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The density-wave theory of Ramakrishnan and Yussouff is used to study phase transitions be- 
tween liquid, liquid-crystalline, and crystalline phases. The different phases considered are liquid, 
nematic, smectic, discotic, bcc plastic crystal, orientationally ordered bcc, and a new incommensu- 
rate bcc crystal with orientational order. The direct correlation function, required as an input for 
the theory, is expressed approximately in terms of five generalized Fourier coefficients. The theory 
is then used to obtain sections through the phase diagram in the five-dimensional space of these 
coefficients. Simple approximations for the direct correlation function of hard ellipsoids of revolu- 
tion are used to compare these phase diagrams with those obtained from experiments and numerical 
simulations. Molecular-field theories of smectic and discotic ordering are reexamined, and, given 
the potentials they use, i t  is shown that an orientationally ordered bcc crystal has a lower free ener- 
gy than either the smectic or the discotic phase. The conditions required to stabilize smectic and 
discotic phases are examined. 

I. INTRODUCTION 

There have been many theoretical studies of phase 
transitions from liquid to liquid-crystalline meso- 
phases'-3 and, over the past decade, of transitions from 
liquid to solid phases (crystals in most cases) using the 
density-functional a p p r ~ a c h . ~ - ~  However, there have 
not been many attempts to unify the theoretical study of 
liquid-mesophase-solid transitions in systems with orient- 
able molecules and to understand carefully how such 
phases occur via an interplay of the parameters that favor 
orientational and positional orderings. Lee, Tan, and 
Woo" and, recently, Frenkel and Mulder," Singh and 
Singh," and McMullen and Oxtoby13 have taken some 
steps towards such a unification: they have studied tran- 
sitions between isotropic liquid, nematic, plastic- 
crystalline, and some orientationally ordered phases. 
Singh and SinghI2 and McMullen and Oxtoby13 use the 
Ramakrishnan-Yussouff density-wave theory.4t5 We also 
use this density-wave theory to study the systematics of 
liquid-mesophase-solid transitions and extend signifi- 
cantly the work of Singh and Singh'* and McMullen and 
0 x t 0 b y . l ~  In particular, we examine transitions between 
the following phases: isotropic l iquid(l) ;  nematic 
( ~ ) ; l - %  14 smectic (Sm);1-3,'4815 d iscotic (D) ; '6 ,17  a bcc 
plastic crystal (bccP) with no orientational ~ r d e r ; ' ~ , ' ' ' ~ ~  
two bcc crystals with orientational order (bccO1 and 
bccO2), which differ because they have different lattice 
constants; and an incommensurate bcc crystal with orien- 
tational order (IbccO). We do not distinguish between 
smectic- A and smectic-C phases1-3"4"5 because these 
phases have the same free energies given the approxima- 
tions that we will make (Sec. 11). 

Extensive experimental work has shown that systems 
with liquid-crystalline phases exhibit a rich variety of 
phase  diagram^.'-^^'^^]^ Over the past 15 years such 
phase diagrams have been studied by numerical simula- 
tions of orientable molecules of various  sort^."^^^-^' 

 

Some of these simulations use lattice models, so that they 
are suitable only for the study of orientationally ordered 
phases. However, other simulations study continuum 
models with hard ellipses2' (in two dimensions) and hard 
s p h e r o c y l i n d e r ~ ~ ~ ~ ~ ~  and hard ellipsoids of revolution29 (in 
three dimensions). These continuum models are suitable 
for the study of both positionally and orientationally or- 
dered phases. Our study has been motivated by a desire 
to understand the results of the simulations of these con- 
tinuum models and the experiments on mesogenic sys- 
tems (e.g., systems with liquid-crystalline mesophases). 

There are some obvious limitations of our study. (1) 
We do not consider various crystalline and liquid- 
crystalline phases: fcc, hcp, chole~ter ic , ' -~  and smectic- 
B - I ,]  - 3,'s to name but a few. (2) We use the 
Ramakrishnan-Yussouff theory, which neglects fluctua- 
tions that are important at  continuous transitions (e.g., 
many nematic-to-smectic- A t r a n ~ i t i o n s ~ ~ )  and weakly 
first-order transitions (e.g., the liquid-to-nematic transi- 
tions' -3,14 ); the treatment of such fluctuations is beyond 
the scope of this paper. Many qualitative features of the 
phase diagrams we obtain are insensitive to these limita- 
tions; some are not. In Sec. V we discuss which of these 
qualitative features are incorrect, what the correct 
features are, and how they may be obtained. 

Before presenting the details of the calculations, we 
summarize our principal results. To do so, it is necessary 
to introduce the elements of the Ramakrishnan-Yussouff 

This theory is a molecular-field theory3 in 
which the two-particle direct correlation f ~ n c t i o n ' ~  plays 
the role of a two-particle potential (Sec. 11). This correla- 
tion function, required as an input for the theory, can be 
obtained, in principle, by measurements in the (super- 
cooled) liquid phase (Sec. 11) or  from theories of the 
liquid phase (Sec. IV). In systems of nonspherical mole- 
cules >he^ direct correlation function of the liquid 
c ( r 1 2 , f l l , f 1 2 )  depends on r 1 2 = r l - r 2 ,  where r l  and r2 
specify the positions of the centers of masses of molecules 



1 and 2, and on el and h2, which specify the orientations 
of these molecules, We restrict ourselves to the study of 
systems with only one type of molecule, which has both 
cylindrical andAcer$er-of-inversion symmetry. For such 
systems c (r l , ,Ql ,Q, )  can be exRanded in teLms of the 
spherical harmonics Y t l m , , ( Q l ) ,  Y I z m 2 ( Q 2 ) ,  and 
YLM(T12) ;  a subsequent Fourier transform over I r12 I 
yields the generalized Fourier coefficients ( q )  of 
c(r12 ,Ql ,Q2) ,  where q is the magnitude of the wave vec- 
tor (Sec. 11). Symmetry considerations force 1 l,, and L 
to be even integers. 

n n  

In our study we assume 

Cl , ,2L (q )=0  for L#O or 1,,1, > 2 . (1 )  

(We examine the consequences of this approximation in 
Secs. 11-V.) Thus the two functions 

and 

are the only input required for the theory we describe in 
Sec. 11. [We have defined c,(q)  and c , ( q )  with the nor- 
malization factors ( 4 ~ ) - ' / '  and (20 ~ 1 - l ' ~  for conveni- 
ence in the following discussions; pllq is the density of the 
liquid.] 

Different forms of the functions c o ( q )  and c , ( q )  lead to 
different forms of ordering. Figure 1 shows schematic 
plots of these functions. If the peak in c o ( q )  at q =qo is 
sufficiently large, then the free energy of the system is 
minimized by the formation of a density wave (wave vec- 
tor of magnitude q o )  with no orientational order; the pre- 
cise nature of this density wave (bcc, fcc, etc.) depends on 
other features of the function c o ( q ) ,  such as its value at 
secondary m a ~ i m a . ~ - ~  Similarly, the peak in c 2 ( q )  at  
q =O favors the formation of an orientationally ordered 
(nematic) phase with no positional order; the peak in 
c , (q )  at q=q2  favors the formation of density waves 
(wave vector of magnitude - q 2 )  with orientational order. 

