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Abstract

We establish the exact correspondence of the Calogero-Marchioro-Wolfes

model and several of its generalizations with free oscillators. This connec-

tion yields the eigenstates and leads to a proof of the quantum integrability.

The usefulness of our method for finding new solvable models is then demon-

strated by an example.
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Exactly solvable, many-body, interacting systems in one and higher dimensions constitute

one of the most exciting branch of active research in physics. Three decades ago, Calogero

formulated and solved the quantum mechanics of three identical particles in one-dimension,

interacting via pair-wise harmonic and inverse-square potentials [1] and subsequently gen-

eralized it to N particles [2]. The connection of this model with random matrices was

established by Sutherland who also analysed its thermodynamic behavior [3]. This and

related models, popularly known as Calogero-Sutherland (CS) models, have found inter-

esting applications in diverse branches of physics [4]. Models with more than two-body

interactions have also attracted considerable attention in the literature. Wolfes has solved

the three particle Calogero system in the presence of a three-body interaction of the type

∑3
i6=j 6=k 6=i(xi + xj − 2xk)

−2 [5]; Calogero and Marchioro pointed out the novel aspects of

the scattering problem [6]. A number of generalizations of this Calogero-Marchioro-Wolfes

(CMW) model have been recently obtained using supersymmetric quantum mechanics [7].

Further, using exchange operator formalism, the algebra of the CMW model has been shown

to beD6-extended Heisenberg algebra [8]. Note that, for pure two-body and three-body cases,

the corresponding symmetries are S3 and D3-extended Heisenberg algebras respectively. The

striking features of many of these models are the harmonic oscillator type excited spectra

and the coupling dependence of the ground-state energy.

Recently, two of us have shown that the N -particle CS models can be mapped identically

to free harmonic oscillators by a similarity transformation (ST) [9,10]. The fact that the

energy spectra of both CS and CMW models are identical in their structure motivates us to

search for a possible mapping of the CMW type models to free harmonic oscillators. The

purpose of this note is to show that such an exact mapping indeed exists. The importance

of this result lies in the fact that, it naturally explains why CMW type models have a

linear spectra and other properties like quantum integrability. This equivalence leads to the

explicit construction of the wavefunctions, starting from the symmetrized eigenfunctions of

the free harmonic oscillators. Furthermore, it paves the way for non-trivial generalizations

of the CMW model to more than three particles. We demonstrate this fact by explicitly
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constructing a new, solvable four particle interacting model which is quantum integrable.

Further, we consider several 3-body problems with oscillator-like spectrum and show that

all of them can be mapped to a set of decoupled oscillators.

We begin with the Calogero-Marchioro-Wolfes system given by the Hamiltonian (h̄ =

ω/2 = 2m = 1)

H = −
3

∑

i=1

∂2
i +

3
∑

i=1

x2
i + g

3
∑

i,j=1
i6=j

1

x2
ij

+ 3f
3

∑

i,j=1
i6=j

1

y2
ij

, (1)

here, ∂i ≡ ∂
∂xi

, xij ≡ xi − xj , yij ≡ xi + xj − 2xk; i 6= j 6= k 6= i and g > −1
4
< f are the

coupling constants.

The ground-state wavefunction is given by

ψ0 = G |X|α |Y |λ , (2)

where, G ≡ exp{−1
2
(x2

1 + x2
2 + x2

3)}, X ≡ x12x23x31, Y ≡ y12y23y31, g = α(α − 1) and

f = λ(λ− 1). Now, one can perform the following ST:

H̃ ≡ ψ−1
0 Hψ0 = 2

3
∑

i=1

xi∂i − Â+ E0 , (3)

where, E0 ≡ 3(2α + 2λ + 1) and Â ≡ ∑3
i=1 ∂i

2 + 2α
∑

i<j
1

xij
d̂ij + 2λ

∑

i<j
1

yij
D̂ij; here d̂ij ≡

∂i − ∂j and D̂ij ≡ ∂i + ∂j − 2∂k.

