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Abstract

A class of exact solutions are obtained for the problem of N-anyons in-
teracting via the N-body potential

V (~x1, ~x2, ..., ~xN ) = − e2

√

1

N

∑

i<j
(~xi−~xj)2

Unlike the oscillator case the resulting spectrum is not linear in the anyon
parameter α(0 ≤ α ≤ 1). However, a la oscillator case, cross-over between
the ground states is shown to occur for N-anyons (N ≥ 3) experiencing the
above potential.
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By now it is well established [1,2] that in two spatial dimensions one can
have anyonic statistics which interpolates between the Bose-Einstein and
the Fermi-Dirac statistics. Such objects also arise in 2+1 dimensional field
theory as classical solutions of the abelian Higgs model with a Chern-Simons
term [3]. It has been suggested that anyons may provide mechanism for the
fractional quantum Hall effect [4].

In the anyonic quantum mechanical systems, only the problem of two
anyons in various potentials has been solved exactly and as a result only the
second virial coefficient of an anyon gas has been computed exactly [2]. The
exact solution of the N-body problem (N ≥ 3) seems to be out of reach. This
is rather unfortunate as the nontrivial braiding effect of anyons is expected
to show up only for N ≥ 3, since only then the 3-body anyonic interaction
manifests itself. As far as I am aware off, to date, only a class of exact
solutions have been obtained in case N-anyons (N ≥ 3) experience harmonic
oscillator potential [5] or are in a uniform magnetic field [6] (which actually
is equivalent to the oscillator problem except for a piece coming from the
angular momentum eigenvalue). In both of these problems, all the known
exact solutions are such that the energy eigenvalue spectrum is linear in the
anyon parameter α (0 ≤ α ≤ 1 and throughout this note α = 0(1) will
correspond to boson (fermion)).

It is clearly of interest to enquire if one can also obtain exact solutions
in case N-anyons are experiencing some other potential and if in these cases
also the energy varies linearly with α or not. The purpose of this letter is to
present one such example. In particular, I obtain a class of exact solutions
in case N-anyons are interacting via the N-body potential

V (~x1, ~x2, ..., ~xN) = −
e2

√

1
N

∑

i<j(~xi − ~xj)2
(1)

The interesting point is that unlike the oscillator case, the energy spectrum
here is not linear in α. However, a la oscillator case, these exact solutions
include the ground state of N-bosons but not the ground state of N-fermions
(N ≥ 3). We therefore perturbatively calculate the ground state energy of
three anyons near the fermionic statistics and show that for this potential
also there is a cross-over between the ground states. I show that a similar
cross-over must also occur in the case of N-anyons (N ≥ 4).

For simplicity let us first discuss the case of 3-anyons experiencing the
above 3-body potential. After the separation of the center of mass (which is
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independent of anyons), the relative problem is best discussed in terms of the
hyper-spherical coordinates ρ, θ, φ, ψ first proposed by Kilpatrick and Larsen
[7]. In particular, one can show that the relative Hamiltonian can be written
as [8]

H = Hrad
0 +

1

2µρ2
(−Λ2 + αH1 + α2H2) (2)

where Λ, H1 andH2 only depend on the angular coordinates θ, φ, ψ whileHrad
0

only depends on the radial variable ρ. In particular, −Λ2 is the Laplacian
on the three dimensional sphere while the anyonic pieces H1 and H2 are as
given in [9]. It is worth emphasizing that such a separation is always possible
so long as the anyons experience a potential which is a function of ρ alone.
Further, such a decomposition also exists for an arbitrary number of anyons
[10]. In particular, for N anyons, the relative problem is best discussed in
terms of ρ and 2N − 3 angles.

In the case of 3-anyons experiencing the 3-body potential (1), the relative
radial Hamiltonian Hrad

0 becomes

Hrad
0 =

−1

2µ
(
∂2

∂ρ2
+

3

ρ

∂

∂ρ
) −

e2

ρ
(3)

Let us first obtain the exact eigenvalues and eigenfunctions of three bosons
and fermions in the potential (1). They are obtained by noticing that in that
case α can be taken to be zero and further, the eigenvalue of −Λ2 is k(k+2)
with k = 0,1,2,.... The resulting radial equation as obtained from eqs. (2)
and (3) is nothing but the Schrödinger equation for the Coulomb potential
in 4-dimensions. In this way we find that the energy eigenvalues of 3-bosons
or 3-fermions in the 3-body potential (1) are

En′,k = −
µe4

2[n′ + k + 3
2
]2

(4)

while the corresponding fermionic (bosonic) eigenfunctions, ψ
(∓)
n′,k,ν,λ are given

by
ψ

(∓)
n′,k,ν,λ = F k

n′(ρ)Y
(∓)
k,ν,λ(θ, φ, ψ) (5)