We parametrize the functions c o ( q )  and c 2 ( q )  by their 
values at q =0, q =qo ,  and q = q 2 .  At  all other values of 
q we take these functions to be zero. We also assume that 
c o ( q  = O ) =  - co, i.e., the liquid is incompressible. (We 
examine the consequences of these approximations in 
Secs. 11-V.) 

We now present various sections through the phase di- 
agram in the five-dimensional space of parameters co (qo  ), 
c 0 ( q 2  1, c, (O) ,  c 2 ( q 0 ) ,  and c 2 ( q ,  1; we relate them below to 
phase diagrams in spaces of parameters that can be con- 
trolled easily in experiments and numerical simulations. 

In the systems we consider, we expect34 that q2  <qo .  
Thus we see from Fig. 1 that in these systems c o ( q 2 )  is 
large and negative. The phase diagrams shown in Figs. 
2(a)-2(d) are obtained at one fixed value of cO(q2  1, which 
is large and negative, and for different (but fixed) values 
of c , (qo) .  (These are schematic phase diagrams; they are 
based on the phase diagrams obtained by doing the calcu- 

FIG. 1. Schematic plots of direct-correlation-function com- 
ponents c o ( q )  and c 2 ( q )  [for definitions see Eqs. 2(a) and 2(b)] vs 
q for the isotropic liquid phase of a system of orientable mole- 
cules. 

lations described in Secs. I1 and 111.) As long as 
c 0 ( q 2  1 < 0, the topologies of the phase diagrams are as 
shown in these figures. Sum rules force the following ine- 
qualities: c,(q,) 2 1 and c,(q,)  2 1. Also, in systems of 
physical interest we expect (Fig. 1) c 2 ( q , )  < c 2 ( 0 ) .  Thus 
we plot phase diagrams in the cube 0 2 co (qo  1 2 1, 
0 5 c 2 ( 0 ) < 1 ,  and 0 5 c 2 ( q 2 ) 5 1 ;  we expect only the re- 
gion with c,(q,) < c 2 ( 0 )  to be of physical interest. 

At small and negative values of c2 (q0  1 ( 5 0 )  we obtain 
the phase diagram of Fig. 2(a); when c, (qo)=O we get the 
phase diagram shown in Fig. 2(b); as we make c 2 ( q 0 )  
more and more positive, we obtain the phase diagrams of 
Figs. 2(c) and 2(d). 

All the phase transitions we obtain are first-order tran- 
sitions. These occur at first-order phase boundaries. In 
Figs. 2(a)-2(d), bold lines indicate where phase 
boundaries meet the faces of the unit cube in which we 
display our phase diagrams. Lines of three-phase coex- 
istence are shown as dot-dashed lines; lines of four-phase 
c o e x i ~ t e n c e ~ ~  are shown as dashed lines. Points of four-, 
five-, and six-phase c o e x i ~ t e n c e ~ ~  are indicated, respec- 
tively, by squares, pentagons, and closed circles. 

As c 2 ( q 0 )  increases from the value which yields Fig. 
2(a) to the one which yields Fig. 2(b), the orientationally 
ordered bcc phase bccO1 grows at the expense of the 
plastic-crystalline phase bccP and the nematic phase N .  



 

B C C O Z  u 

FIG. 2. Three-dimensional sections [ c 2 ( 0 ) - c o ( q o ) - c 2 ( q 2 )  unit cube] of the phase diagram, for large negative c o ( q 2 )  and varying 
c2(qo  1. The sections are extrapolated from phase diagrams calculated for various two-dimensional sections. The notations for the 
phases are set down in Table I. The bold solid lines show the intersections of the phase boundaries with the faces of the unit cube. 
Dashed lines are lines of four-phase coexistence and dot-dashed lines are lines of three-phase coexistence. Open squares, open penta- 
gons, and solid circles represent, respectively, points of four-, five-, and six-phase coexistence (Ref. 35). In terms of the lines identified 
in these figures, the various phases are bounded by the following surfaces (in addition to the cube faces). (a) c 2 ( q o )  <O. (i) L: (awb),  
(dwyu) ,  (byrq); (ii) N: (ugwzh), (dwyu) ,  (yze), (heo); (iii) bccO1: ( h k i ) ,  (heo), ( e k f m ) ;  (iv) bccO2: (aguxb), (tsxbp); (v) bccP (bzkcj),  
(yze), ( e k f m ) ,  (qbyr); (vi) IbccO: (tsxbp), (xbjci). (b) c 2 ( q o ) = 0 .  (i) L: (nwb), (dweu), (bqre); (ii) N: (gwhu) ,  (dweu) ,  (heo); (iii) bccO1: 
(heo) ,  ( e k f m ) ,  ( h k i ) ;  (iv) bcc02: (aguhb), ( tshbp); (v) bccP (b jck) ,  (berq), ( e m f k ) ;  (vi) IbccO: (tshbp),  (hbjci).  (c) c 2 ( q o ) > 0 .  (i) L: 
(awzb), (dweu), ( zeo ,y ) ,  (byrq); (ii) N:  (gwhu), (dweu),  (heo); (iii) bccO1: ( i k zh) ,  ( k f m y ) ,  ( z y o l e ) ,  (heo); (iv) bcc02: (agvxb), (tsxbp); 
(v) bccP (bkcj) ,  ( k f m y ) ,  (byrq); (vi) IbccO (tsxbp),  (xbjci).  (d) Large and positive c z ( q o )  (we give only the simplest possible phase 
diagram). (i) L: (awb),  ( b z l z b ~ p l  ), (dwz ,eu) ,  ( e z y o I ) ,  (b lyrq) ;  (ii) N: (gwxu), ( x z l h ) ,  (heo),  ( z , w d u e ) ;  (iii) bccO1: (ikzh), ( y k f m ) ,  
(zyo ,e) ,  (heo);  (iv) bcc02: (aguxb), (tsxbp); (v) bccP ( b l k c j ) ,  (b lyrq) ,  ( y k f m ) ;  (vi) IbccO: (tsxbp), ( x z l h  ), ( b z , z b l p l  ), ( b l k c j ) ,  
(ikzh ). 



As c , (q ,  increases further [Figs. 2(c) and 2(d)], bccO 1 
continues this growth, now also at the expense of the 
liquid L.  Furthermore, the incommensurate, orientation- 
ally ordered phase lbcc0  also starts growing slowly, at 
the expense of the liquid L, the bcc plastic crystal bccP, 
and the second orientationally ordered bcc crystal bcc02; 
however, this growth is appreciable only when c 2 ( q 0  ) be- 
comes greater than K, [a positive number which depends 
on the value of c0 (q2  )]. The growth of the phase bccO 1 
continues as c 2 ( q 0 )  increases, and eventually no lines 
(points) of four-phase (five-phase) coexistence remain [as 
in Fig. 2(d)] when c 2 ( q 0 ) > K 2  [whose value depends on 