Since the Euler operator
∑

i xi∂i measures the degree of any homogeneous function of xi

and ∂i, it is easy to verify the commutation relation

[2
∑

i

xi∂i , exp{−1

4
Â}] = Â exp{−1

4
Â} . (4)

The above result can be used to make another ST on H̃ , which yields

H̄ ≡ exp{1

4
Â} H̃ exp{−1

4
Â} = 2

∑

i

xi∂i + E0 . (5)

One more ST on H̄ by T̂ ≡ exp{1
4

∑

i ∂
2
i } G−1 establishes the connection of the CMW

Hamiltonian with those of free harmonic oscillators, i.e.,
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T̂−1 H̄ T̂ =
3

∑

i=1

(−∂2
i + x2

i ) + (E0 − 3) . (6)

It is worth mentioning that for the normalizability of the wavefunctions, one needs to check

that the action of exp{−Â/4} on an appropriate linear combination of the eigenstates of

∑3
i=1 xi∂i yields a polynomial solution. We observe that the above example is an explicit

realization of the more general result established earlier in [9]: all D dimensional N particle

Hamiltonians which can be brought through a suitable transformation to the generalized

form, H̃ =
∑D

l=1

∑N
i=1 x

(l)
i

∂

∂x
(l)
i

+ E0 + Â can also be mapped to
∑D

l=1

∑N
i=1 x

(l)
i

∂

∂x
(l)
i

+ E0 by

exp{−d−1Â}; where, the operator Â is any homogeneous function of ∂

∂x
(l)
i

and x
(l)
i with

degree d and E0 is a constant. It should be emphasized that, this procedure reproduces the

linear part of the spectrum of the original Hamiltonian.

For the purpose of constructing the eigenfunctions, one can make use of (5). It is in-

teresting to note that, although the monomials
∏3

i=1 x
mi

i are the eigenfunctions of H̄ with

eigenvalues Em1,m2,m3 ≡ 2(m1 + m2 + m3) + E0, they are not acceptable as the eigenfunc-

tions of the CMW Hamiltonian because, the action of exp{−1
4
Â} on them do not yield

polynomial solutions. However, the powers of the symmetric combinations, R ≡ 1
3

∑3
i=1 xi,

r2 ≡ 1
3

∑

i<j x
2
ij = 1

9

∑

i<j y
2
ij and Y ≡ y12y23y31 in the form Rn1 (r2)n2 Y 2n3 , are not only

the eigenfunctions of H̄ with eigenvalues En1,n2,n3 ≡ 2(n1 + 2n2 + 6n3) + E0 but also yield

polynomial solutions upon the action of exp{−1
4
Â}; here, n1, n2, n3 = 0, 1, 2, · · ·. Therefore,

the normalizable wavefunctions of the CMW Hamiltonian H , in the Cartesian basis, are

given by

ψn1,n2,n3 = ψ0 exp{−1

4
Â}

(

Rn1 (r2)n2 Y 2n3

)

. (7)

In the following, we explicitly construct some unnormalized eigenfunctions of (1) using

(7).

Case I: n2 = n3 = 0

This case corresponds to center-of-mass degree of freedom:

ψn1,0,0 = ψ0 exp{−1

4
Â}Rn1 = exp{−1

4

3
∑

N=1

∂2
i } Rn1 . (8)
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This can be cast in the form [11],

ψn1,0,0 = 6−n1n1!ψ0

∑

∑3

i=1
mi=n1

3
∏

i=1

Hmi
(xi)

mi!
. (9)

Here, Hmi
(xi) are the Hermite polynomials.

Case II: n1 = n3 = 0

Another orthogonal set characterized by the quantum number n2 can be written in the

form,

ψ0,n2,0 = ψ0 exp{−1

4
Â} (r2)n2 . (10)

It can easily be checked that Â(r2)
n

= 4n(n + 3α+ 3λ)(r2)
n−1

; this gives ψ0,n2,0 as

ψ0,n2,0 = ψ0 (−1)n2n2!
n2
∑

m=0

(−1)m

m!(n2 −m)!

(3α + 3λ+ n2)!

(3α + 3λ+m)!
(r2)

m
,

= ψ0 (−1)n2 n2! L
3α+3λ
n2

(r2) . (11)

Here, L3α+3λ
n2

(r2) is the Lagurre polynomial.

