band edge eigenfunctions are always 2π periodic and unlike other lattice problems, the anti-periodic

band edge eigenfunctions of period 4π were absent. They speculated whether this could perhaps be a

unique signal of PT symmetry. However, in this letter, we have seen many examples where this is not true.

In particular, Table I shows an example with both periodic as well as anti-periodic band edges, showing

that the absence of anti-periodic band edges is not a general property of PT-invariant periodic potentials.
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Figure Captions

Figure 1: A plot of the real and imaginary parts of the complex PT-invariant potential [V PT ]−(x) =

−12msn2(ix+β,m)−Eg , where Eg = −5−5m−2δ3, and δ3 ≡
√

4 − 7m+ 4m2 (see ref. [12]). The potential

has been defined so as to have zero ground state energy. The plot is for the choice m = 0.75, β = 0.5. The

potential has a period 2K ′(0.75) = 3.3715. The continuous curve denotes the real part and the dashed

curve denotes the imaginary part.

Figure 2: A plot of the real (continuous curve) and imaginary (dashed curve) parts of the supersymmetric

partner potential [V PT ]+(x) of the complex PT-invariant potential shown in Figure 1, for the choice

m = 0.75, β = 0.5.

Figure 3: A plot of the real (continuous curve) and imaginary (dashed curve) parts of the PT-invariant

potential [V+]PT (x) obtained by first taking the supersymmetric partner of the a = 3 Lamé potential and

then applying the anti-isospectral transformation x → x + iβ, for the choice m = 0.75, β = 0.5. The

constant energy −3−2δ3 −2δ1 (see Table 1) has been subtracted off, so that the ground state of [V+]PT (x)

has zero energy.
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Table 1: The eigenvalues and eigenfunctions for the 7 band edges of the PT-invariant Lamé potential

[V PT ]−(x) = −12msn2(ix+β,m)−Eg , where Eg = −5−5m−2δ3 [eq. (13)], and δ1 ≡
√

1 −m+ 4m2, δ2 ≡
√

4 −m+m2, δ3 ≡
√

4 − 7m+ 4m2. The potential has a period 2K ′(m). The real periods of various

eigenfunctions are also tabulated.

E ψ(−) Period

0 sn(ix+ β,m)[2 + 2m− δ3 − 5msn2(ix+ β,m)] 2K ′(m)

3m+ 2δ3 − 2δ2 cn(ix+ β,m)[2 +m− δ2 − 5msn2(ix+ β,m)] 4K ′(m)

3 + 2δ3 − 2δ1 dn(ix+ β,m)[1 + 2m− δ1 − 5msn2(ix+ β,m)] 4K ′(m)

1 +m+ 2δ3 sn(ix+ β,m)cn(ix+ β,m)dn(ix+ β,m) 2K ′(m)

4δ3 sn(ix+ β,m)[2 + 2m+ δ3 − 5msn2(ix+ β)] 2K ′(m)

3m+ 2δ3 + 2δ2 cn(ix+ β,m)[2 +m+ δ2 − 5msn2(ix+ β,m)] 4K ′(m)

3 + 2δ3 + 2δ1 dn(ix+ β,m)[1 + 2m+ δ1 − 5msn2(ix+ β,m)] 4K ′(m)

Table 2: The eigenvalues and eigenfunctions for the 5 band edges of the PT-invariant associated Lamé

potential [V PT ]−(x) = −6msn2(ix + β,m) − 2mcn2(ix+ β,m)/dn2(ix+ β,m) − Eg, where Eg is given

by eq. (21). Here δ4 ≡
√

4 − 5m+m2. The potential has a period 2K ′(m). The real periods of various

eigenfunctions are also tabulated.

E ψ(−) Period

0 cn(ix+β,m)
dn(ix+β,m) [3msn2(ix+ β,m) − 2 +

√
4 − 3m] 2K ′(m)

2
√

4 − 3m−m− 2δ4
sn(ix+β,m)
dn(ix+β,m) [3msn2(ix+ β,m) − 2 −m+ δ4] 4K ′(m)

2
√

4 − 3m−m+ 2δ4
sn(ix+β,m)
dn(ix+β,m) [3msn2(ix+ β,m) − 2 −m− δ4] 4K ′(m)

4
√

4 − 3m cn(ix+β,m)
dn(ix+β,m) [3msn2(ix+ β,m) − 2 −

√
4 − 3m] 2K ′(m)

5 − 3m+ 2
√

4 − 3m dn2(ix+ β,m) 2K ′(m)

12
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