The most significant result of our study is that neither 
smectic nor discotic phases appear in the phase diagrams of 
Figs. 2(a)-2(d). This is a surprising but important result 
because various molecular-field theories of smec- 
tic' -3i 10v36-39 and discotic40 orderings are special cases of 
the theory we use. (We show this in detail in Sec. 11.) 
The reason for the discrepancy between our theory and 
these molecular-field theories is that the latter do not al- 
low for three-dimensional positional ordering (bcc, in 
particular) at the same wave vector q2  (Fig. 1) at which 
they allow for smectic or discotic ~ r d e r i n g . ~ ~ ~ ~ ~ - ~  (This 
shortcoming of such molecular-field theories has been 
pointed out, in a slightly different context, by Harrowell 
and O~ toby .~ ' )  Smectic and discotic phases appear only 
as metastable phases in our theory, i.e., they correspond 
to local but not global minima of the variational free ener- 
gy we use (Secs. XI and 111); the oriented bcc crystal 
(bcc02) always has a lower free energy than the smectic 
and discotic phases in our theory. Roughly speaking, the 
reason for this is as follows: smectic, discotic, and bcc02 
phases appear when the system lowers its free energy by 
creating oriented density waves with wave vector q 2 .  
Since there are 2 such waves in a smectic phase, 6 in a 
discotic phase," and 12 in a bcc02 phase, the system 
lowers its free energy the most by forming a bcc02 phase 
(i.e., Fs, > FD > Fbcc02, where F stands for the free ener- 
gy and the subscripts refer to the phases); the bcc phase is 
further stabilized by cubic terms in a Landau expansion 
of our free energy. The molecular-field t h e ~ r i e s ' " ~ ~ - ~  
use c0 (q2  )=O. Even at this value of c0 (q2  1 we do not find 
thermodynamically stable smectic or discotic phases (Sec. 
111). Nor do we find such stable smectics or discotics at 
negative values of c,(q,) which disfavor the formation of 
the bccO2 phase more than they disfavor the formation of 
discotic and smectic phases. At large and negative values 
of c,( q2  ) the free energies of the metastable smectic and 
discotic phases come close to the free energy of the stable 
bcc02 phase, but the latter still has the lowest free ener- 
gy (Sec. 111). 

For mesogenic systems, experimental phase diagrams 
are available mostly along the temperature ( T )  
a x i ~ ' * ~ ~ ' ~ , ' ~  or, in some cases, in the pressure-temperature 
(P -T  1 plane.42 Smectics and discotics are commonly 
found in such phase diagrams; however, they are embar- 
rassingly absent in the phase diagrams of Fig. 2. [As we 
will discuss in detail in Sec. V, we believe that we need to 
relax some of the constraints imposed in Eq. (1) to obtain 
smectic and discotic phases.] Nevertheless, it is interest- 

co(q2 11. 

ing to map the phase diagrams of Fig. 2 onto P-T phase 
diagrams to see which experimental features our theory 
can account for. This mapping is not easy: to convert 
the phase diagrams of Fig. 2 into P-T phase diagrams, we 
need to know how the direct correlation function de- 
pends on P and T. However, to the best of our 
knowledge, even the two functions c , ( q )  and c , ( q )  [let 
alone ~ , , , ~ ~ ( q ) ]  are not known for any mesogenic system 
at  any temperature or pressure. 

Nevertheless, we can use the following rough argu- 
ments to show that there is a qualitative correspondence 
between the phase diagrams of Fig. 2 and experimental 
phase diagrams: as the temperature T decreases, the 
peaks of c o ( q )  and c 2 ( q )  rise. Thus, lowering the temper- 
ature is equivalent to following a path that moves radially 
outward from the origin in the phase diagrams of Fig. 2. 
Therefore the sequence that might result upon cooling a 
mesogenic system can be obtained by following radial 
paths (not straight in general) outward from the origins 
of Figs. 2(a)-2(d). Note, in particular, that it is possible 
to obtain the sequence L + N + bccP + bccO 1, as sug- 
gested by recent  experiment^;^^ however, given the topo- 
logies of Figs. 2(a)-2(d), such a sequence of transitions is 
improbable and should occur, at best, only in a few meso- 
genic systems. 

Figure 3 shows a plot of the phase diagram of a system 
of hard ellipsoids of revolution. This phase diagram is 
based on the numerical simulations of Frenkel, Mulder, 
and M ~ T a g u e . " ~ ~ ~  We plot it in the packing fraction 
(v)-eccentricity ( a  / b  ) plane. ( a  is one half the height of 

2% 
X 

FIG. 3. A part of the phase diagram for a system of hard el- 
lipsoids of revolution as obtained from the molecular-dynamics 
simulation of Frenkel and Mulder (Ref. 11). The symbols I ,  N ,  
PS, and S represent, respectively, isotropic liquid, nematic, fcc 
plastic crystal, and (distorted) fcc crystalline phases. p* is the 
reduced density related to the packing fraction q through 
q=(a /6 )p * .  Shaded areas are regions of two-phase coex- 
istence. 



the axis of revolution and b is one half the width of the el- 
lipsoids.) To compare the phase diagrams of Figs. 2 and 
3, wehmu$ know how the direct correlation function 
c ( r12 ,Rl ,R2)  varies as a function of 7 and a / b  for a SYS- 

tem of hard ellipsoids of revolution. This is not known 
exactlx. In Sec. IV we use an approximation for 
c(r12,RL,f i2)  of a system of hard ellipsoids of revolution 
to compare the phase diagrams of Figs. 2 and 3. We ob- 
tain a fair, qualitative agreement between these phase dia- 
grams for the liquid-to-plastic crystal and liquid-to- 
nematic transitions, but not for other transitions. This is 
not surprising because the approximation we use for the 
direct correlation function is reasonable only in the liquid 
phase at a low packing fraction 7 (Sec. IV). Another 
qualitative feature common to the phase diagrams of 
Figs. 2 and 3 is the absence of smectic and discotic 
phases. (See Secs. IV and V for a detailed discussion of 
this point.) There are, of course, qualitative differences 
between Figs. 2 and 3: since our theory only allows for 
bcc positional ordering, it does not yield the change in 
crystal structure obtained in going from the plastic- 
crystalline phase to the orientationally ordered phase in 
Fig. 3. Also, in the numerical simulations that yield Fig. 
3, the change in the orientational order parameter is con- 
tinuous across the phase boundary that separates the 
plastic-crystal phase from the orientationally ordered 
crystalline phase; in our calculations the change in this 
order parameter is discontinuous across this phase 
boundary. Finally, the reason that our calculations do 
not yield any discontinuous density changes at phase 
boundaries, unlike the numerical simulations, I is be- 
cause we make the approximation that the fluid phase is 

I 

incompressible. 
Recent sir nu la ti on^^^ of a system of parallel hard 

spherocylinders have obtained a smectic phase in such 
systems. It is not clear to us why a system of parallel 
hard spherocylinders shows a smectic phase, whereas a 
system of hard ellipsoids of revolution does not. We 
comment on this point further in Secs. IV and V. 

The remaining part of this paper is organized as fol- 
lows. In Sec. I1 we describe the Ramakrishnan-Yussouff 
theory and discuss how it has to be extended to study 
liquid-mesophase-solid transitions. In Sec. I11 we present 
the numerical results that lead to phase diagrams like 
those shown in Fig. 2. In Sec. IV we compare our results 
with experiments and numerical simulations. In Sec. V 
we conclude this paper with a discussion of the shortcom- 
ings of our theory and how they may be overcome. 

11. DENSITY-WAVE THEORY FOR ORDERING 
IN LIQUID-CRYSTALLINE SYSTEMS 

The Ramakrishnan-Yussouff density-wave theory for 
the freezing of a liquid has been described in various 
 place^.^-^ Its extension to the study of liquid-crystalline 
phases is straightforward and has been discussed by 
several To make this paper self-contained, 
we give a brief outline of this density-wave theory. 