Case III: n1 = n2 = 0

Now, (7) becomes

ψ0,0,n3 = ψ0 exp{−1

4
Â}Y 2n3 . (12)

We note that, on the odd powers of Y , the action of exp{−1
4
Â} does not yield polynomial

solutions and hence the resulting states are not normalizable. As an example,

ÂY = 2λ
1

Y
(y4

12 + y4
23 + y4

31) . (13)

It is clear that the action of exp{−1
4
Â} on Y will contain negative powers of Y and can not

be terminated as a polynomial. The wavefunctions can be computed by making use of

ÂY 2n3 = 4n3(3[2n3 − 1] + λ)Y 2(n3−1)(y4
12 + y4

23 + y4
31) . (14)

As an example, the n3 = 1 state is given by

ψ0,0,1 = ψ0



Y 2 − (3 + λ)
3

∑

i<j

y4
ij −

9

2
(2 + 3α+ 3λ)

3
∑

i<j

y2
ij −

3

4
(2 + 3α + 3λ)2



 . (15)
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It should be noted that, in the Jacobi coordinates, the above set of wavefunctions involve

angle variable and hence is orthogonal to the former two sets.

The underlying algebraic structure of CMW model can also be found easily from (5),

by defining the creation and annihilation operators as a+
i = ŜxiŜ

−1 and a−i = Ŝ∂iŜ
−1:

[a−i , a+
j ] = δij and the CMW Hamiltonian becomes

H = 2
∑

i

Hi =
∑

i

{a−i , a+
i } + (E0 − 3) , (16)

where, Ŝ ≡ ψ0 exp{−1
4
Â}, Hi ≡ 1

2
{a−i , a+

i } + 1
6
(E0 − 3) and [Hi , a

−
i (a+

i )] = −a−i (a+
i ).

Here, we would like to remark that, the states created by the action of individual a+
i on

the ground-state |0 > which is obtained from a−i |0 >= 0, are not normalizable unlike their

free counterparts; however their symmetric combinations (7) are found to be normalizable.

This shows that there are no single particle excitations and any excited state will contain

all the three particles in some symmetric state. In other words, the present analysis gives

an algebraic statement about a truly correlated system.

Now, the integrability of the CMW model can be seen easily. It is obvious that

[H , Hk] = [Hi , Hj] = 0; i, j, k = 1, 2, 3. Therefore, the set {H1, H2, H3} provides the

three conserved quantities. From this set, one can construct, three linearly independent

symmetric conserved quantities. This proof of integrability is entirely different from the one

given in [8]. It is of considerable interest to note that, all the above analyses done for the

CMW model will go through even in the absence of pure two-body terms (α = 0 or 1),

ı.e., a model with pure three-body inverse-square interaction also shares the same algebraic

structure as that of the original CMW model. It is worth mentioning that, in the limit

g → 0 or f → 0, CMW model reproduces only a part of the spectrum of the Hamiltonians

with pure two-body or three-body inverse-square potentials respectively. This happens due

to the presence of the singular interactions [1].

The above technique can be extended to a one parameter family of potentials connected

to the CMW model [12]. The Hamiltonian is given by
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H = −
3

∑

i=1

∂2
i +

3
∑

i=1

x2
i + g

3
∑

i6=j

1

(xij cos δ + + 1√
3
yij sin δ)

2 , (17)

where, 0 ≤ δ ≤ π/6. Performing a ST on the above Hamiltonian by the ground-state

wavefunction ψ0, one gets

H ′ ≡ ψ0
−1Hψ0 = 2

3
∑

i

xi∂i − B̂ + E0 , (18)

where, E0 = 3 + 6α, G and α as before, ψ0 = GXα, X ≡ ∏3
i<j Xij, Xij ≡

[(xi − xj) cos δ +
(xi+xj−2xk)√

3
sin δ] and B̂ ≡ ∑3

i=1 ∂
2
i + 2α

∑3
i<j

1
Xij
D̂ij ; here, D̂ij ≡ (cos δ +

1√
3
sin δ)∂i + (− cos δ + 1√

3
sin δ)∂j − ( 2√

3
sin δ)∂k and i 6= j 6= k 6= i. It should be noted

that ψ0 interpolates smoothly between the pure two-body and three-body cases for δ = 0 or

δ = π/6 respectively.

Analogous to (3), (18) can also be mapped to free oscillators, i.e,

H̃ ≡ exp{1

4
B̂} H ′ exp{−1

4
B̂} = 2

3
∑

i

xi∂i + E0 , (19)

and

T̂−1 H̃ T̂ = −
3

∑

i=1

∂2
i +

3
∑

i=1

x2
i + (E0 − 3) , (20)

where, T̂ is as given earlier. By inverse ST, one can recast the above Hamiltonian in the

form of decoupled oscillators as given in (16). Construction of the eigenfunctions and proving

the quantum integrability of this model can be carried out in parallel to the CMW model.