Here the normalized angular eigenfunctions Y
(∓)
k,ν,λ(θ, φ, ψ) are identical to

those in the harmonic case and have been explicitly written down in [9]

3



while the normalized (with measure ρ3dρ) radial eigenfunctions F k
n′(ρ) are

given by
F k

n′(ρ) = Nn′,2k+2exp(−y/2)ykL2k+2
n′ (y) (6)

where Lα
N is a Laguerre polynomial, y = 2

√

2µ | E |ρ and Nn′,2k+2 is the
normalization constant. It is worth pointing out that for the 3-boson ground
state, n′ = k = 0 and hence ∈B

g ≡ 2EB
g /µe

4 = −4/9 while for 3-fermion
ground state n′ = 0, k = 2 and hence ∈F

g = −4/49. It is also worth point-
ing out that the wave function (5) is also an eigenfunction of the angular
momentum operator with eigenvalue λ.

Proceeding in the same way, the eigenvalues of N bosons or N fermions in
the N-body potential (1) can be immediately written down. This is because
in that case −Λ2 is the Laplacian on the (2N-3)-dimensional sphere whose
eigenvalues are k(k+2N-4) with k =0, 1,2,..., and whose eigenfunctions are
generalized spherical harmonics. The resulting radial Schrödinger equation
then takes the form

[

∂2

∂ρ2
+

2N − 3

ρ

∂

∂ρ
+

2µe2

ρ
−
k(k + 2N − 4)

ρ2

]

F (ρ) = −2µEF (ρ) (7)

This equation is easily solved and the resulting energy eigenvalues for N
bosons or N fermions experiencing the N-body potential (1) are given by
(k, n′ = 0, 1, 2, ...)

∈n′,k= −
1

[n′ + k +N − 3
2
]2

(8)

while the corresponding unnormalized radial eigenfunctions F (ρ) are given
by

F k
n′(ρ) = exp(−y/2)ykL2N+2k−4

n′ (y) (9)

where as before y = 2
√

2µ | E |ρ.
Let us now turn to the exact solutions of the N anyon problem in the

presence of the N-body potential (1). On using the fact that (i) only the
angular part of the Hamiltonian is affected due to the anyons (ii) the angular
part is independent of the radial potential V (ρ) between the anyons (iii) the
radial equation for N bosons, N fermions and N anyons is same but for the
coefficient of the 1

ρ2 term, one can immediately write down a class of exact

solutions for N anyons experiencing the N-body potential (1). In particular,
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on using the exact solutions for N anyons in the oscillator potential [5] we
find that the exact energy eigenvalues in our case are

∈n′,λ (α) = −
1

[n′+ | λ− N(N−1)
2

α | +N − 3
2
]2

(10)

where λ is the eigenvalue of the angular momentum operator. The corre-
sponding eigenfunctions are

ψn′,λ = exp[iλ
∑

i<j

θij ]e
−y/2Πi<j | ~xij |

|λ−α| La
n′(y) (11)

where y = 2
√

2µ | E |ρ, a = 2N − 4 + 2 | λ − N(N−1)
2

α |, ~xij = ~xi − ~xj and

tanθij =
(yi−yj)

(xi−xj)
.

It is worth pointing out that for N = 2, the expression as given by eq.(10)
gives the complete spectrum [11]. For N ≥ 3 however, it does not give the
complete spectrum. For example, for N = 3, the three fermion ground state
is missing from these exact solutions (the three fermion ground state energy
∈F

g = − 4
49

which is not included in the expression (10)). The three boson
ground state which corresponds to n′ = λ = α = 0 ( and N = 3) has energy
∈B

g = −4/9 and it interpolates to the fermionic state with ∈F = −4/81 which
is an excited state. Thus, as in the oscillator case [9], a level-crossing has
to occur for the true ground state of the 3-anyon system. Infact, such a
crossing must also occur for any N (≥ 3). This is because the exact N boson
ground state interpolates to the fermionic state with an eigenstate of angular
momentum L with eigenvalue −N(N−1)/2 (see eq.(10)). On the other hand,
the fermionic ground state is obtained by filling the one particle levels from
bottom to top. One can show that the fermionic ground state always has a
total angular momentum | L | less than N(N−1)

2
(for N > 2) [12]. We thus

conclude that a la oscillator case, even in the case of the N-body potential
(1), there must be a ground state cross-over at some value of α.