The basis for the Ramakrishnan-Yussouff density-wave 
theory for the ordering of liquids is an expansion for tke 
free-energy functional F for a nonuniform density p ( r , R )  
(the average^ density of molecules at the point r with 
orientation R). 

A h  

Here FIiq is the free energy of the uniform, isotropic 
liquid (supercooled) of den$ty pliq; P= l / ( k B T ) ;  k ,  is the 
Boltzmann constant; u,(r,R) is an external, one-body po- 
tential; and c ” ) ,  c ( ~ ) ,  etc., are the direct correlation func- 
tions in the isotropic liquid, which are given by 

etc. Tran2latkonal invariance yields c (2) ( r l , r2 ,Rl ,R2)  
= C ( ~ ) ( ~ ~ ~ , R , , R , ) ,  where r I2=r1 -r2. 

If we minimize B(F-Fliq) with respect to p ( r ,R ) ,  we 
get 

h 



h 

i.e., p(r ,n )  essentially assumes the value it would have in 
a noninteracting fluid with an effective, one-body poten- 
tial (molecular-field), which is self-consistently deter- 
mined by Eqs. ( 5 )  and (6) .  [Since Ramakrishnan and Yus- 
s o u p  do not consider theApossibility of orientatio2alp- 
dering, they have p(r,f l )=p(r)  and ~ ( ~ ) ( r , ~ , f l ~ , f l ~ )  
= c ( ~ ) (  I rl -r2  I 1, etc.] In the remainder of this paper we 
neglect in Eqs. ( 3 )  and (6 )  the terms containing the corre- 
lation functions c ' " ) ,  with n 2 3. 

Note that if we assume that the particleszf tke fluid in- 
teract via a pair potential V'*)(rI2,nl,42,), then 
molecular-field  approximation^^!^^-^ use an effective, 
one-body potential 

J dr1d8,  v(')( ( r -rl ), 8, 8,  ) [p(  r,, 8, ) - p e g ]  

in addition to any externally imposed potential. Thus 
these molecular-field approximations are special cases of 
the Ramakrishnan-Yussouff approximation4' with a c ( ~ )  

Our task is now clear: we have to find solutions p( r, 
of Eqs. ( 5 )  and (6)  with u, set equal to 0. If there is more 
than one solution, we pick the one which yields the 
lowest minimum of the functional F -Fliq [Eq. ( 3 ) ] ;  this 
solution yields the density distribution in the thermo- 
dynamically stable phase. 

Equations ( 5 )  2nd (6) (with u, =0) always have the trivi- 
al solution p(r,n )=pliq, i.e., the isotropic liquid with a 
uniform density pliq. To investigate the existence of non- 
trivial solutions, in particular, solutions which character- 
ize phases with orientational or pogtional ordering (or 
both), it is convenient to expand p( r, n ) as 

(7)  

The expansion coefficients pIm ( G )  are order parameters 
that characterize different types of positional and orienta- 
tional ordering [e.g., in a phase with only positional or- 
der,4'5 p I m ( G ) = O ,  for l,m#O, and pm(G)#O; in a phase 
with only orientational order,48 pIm (G) =0, for G#O, and 
pIm(0)#O]. Note that the nature of the positional order- 
ing depends not only on the order parameters but also on 
the set of reciprocal-lattice vectorkG2sed in Eq. (7). 

We can also expand ~ ( ~ ) ( r , ~ , f i ~ , f l ~ )  [henceforth we 
drop the superscript (2)].49 

that is assumed to be -BV(2 ) .  
h 

I h 

p(r,n)=pli ,  [ l +  x x e i G ' r p I m ( G ) Y l m ( 8 )  . 
G I,m 

x Y12 m 2(  82 ) Y L M  (312 1 

XcIlI,L(~12) 9 (8) 

where (1, 2, f;l) is a Wigner 3-j symbol,50 the Yl,'s are 
spherical harmonics, r12 = I r ,2  I , and ?12=r12/r12.  If we 
define 

(9) 

I 

S , , 12L(G)=  Joadr(ilL(2L + l ) j L ( G r ) c I l / 2 L ( r )  , 

where the j L  's are spherical Bessel functions, then by sub- 

stituting Eqs. (7)-(9) into Eqs. ( 5 )  and (6) (with c(")=O for 
n 2 3 )  we get an infinite set of coupled equations for the 
order parameters pIm ( G ) .  We now make the following 
approximat ions. 

(1) We restrict our study to systems with molecules of 
only one type. Thus we need to consider only even values 
of L in Eqs. (8) and (9) [i.e., c I l I z L ( ~ 1 2  )=O for odd L].49 

(2) We restrict our study to systems with molecules 
which have both cylindrical and center-of-inversion sym- 
metry. Thus we need to consider only even values of I ,  
and 1, in Eqs. (8) and (9) and even values of I in Eq. (7).49 

( 3 )  We assume that S 1 1 1 2 L ( G ) = 0  for LfO [Eq. (l)]; i.e., 
we assume that the interaction between t,wo moleples 1 
and 2 depends upon their orientations a, and Q2 and 
upon the distance r12  between their centers, but not on 
?,2. Since L = O  is the only value of L we allow in Eqs. (8) 
and (91, we have I 1 = l 2 = 1  and m , = - m 2 = m .  By 
choosing the direction along which the molecules align in 
orientationally ordered phases to be the z axis, we can 
take m =O. (One of the consequences of this approxima- 
tion is that smectic-A and smectic-C phases have the 
same free energies in our theory.) 

(4) We further assume that F1112L(G)=0  for I , ,  1, > 2 
[Eq. ( l ) ] .  this assumption is based on the hope that low- 
order Le., low I , ,  I,, and L )  FIIIIL(G) ' s  suffice to stabilize 
the phases we are interested in (Sec. I). 

( 5 )  We parametrize the functions F,(G) and S2,,(G) 
(or the related functions c o ( G )  and c 2 ( G )  [Eq. ( 2 ) ] )  in 
terms of their values at G =0, qo, and q 2 .  (See Fig. 1 and 
the accompanying discussion for the physical motivation 
for this approximation.) At all other values of G we as- 
sume that ?,(GI and F220(G) are zero. 

(6) Finally, we assume that the liquid is incompressible, 
so that F , ( O ) =  - 0 0 .  

If we make the approximations listed in the preceding 
paragraphs, the infinite set of equations for the order pa- 
rameters p I m  ( G )  is replaced by a finite set. To write this 
set of equations it is convenient to define 

( 10a) 

(lob) 

F I ( 8 i ' P ) d 2 1 +  1 )1'2PI(8*P) , (10c) 

and 
q50= J d r  J d 8  exp 2 e i G ' r ? I ( G ) c I ( G ) P I ( 8 . P )  , 

(10d) 

where the P,'s are Legendre polynomials. Then, given 
the approximations (1)-(3) and ( 6 ) ,  we can rewrite the 
free energy (3) as (c ' " '=o  for n 2 3) 

[LO I 

and the self-consistent equation for the order parameters 
as 



 

TABLE I. Notations for the various mesophases considered in the paper and the molecular fields that describe the phases. [The 
components g 0 ( q 2 )  and g 2 ( q 0 )  will also be present in the molecular field when c 0 ( q 2 )  and c 2 ( q 0 )  are nonzero. But they are rather 
small, and are not included in the table for the sake of simplicity.] 