Similar analyses can also be extended to more generalized potentials of the above form [12].

We list below other non-trivial, interacting, three-body potentials with linear spectra [7],

V (x1, x2, x3) = g
∑

i<j

x−2
ij − f3√

6r

∑

i<j

yij

x2
ij

,

and

V (x1, x2, x3) = 3f
∑

i<j

y−2
ij +

f3

3
√

2r

∑

i<j

xij

y2
ij

,

where, r, xij and yij are as given earlier. One should note that these potentials contain

the variable r explicitly and hence the corresponding quantum mechanical problems can be
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better tackled in the polar coordinates. We have checked that these models can also be

made equivalent to free oscillators.

Finally, we present an example involving four particles, to demonstrate the usefulness of

our method for finding new solvable models. Since, these models can be mapped to a set of

free oscillators, their eigenspectra are guaranteed to be linear. The Hamiltonian reads,

H = −
4

∑

i=1

∂2
i +

4
∑

i=1

x2
i + α(α− 1)

4
∑

i,j=1
i6=j

1

x2
ij

+ 2λ(λ− 1)
4

∑

i,j,k=1
i6=j 6=k 6=i

1

y2
ijk

+
2

3
λ(λ+ 4α)

1

Y

4
∑

i,j,k=1
i6=j 6=k 6=i

y2
ijk , (21)

here, xij is as before and Y ≡ y123y234y341y412 with, yijk ≡ xi +xj +xk −3xl. Here, we would

like to remark that, the four-particle system, with pure inverse-square two-body interactions,

is integrable, whereas the one with pure three-body interaction is not.

The ground-state wavefunction is given by

ψ0 = exp{−1

2

4
∑

i=1

x2
i }

∏

i<j

|xi − xj |α |Y |λ . (22)

The equivalence of the above Hamiltonian to a set of free oscillators follows from

(ψ0 exp{−1

4
Ĉ} T̂ )−1 H (ψ0 exp{−1

4
Ĉ} T̂ ) = −

4
∑

i=1

∂2
i +

4
∑

i=1

x2
i + (E0 − 4) , (23)

where, Ĉ ≡ ∑4
i=1 ∂

2
i + 2α

∑4
i<j

1
xij
d̂ij + 2λ

∑

i<j<k
1

yijk
F̂ijk; F̂ijk ≡ ∂i + ∂j + ∂k − 3∂l and

E0 = 4 + 8α+ 8λ. T̂ , xij and d̂ij are similar to those given earlier. In parallel to the CMW

model, one can construct eigenfunctions, show the harmonic oscillator algebra and prove

the quantum integrability for this model. As is clear, this method can be extended to N

particle systems. Generalization of this model analogous to the one given in (17) can also

be dealt in the same manner.

In conclusion, we have shown that a number of models having complicated few-body

interactions but with linear energy spectra like harmonic oscillators, can indeed be made

equivalent to free oscillators by similarity transformations. There are no single particle ex-

citations in all these models; the wavefunctions contain all the particles in some symmetric
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combination. Although the underlying algebraic structure of all these models is that of free

harmonic oscillators, unlike the oscillator case, the individual states generated by the cre-

ation operators are not normalizable. Only their symmetric combinations are normalizable.

Our analysis gave an algebraic statement about a truly correlated system. We conjecture

that, all the correlated physical systems in nature will have these features of the CMW

model; however, the underlying algebraic structure may be different from that of decoupled

harmonic oscillators.

Our method allows one to prove the quantum integrability in a straightforward manner

and to construct new interacting solvable models. It is amusing to note that the ground-

states of these models are similar to the ones that describe edge excitations in quantum

Hall effect [13]. Since the planar wavefunctions have exact correspondence with their one

dimensional counterparts [14], our technique can be of potential use for these physical sys-

tems. Extension to other many-body Hamiltonians will also through light on the structure

of these complicated interacting systems [15,16]. Finally, we conjecture that, any N -body

problem having a linear eigenvalue spectrum can be reduced to a set of decoupled harmonic

oscillators by some suitable transformation.
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