What is the nature of the missing states in the N-anyon spectra ? We now
show that in our case, whereas for the exact solutions (− ∈)−1/2 is linear in α,
for all the missing solutions (− ∈)−1/2 will have nonlinear dependence on α.
Let us first recall that in the case of the oscillator potential, all those states
for which energy varies linearly with α are known analytically [5]. Further,
it is also known that there are several missing states whose energy varies
nonlinearly with α. For N =3,4 the energy of the low lying ”nonlinear states”
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has been estimated by using numerical and perturbative techniques [13,14].
We now show that we can borrow these oscillator results and obtain the
energies of the missing states in the case of the potential (1). The point is that
as argued above, only the angular part of the Hamiltonian is affected due to
anyons [10] and this part is identical for both the oscillator and our potential
(1) . Secondly, the only effect of the angular part is to affect the coefficient
of the 1/ρ2 term in the radial Schrödinger equation. For example, in eq. (7),
instead of k(k + 2N − 4)/ρ2 we would have β(β + 2N − 4)/ρ2 where β need
not necessarily be an integer and would in general be a complicated function
of α. As a result, the energy eigenvalues of the missing states would again
be given by eq. (8) but with k replaced by β. The corresponding oscillator
radial Schrödinger equation is also given by eq. (7) but with k replaced by
β and 2µe2/ρ replaced by −µ2ω2ρ2. As a result, the corresponding oscillator
energy eigenvalues are given by

∈osc
n′ (α) ≡ Eosc

n′ (α)/ω = (2n′ + β +N − 1/2) (12)

One can therefore immediately eliminate β from the two eqs. (12) and (8)
(with k replaced by β) and obtain a general relation between the eigenvalues
of our potential (1) and the oscillator potential given by

∈n′ (α) = −
1

[∈osc
n′ (α) − n′ − 1/2]2

(13)

We can therefore immediately borrow all the known results about the
missing nonlinear states in the oscillator case and obtain corresponding con-
clusions in our case. For example, whereas for all the analytically known
states (− ∈)−1/2 changes by ±N(N − 1)/2 for the missing states the energy

will change by N(N−1)
2

− 2, N(N−1)
2

− 4, ...− [N(N−1)
2

− 2] as one will go from
bosons to fermions. For example, in the 3-anyon case, (− ∈)−1/2 changes
by ±3 in the case of the exactly known solutions while it will change by ±1
in the case of the missing states as one will go from bosons to fermions. In
particular, the 3-fermion ground state at ∈= −4/49 will interpolate to the
bosonic state at ∈= −4/81 and near the fermionic end, the energy of the
corresponding anyonic state is given by [10]

∈= −
1

[3.5 + 1.29(1 − α)2]2
(14)
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On the other hand, the anyonic state starting from the bosonic ground state
at ∈= −4/9 is given by (see eq.(10))

∈= −
4/9

(1 + 2α)2
(15)

The two curves cross at α = 0.71. It is a curious numerical fact that for both
the oscillator [9,13] and our N-body case, the cross-over occurs at almost the
same point.

Finally it is worth pointing out that the degeneracy of the exact en-
ergy levels coming from the angular part is same for both the oscillator
and our N-body potential (note the same factor | λ − N(N−1)

2
α | occurs

in both the cases). This will infact be true for any anyon potential which
only depends on ρ. However, the degeneracy coming from the radial part
is different in the two cases since whereas in the oscillator case one has
the factor 2n′+ | λ − N(N−1)

2
α |, in our case the corresponding factor is

n′+ | λ − N(N−1)
2

α |. As a result, compared to the oscillator case, here the
degeneracy is much more. In particular, for a given energy, both even and
odd angular momentum states are present in general in the spectra. As a
result, if one plots (− ∈)−1/2 as a function of α, then one will find that one
will not only have those levels which are present in the oscillator spectrum
but there will be few extra states in our case which are not there in the oscil-
lator case. For example, in the 3-anyon case we have an extra state for which
(− ∈)−1/2 changes linearly from 1.5 to 4.5 as one goes from the bosonic to
the fermionic end (see for example Fig. 1 of [10] for the low lying 3-anyon
spectrum in the oscillator potential).

Are there other potentials for which a class of exact N-anyon eigen states
can be found? We believe that the answer is no since only the Coulomb and
the oscillator problems are analytically solvable in N dimensions (N ≥ 2).
All other potentials are atbest quasi-exactly solvable and hence for a given
potential, eigenstates could be analytically obtained for atbest some specific
values of the angular momentum λ.

This work raises several issues like number of crossings in the ground
state for N anyons [15], possible supersymmery for N anyons [16], pseudo-
integrability of the N-anyon problem [17], solutions in the presence of the
uniform magnetic field [18], scattering solutions etc. which need to be dis-
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cussed carefully in the context of the potential (1). Some of these issues as
well as details of this work will be published elsewhere [19].
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