Notation Phase g( r, fi) = ln[p( r, ) /pa , ]  

L Isotropic liquid 0 

N Nematic phase oriented along 6 l O ( 0 )  +!$*(O)Pz( fi-6) 

Molecular fizld 

Sm 

D 

bccP 

bccO 1 

bcc02 

Ibcco 

Smectic phase oriented along ^n, 
with layers perpendicular to P 
Discotic phase oriented along 
6, with 2-d triangular ordering 
perpendicular to P 

bcc plastic crystal (smallest re- 
ciprocal vectors of length qo)  

Oriented bcc crystal (smallest 
reciprocal vectors of length qo)  

Oriented bcc crystal (smallest 
reciprocal vectors of length q 2 )  

Incommensurate bcc crystal 
with oriented density waves of 
wave vectors q2  and (mainly) 
unoriented density waves of 
wave vector of length qo 

gO(o)+ j 2 ( ~ ) + g 2 ( q 2 ) z e ' 9 2 G ~ r  P 2 4  -6 ); I - 1  6: the 6 smallest (unit 
length) reciprocal vectors for 
the 2-d triangular lattice 

~ 0 ~ ~ ~ + ~ o ~ q 0 ~ ~ e ' 9 0 G 0 ' r ;  

6: The 12 smallest (unit 
length) reciprocal vectors for 
the bcc lattice 

go( 0 )  +go( qo ) z e190G" + g2( 0 ) p 2  (8 G ); 

A 

G 

A 

6 as In bcc; 

gO(o)+ g 2 ( ~ ) + 1 2 ( q 2 ) z e J 9 2 0 ' r  P 2 ( f i * 6  ); 
G 

6 as in bccP 

(12) 

where Z, is the number of vectors G, with 1 G 1 = G  
(Z, = 12 for the first set of reciprocal-lattice vectors for a 
bcc crystal). 

Note that Eqs. (11) and (12) are valid for all 1 and G 
given assumptions (1)-(3) and (6) in the preceding para- 
graphs, i.e., as long as L = O  the liquid is incompressible 
and consists of identical molecules with cylindrical and 
center-of-inversion symmetry. Assumptions (4) and ( 5 )  
reduce Eq. (12) to a finite set of equations, since we allow 
only 1 = O  and 2 and G =0, qo,  and q 2  (Fig. 1).  

Note further that Eqs. (11) and (12) are different for 
different types of ordering. The types of ordering (i.e., 
phases) that we consider are summarized in Table I. The 
molecular field 

where ( , ( G ) = r , ( G ) c , ( G )  is also given for each one of 
these phases. 

As we mentioned in Sec. I, various molecular-field 
theories of liquid-crystalline are special 
cases of the theory we deszrike here. In these molecular- 
field theo;iesh c ( r 1 2 , n , , f 1 2 )  is replaced by 
- f iV(2) (r12 ,Ql , f12) ,  where V i 2 )  is a two-body potential. 
In otkerAwords, if instead of trying to determine 
c(r l , ,Ql , f i2)  from experiments or theories of liquids, we 
use the approximation 

A h  

c ( r I 2 , h l 7  6,) = - ~ ( ~ ) ( r , , ,  a,,  a,) , (13) 

then the results of our theory and these molecular-field 
theories should be the same. Note that these theories 
make the same approximations that we make ( L  =0, 
1 =0, 2, etc.) even though the approximations are not 
stated as explicitly as we have done. In particular, the 
theory of McMillan3' corresponds to the following choice 
of parameters: 

co(q , )=O,  c,(q,)=O 

(The parameters a ,  6, and Vo are as defined in 
McMillan's 



111. NUMERICAL METHODS AND RESULTS 

Given the approximations that we have made, the 
infinite set of equations (12) reduces to a set of five, cou- 
pled, nonlinear equations in the variables To(qo  1, 7,(q2 1, 
~ ~ ( 0 1 ,  r2(qo),  and ~ ~ ( 4 , ) .  We solve these equations by 
standard iteration or Newton methods. 

The evaluation of the right-hand side of Eq. (12) re- 
quires some care. In the expression for $, [Eq. (lOd)] we 
expand 

in powers of ( l /ZG)&e'G'r and P,(fi."i). We then in- 
tegrate each term in the series separately. We evaluate 
the angular integrals analytically and the spatial integrals 
(over a unit cell of the ordered phase being considered) by 
using a 24-point Gaussian quadrature. For certain values 
of c l ( G ) ,  the resulting series converges slowly, so we re- 
tain many terms in the series (up to 85 in some cases) and, 
to avoid roundoff errors, we use high-precision arithmetic 
(up to 32 figures in some parts of the calculation and nev- 
er lower than 16 figures). 

In principle, we can obtain the phase diagram in the 
five-dimensional parameter space of c,(q, ), co(q2 1, c2(0 ) ,  
c 2 ( q 0  ), and c 2 ( q 2  ). Schematic, three-dimensional sec- 
tions through this phase diagram are shown in Fig. 2 and 
were discussed earlier. Here we present detailed numeri- 
cal results for two-dimensional sections through the 
phase diagrams of Fig. 2, on the basis of which Figs. 
2(a)-2(d) are drawn. 

Consider first the section with co(q2 )=c2(q2  )=O. In 
Fig. 4 we display phase diagrams in the c o ( q o ) - c 2 ( 0 )  
plane for different values of c 2 ( q 0 ) .  As we move up from 
negative values of c,(q,) [c2(q0)=-0.01 in Fig. 4(a)] 
through c2(q , )=0 [Fig. 4(b)] to positive values of c 2 ( q 0 )  
[c2(q0)=0.  1 in Fig. 4(c)], the phase bccO1 grows at the 
expense of bccP, N ,  and eventually L [cf. Figs. 2(a)-2(d)]. 
For sufficiently large and negative c 2 ( q 0 )  ( < -0.01731, 
the phase bccO1 lies outside the unit square in which we 
portray the phase diagram. Similarly, for sufficiently 
large and positive values of c2(q0 1, the phases N a n d  bccP 
shrink and finally disappear [for c,(q,) > 0.212 in the 
case of N and for c2(q,)>0.130 in the case of bccP]. 
Note that some of the phase boundaries in Fig. 4 are 
parallel to the co (qo)  or c,(O) axes; this is an  artifact of 
the approximations we have made. 

We next consider the section with co (qo)=co(q2)  = O  
and plot the phase diagram in the c2 (q2) -c2 (q0)  plane for 
different values of c2(0) :  c2(0)=0 in Fig. 5(a) and 
c 2 ( 0 ) = 0 . 5  in Fig. 5(b). As c,(O) increases, the incom- 
mensurate bcc phase IbccO grows a t  the expense of 
bccO 1, bcc02,  and L.  [Recall that, on physical grounds, 
we expect c 2 ( q 2 )  < c 2 ( 0 ) . ]  

Finally, consider the section with c,(q,)=c,(q,) 
=c2 (q0 )=0 .  (This is the case most studied in various 
molecular-field theories of ~ m e c t i c ' ' ~ ~ ~ - ~ ~  and discotic@ 
ordering.) For these values of co (qo ) ,  c0(q2) ,  and c 2 ( q 0 ) ,  
we display in Fig. 6 the phase diagram in the c2 (q2) -c2 (0 )  
plane. Solid lines indicate first-order phase boundaries. 
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FIG. 4. Sections of the phase diagram in the co (qo ) -c2 (0 )  
plane for c 2 ( q 2 ) = 0 ,  co(q2)=0, and varying cZ(q0) .  (a) 
c,(qo)=-O.Ol, (b) c2(qo )=0 ,  and (c) c2(qo)=0.1. (See Table I 
for an explanation of the notations for the phases.) Note that in 
(a) and (b) the L-bccP and the L-N phase boundaries actually ex- 
tend until c 2 ( 0 ) = 0  and co (qo )=O,  respectively. The dashed 
lines show in these figures are lines along which the order pa- 
rameters (displayed in Fig. 8) have been calculated. 



 

Note that neither smectic nor discotic phases appear in 
this phase diagram; the transitions to smectic and discot- 
ic phases are always preempted by a transition to the 
orientationally ordered bcc phase bcc02. [For 
c , (q , )>O ,  bccOl or IbccO might appear instead of 
bccO2 (Fig. 3, but never smectic or discotic phases.] 
The dashed (dot-dashed) line indicates where the liquid- 
smectic (liquid-discotic) phase boundary would have been 
had we not considered other ordered phases such as 
bcc02. The dashed line is precisely the phase boundary 
obtained by McMillan3’ in his theory of smectic ordering. 
[In McMillan’s theory, the nematic-smectic transition be- 
comes continuous at a tricritical point; this tricritical 
point lies in the region c 2 ( 0 ) >  1, which we do not show 
in our phase diagrams as it violates the sum rule men- 
tioned in Sec. I.] 

We have already given (Sec. I) the basic reason for the 
metastability of smectic and discotic phases in our 
theory: once it becomes possible for the system to lower 
its free energy by forming oriented density waves with 
wave vector q 2 ,  it goes into a phase which has the largest 
number of such density waves. Thus bccO2 (12 density 
waves) is thermodynamically stable whereas discotic (6 
density waves) and smectic (2 density waves) are only 
metastable (F , ,  > FD > FbcCo2 ); the bcc phase is further 
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FIG. 5 .  Sections of the phase diagram in the c 2 ( q 2 ) - c 2 ( q O )  

plane for co(qo)=O,  c0(q2)=0,  and varying c2(0) .  (a) c 2 ( 0 ) = 0  
and (b) c2(o)=o.5.  
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FIG. 6. Section of the phase diagram in the c 2 ( q 2 ) - c 2 ( 0 )  
plane for co(qo)=O, c0 (q2 )=0 ,  and c2(q0 )=0 .  The solid line 
shows the actual phase boundaries for the L-bcc02, N-bccO2, 
and the L-N phase transitions. The dot-dashed line and the 
dashed line show the “phase boundaries” at which the discotic 
(D) and the smectic (Sm) phases, respectively, become stable rel- 
ative to the isotropic liquid ( L )  and the nematic ( N ) .  If the rela- 
tions (14) are used, the L-Sm and N-Sm phase boundaries 
translate precisely to McMillan’s (Ref. 37) phase boundaries. 
However, both the D and Sm phases are metastable relative to 
the bcc02 phase, hence the L-Sm and L-D phase boundaries are 
not real. The dotted line represents the L-N phase boundary 
when both these phases are metastable with respect to bcc02. 
The thin dashed lines are lines along which the order parame- 
ters (displayed in Fig. 9) have been calculated. 

stabilized by cubic terms in a Landau expansion of our 
free energy. By the same argument one might expect that 
the larger the number of such density waves in a phase 
the more it is disfavored by large and negative values of 
c 0 ( q 2 )  (Fig. 1). Thus we have tried to find thermodynam- 
ically stable smectic and discotic phases in regions of the 
phase diagram where c0(q2 ) is large and negative. How- 
ever, we have met with no success: in Fig. 7 we plot the 
phase diagram in the c0 (q2  ) - c 2 ( q 2 )  plane, with 
co(qo)=c , (qo)=O and c2(0)=0.854. (Solid, dashed, and 
dot-dashed lines have the same meanings as in Fig. 6. )  
As expected, the preempted L-D and L-Sm boundaries 
come close to the L-bcc02 phase boundary as c 0 ( q 2  ) be- 
comes more and more negative; however, for sufficiently 
large and negative c 0 ( q 2 )  (Fig. 7), these boundaries be- 
come parallel. Thus the L-bcc02 transition always 
preempts the L -D and L-Sm transitions. 

A word of caution: it is possible that smectic and 
discotic phases occupy some small volumes in the five- 
dimensional parameter space we investigate; and it is pos- 
sible that we have missed these volumes. However, these 
volumes are certainly not as large as indicated by previ- 
ous molecular-field theory calculations. 10,36-40 

All the phase boundaries in our phase diagrams are 



A h  

~ ( r ~ ~ , R ~ , f 2 ~ ) =  

A + B ( r 1 2 / D ) +  A ( V / ~ ) ( ~ ~ ~ / D ) ~ ,  

0, r 1 2 / D  > 1, 

. r 1 2 / D  < 1, ( 16a) 
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FIG. 7. Section of the phase diagram in the c o ( q 2 ) - c 2 ( q 2 )  
plane with co(qo)=O,  c2 (  o )  0, and c2(0)=0.854, showing the 
effect of large negative co(q2 ) on the L-bccO2 phase boundary 
(---) and the L-D ( -. -. -. ), and L-Sm ( - - - 1, “phase 
boundaries” (Fig. 6). 
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first-order boundaries. Order parameters jump at such 
boundaries, as does the entropy. To calculate the jump in 
the entropy we need to know the dependence of the direct 
correlation function on t empera t~re .~ ’  This is not avail- 
able for any mesogenic system, so we do not calculate the 
entropy jumps at various transitions. However, the 
jumps in the order parameters follow simply from our 
calculations. In Figs. 8 and 9 we show representative 
plots of the variation of the order parameters T ~ ( O ) ,  etc., 
along chosen lines in the parameter space. 

In Fig. 8(a) we show how the order parameters ~ ~ ( 0 1 ,  
7 2 ( 4 0 ) ,  and T o ( q o )  vary along the line c2(0)=0.389co(qo) 
+0.664 shown in the phase diagram of Fig. 4(a). Note 
that the sequence of transitions L - + N  +bccP-+bccO 1 
is obtained as in some recent  experiment^.^^ (In these ex- 
periments, the structure of the orientationally ordered 
crystal is not determined.) The sequence of transitions 
L-bccP-bccO 1 and L-N-bccO 1 are obtained easily by 
moving along straight lines in the phase diagrams of Fig. 
4. Figures 8(b) [c,(qo)=O] and 8(c) [ c 2 ( q 0 ) = 0 .  11 show 
representative plots of the order parameters along such 
lines for the sequence L-bccP-bccO1; Figs. 8(d) and 8(e) 
show analogous plots for the sequence L-N-bccO 1. Note 
that the order parameter T o ( q o )  [ r2 (0 ) ]  does not jump at 
the bccP-bccO 1 (N-bccO1) transition if c2 (q0  ) = O ;  this is 
a nongeneric feature which is not present if c2(q0  )#O. In 
Fig. 8(0 we show an example of a direct L-bccO1 transi- 
tion. Figures 9(a) and 9(b) show two scans through the 
phase diagram of Fig. 6 .  In the first [c2(q2)=0.284],  a 
direct L-bccO2 transition is obtained; in the second 
[ c 2 ( q 2  )=0.209], the sequence L-N-bcc02 is obtained. In 
Sec. IV we compare the results summarized in this sec- 

tion with numerical simulations of the experiments on 
mesogenic systems. 

IV. COMPARISON WITH NUMERICAL SIMULATIONS 
AND EXPERIMENTS 

To compare the results of Sec. I11 with those of numer- 
ical simulations and experiments, we need to know how 
the direct correlation function changes as the pressure, 
temperature, etc., are changed. However, this is not 
known reliably for any mesogenic systems either from ex- 
periments of from numerical simulations (e.g., simula- 
tions of a system of hard ellipsoids of revolution). 

We attempt here to compare our results with those of 
computer simulations of a system of hard ellipsoids of re- 
volution by following the method of Singh and Singh:12 
we use a simple, but crude, approximation for the direct 
correlation function of a system of hard ellipsoids of re- 
volution. We approximate this system by a hard-sphere 
system with an effective, hard-sphere diameter D given by 
the Gaussian-overlap model of Berne and Pechukas,” 

where 

x = ( a 2 - b 2 ) / ( a 2 + b 2 )  , (15b) 

D 0 = 2 b ,  ( 1 5 ~ )  

and a and b are, respectively, the lengths of the semima- 
jor and semiminor axes of the ellipsoids of revolution. 
We next approximate the direct correlation function by 
the form it assumes for hard spheres in the Percus- 
Yevick appro~imat ion, ’~  namely, 

where 

r] is the packing frzction. Ln Eq. (16a) all of the depen- 
dence of c on ?,,, f l l ,  and R2 :om,es from D [Eq. (15a)I. 
This approximation for c ( rI2, R R2 j should be reason- 
able at low values of the packing fraction r] and for 
a / b  1. (The more eccentric the ellipsoids, the lower 
must r] be for the validity of this approximation.) 

We use the approximation (16) to calculate c o ( q o ) ,  
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c2(0),  etc., as functions of 7 and a / b .  We then convert 
the phase diagrams of Sec. 111 into an q-a/b  phase dia- 
gram such as the one obtained from numerical simula- 
t i o n ~ ' ' ' ~ ~  (Fig. 3). Figure 10 shows the q - a / b  phase dia- 
gram we obtain. We restrict ourselves to the region 
a / b  > 1 because, at the level of our approximation (161, 
this phase diagram is symmetric about the line a / b  = 1 
under the replacement a / b  + b /a .  Shaded regions in 
Fig. 10 indicate where the approximation (16) leads to 
unphysical values of c2(0),  etc., such as c2 (0 )>  1. Note 
that only the phases L,  bccP, and N appear in the phase 
diagram of Fig. 10. This is because one (or more) of the 
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FIG. 10. Calculated phase diagram in the 7 (packing 

fraction)-a/b plane for a system of hard ellipsoids of revolution. 
This phase diagram is obtained from the phase diagrams of 
Figs. 4-7 using the approximations discussed in See. IV [Eqs. 
(15) and (16)] for the direct correlation function. 

c2's and co's assume an unphysical value [because of ap- 
proximation (16)] before the other phases shown in Fig. 2 
are stabilized. 

There is fair qualitative agreement between the L-bccP 
and L-N phase boundaries in the phase diagrams of Fig. 3 
(computer simulations) and Fig. 10 (our calculation). 
(Note, however, that the crystalline phases obtained in 
the numerical simulations which yield Fig. 3 have fcc or 
distorted fcc structures, whereas we only consider bcc or- 
dering.) Another point of agreement between our study 
and the computer simulations' 1,29 is that neither yields 
thermodynamically stable smectic or discotic phases. 

ClearlyAweAneed a better approximation than Eq. (16) 
for c(rI2,n,,n2) to uncover what lies in the shaded re- 
gion of Fig. 10 and then to compare it with Fig. 3. How- 
ever, as pointed out earlier, given the approximate calcu- 
lations we describe in Secs. I1 a%d I$, no matter what ap- 
proximation we use for c(r , , ,Q1,Q2)  we cannot obtain 
smectic or discotic phases (Sec. 111) except as metastable 
states. Also, the orientational order parameter jumps 
discontinuously at the bccP-orientationally-ordered-solid 
transition in our theory, whereas it changes continuously 
in a system of hard ellipsoids of r e v o l ~ t i o n . ~ ~  

Very recent  simulation^^^ on a system of parallel hard 
spherocylinders have yielded a smectic phase. We have 
not tried to compare our phase diagrams (Secs. I and 111) 
with those obtained from these simulations. To do so we 
would need an approximation such as (16) for a system of 
parallel hard spherocylinders. Our calculations apart, it 
is puzzling that very similar simulations of systems of 
hard ellipsoids of revolution29 and parallel hard sphero- 
cylinders3' yield qualitatively different results, namely, 
the former shows no stable smectic phase whereas the 
latter does. 



As we have mentioned previously (Secs. I and 111) it is 
not easy to compare our phase diagrams with those deter- 
mined experimentally. However, even a crude compar- 
ison is instructive, though often embarrassing, for our 
theory as well as for all molecular-field t h e o r i e ~ ~ , ~ ~ - ~  
that are special cases of it. We have mentioned many 
times the absence of stable smectic and discotic phases in 
our theory. We list some other points in the following. 

Though the crystalline phases of mesogenic systems 
have not been studied as thoroughly as their liquid- 
crystalline phases, it is well known'4s15 that the crystal- 
line phases often have structures that have a much lower 
symmetry than the bcc phases we consider. Given the 
approximations we have made, it is not possible for us to 
obtain such low-symmetry crystalline phases as thermo- 
dynamically stable phases. However, it would be in- 
teresting to look for incommensurate crystalline phases 
(like IbccO, but perhaps with lower symmetry) in meso- 
genic systems. (Incommensurate smectics have been ob- 
served recently.55) We should warn the reader, though, 
that the approximations we have made (Secs. I1 and 111) 
overestimate the stability of incommensurate phases.56 

Another experimental observation that deserves ex- 
planation is the phase diagram shown in Fig. 11. It 
shows how the transition temperatures for various transi- 
tions in mesogenic systems behave as a function of the 
length of the alkyl-chain tail of the mesogenic molecules 
that comprise the system. In most cases57 Tr-N ,  the tran- 
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FIG. 1 1 .  Experimental plots of transition temperatures vs 
chain length for two homologous series of mesogenic com- 
pounds. The symbols I, N ,  S, and C represent, respectively, the 
isotropic liquid, nematic, smectic and crystalline phases (Ref. 
57). Transition temperatures for I - N  and I -S  transitions are in- 
dicated by triangles, for N - S  transitions by closed circles, and 
for N -C and S-C transitions by open circles. Lines are drawn 
through data points to guide the eye. 

sition temperature for the liquid-nematic transition, de- 
creases as n, the length of the alkyl-chain tail, increases! 
This is contrary to what we would expect on the basis of 
our theory (Fig. 10) and computer simulations of systems 
of hard ellipsoids of revolution (Fig. 3): in both of these 
studies TL.N increases as a / b ,  the eccentricity of the ellip- 
soids, increases (for decreasing, the packing fraction is 
equivalent to increasing the t e m p e r a t ~ r e ~ ~ ) .  The reason 
for this discrepancy is obvious: we cannot hope to model 
long alkyl-chain tails which are flexible by increasing the 
eccentricity of ellipsoids that are hard and completely 
inflexible. Some molecular-level theories have been pro- 
posed58 to explain phase diagrams such as the one shown 
in Fig. 11; however, these theories do not consider posi- 
tionally ordered phases. Unfortunately, it is not clear 
how to put in information about the flexibility of alkyl- 
chain tails57 into the direction correlation function we 
use. 

In experimental mesogenic systems the transition from 
a plastic crystal to an orientationally ordered crystal is of 
first order.59 At this transition the jump in the entropy is 
often substantially lower than the jump in the entropy at 
the liquid-plastic crystal t r a n ~ i t i o n . ~ ~  Density-functional 
theories, such as ours and that of McMullen and Oxto- 
by,13 can be used, in principle, to calculate these entropy 
jumps.51 However, such calculations can hardly be ex- 
pected to give numerically reliable results, for neither our 
study nor that of McMullen and Oxtoby13 allows for a 
change in the crystal structure at the transition from the 
plastic crystal to the orientationally ordered crystal; such 
a change in the crystal structure occurs almost invariably 
at this t r a n ~ i t i o n . ~ ~  

V. CONCLUDING REMARKS 

We have listed in the preceding various discrepancies 
between our theory (and other molecular-field theories 
that are special cases of it) and experiments on and simu- 
lations of mesogenic systems. These discrepancies 
presumably arise because of the various approximations 
we make. 

(1 ) We neglect high-order correlation functions 
[c'"'=O for n 2 31. 

(2) We neglect c ( ~ ) ' s  for L+O or l l , z 2  > 2 .  
(3)  We parametrize the functions c o ( G )  and c 2 ( G )  [Eq. 

(2)] in terms of their values at G=O, qo, and q 2 ;  at all 
other values of G these functions are taken to be zero, 
and the fluid is assumed incompressible, i.e., c , (O)  = - 03. 

(4) We allow for only one form of three-dimensional or- 
dering, namely bcc. 

( 5 )  We restrict ourselves to mesogenic systems in which 
the molecules have a center-of-inversion symmetry (this 
is usually not the case). 

( 6 )  We neglect effects of fluctuations on the order pa- 
rameters we use. 

It is not easy to tell precisely which of the shortcom- 
ings of our theory follow from which one of the approxi- 
mations we have made. Consequently, it is difficult to de- 
cide how best to improve on our theory (and all other 
molecular-field theories which are special cases of it), 
especially because the removal of most of the approxima- 
tions listed in the preceding involves substantial efforts. 



These limitations notwithstanding, we believe that the 
theoretical framework presented in this paper is superior 
to earlier molecular-field theories for phase transitions in 
mesogenic systems and removes some of their obviously 
unsatisfactory features. 

For example, consider the isotropic-nematic transition. 
According to the theory presented here this transition 
takes place when c2(0)=o.908. The transition tempera- 
ture, the entropy jump at the transition, and the tempera- 
ture dependence of properties below the transition are 
determined by the temperature dependence of ~ ~ ( 0 ) .  In 
molecular-field theories, e.g., M~Mi l l an ' s ,~~  c 2 ( 0 )  is sim- 
ply parametrized as Vo/(5kB T ) ,  where Vo is a molecular 
energy scale. Hence the transition temperature is 
TN-L =0.2203Vo/kE;  the order parameter T : ( O )  at the 
transition, equal to 0.959 36, and the entropy jump at the 
transition," given by 

is universal; and properties below the transition, which 
depend on vo /( k ,  T )  a T /TN-L, are universal functions 
of T/TN,.  None of these results of conventional 
molecular-field theories is in agreement with experiments. 
Our theory does not lead to such disagreement. Of 
course, fluctuations must be included for an accurate 
description of isotropic-nematic transitions since these 
are weakly first order. This is beyond the scope of this 
study. 

Conventional molecular-field theories'0336-40 do not al- 
low for volume or density changes at mesophase transi- 
tions. We can allow for such changes quite simply by re- 
laxing our incompressibility assumption, i.e., by allowing 
co(0) to be finite. 

To understand the systematics of the dependence of the 
transition temperatures, the entropy jumps at the transi- 
tions, and properties in the ordered phases on molecular 
lengths (or diameters), we must know how the Fourier 
coefficients of the direct correlation function, such as 
c o ( q )  and c , ( q ) ,  depend on molecular lengths (especially 
the lengths of the flexible alkyl-chain parts) or diameters. 
To the best of our knowledge, it is not known how co (q ) ,  
etc., depend on these lengths. Thus some of the detailed 
comparisons that have been made between earlier 
molecular-field theories and experimental results are of 
questionable significance.a 

Finally, our study brings into sharp focus a big flaw of 
conventional molecular-field t h e o r i e ~ : ' ~ ' ~ ~ - ~  Th ey can- 
not account for the thermodynamic stability of smectic 
or discotic phases (relative to three-dimensional orienta- 

tionally ordered crystalline phases). To explain the sta- 
bility of smectic and discotic phases is one of the major 
challenges that mean-field theories of mesophases must 
face. 

It is likely that two features not included in our theory 
may be responsible for stabilizing smectics and discotics. 
(1) The detailed q dependence of c l ( q )  may be important. 
[So we might have to allow for nonzero c l ( G )  at many 
more values of G than we have done here.] (2) It may be 
necessary to include Fourier components cIlrL ( q  ), with 
L #O, which couple the directions of orientational order- 
ing and positional ordering. We hope to present else- 
where the results of studies investigating these possibili- 
ties. 

In conclusion, we want to point out that detailed ex- 
perimental studies of phases (including crystalline phases) 
and phase transitions in mesogenic systems subject to 
very strong electric and magnetic fields should shed a 
great deal of light on many of the questions raised in this 
paper. For, with such fields, mesogenic molecules be- 
come orientationally aligned and, for sufficiently strong 
fields, we can assume that they are fully aligned in the 
nematic phase. Then, within the framework of our 
theory, the transitions to positionally ordered (smectic, 
discotic, or crystalline) phases are determined by the 
direct correlation function c'"( rI2;2,2) (assuming the z 
axis to be along the alignment direction), which can be 
thought of as an anisotropic, but purely position- 
dependent, direct correlation function. Much more can 
be said about such an anisotropic correlation^ fuption in 
a fully oriented system than about ~'~'(r,~;f2,,f2~). For 
example, Lebowitz and Perram6' have shown how to cal- 
culate such functions for a system of oriented, hard ellip- 
soids of revolution62 using the Percus-Yevick approxima- 
tion. Also, such a function can be measured by scattering 
neutrons off strongly oriented mesogenic systems. Thus 
one can study experimentally and theoretically the sys- 
tematics of the relationship between this anisotropic 
direct correlation function and the phase transitions be- 
tween various positionally ordered phases. 
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FIG. 3. A part of the phase diagram for a system of hard el- 
lipsoids of revolution as obtained from the molecular-dynamics 
simulation of Frenkel and Mulder (Ref. 11). The symbols I, N, 
PS, and S represent, respectively, isotropic liquid, nematic, fcc 
plastic crystal, and (distorted) fcc crystalline phases. p* is the 
reduced density related to the packing fraction 9 through 
9=(" /6)p ' .  Shaded areas are regions of two-phase coex- 
istence. 


