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ABSTRACT

Assuming that the space of integrals of source terms (sources)

in the Klein-Gordon equation for the pion fields together with isospin

generators form an SU(2) H SU(2) algebra,which is a good symmetry

of the strong interactions for hadrons at rest, we calculate odd

isospin s-wave scattering lengths for the collision of massive pions

with hadron targets as well as pion-nucleon coupling constant. The

results are in good agreement with experiment.
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Many successful calculations of pure strong interaction

processes have been carried out during recent years with the aid of

assumed SU(2) BS SU(2) structure of vector and axial vector currents

of hadrons. In all these calculations a vital role is played by the

PCAC hypothesis which provides the necessary link between the axial

vector current and strong interactions. This hypothesis, however, is
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not precisely defined and may be the source of some of the failures

of this brand of algebraic approach to strong interaction physics. It

would therefore be worthwhile to look for alternative approaches where

the PCAC hypothesis would not be necessary at all for calculation of

strong interaction parameters . It may be noted in this context that the

scattering matrix for meson hadron collision is usually written in terms

of retarded commutator of meson source densities. It is therefore

natural to ask whether these meson sources , i . e . , the space integrals

of these densities, together with isospins, which are known to be

constants of motion for strong interactions,do form a closed algebra.

In this communication we discuss the consequences of an SU(2) IS SU(2)

algebraic structure of the isospin generators and pion sources. We

show that predictions for scattering lengths and coupling constants can

be made without any necessity of going to zero pion mass limit,provided

we assume that for hadrons at res t this SU(2) JSS SU(2) is a good symmetry

of the Hamiltonian for strong interactions. The results agree well

with experiment for pion-nucleon scattering.

The invariant T-matrix for forward scattering of charged pions

on a hadron target at rest can be written as
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j d4x e" ikx0(xo)<t|rj±(x)J j

~2iMj d4x e" l kx 6(xo)<t| |rj*{x). $+<0)] + ikQ

where |t)> s hadron state, j (x) = ( .•" m ) 0 (x), ^ (x) being pion field

operators, M is the target mass and k is the pion four momentum. •

The superscripts ± represent the charge of the pion. At threshold,

i. e. , for k = 0, this equation can be cast into the form
MM

- p+oo imx
T ( m ) = - 2 i M J d x Q e U 9(xQ) < t \ [ p - ( x Q ) t P (0) ] J t >

- o o

-2iM<t|lP±(0),OT(0)]|t>+ 2Mm<t|rP±(0), ^(0)] ] t> , (2)

where P (x ) = / d x j~(x) is the pion source operator and

0 (xQ) = / d x ^ (x). On writing

imx
e

Q 1 / i m x
0 N

= - — -r— ( e j
m ^x0 ^ /

and then performing integration by parts, eq. (2) becomes

TT(m) -

°° l m X ° P ± (x o ) , P T (0) ] | t>
- 0 0

-2iM<t|[P*(0), 4.̂ (0)] | t> + 2Mm<t|[P i(0), 4»+(0)]|t> . (3)

Further simplification of this result can be made if we assume that:

i) The operators P and P together with the isospin generators

formanSU(2) 33 SU(2) group, i. e.,

Py(o) ;r^(0)

(4)
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ii) The pion field transformation law is

[Pfy)#*P(0)]- «tfpS , (5.)

where S is an isosinglet operator which is a non-linear functional of

the square of the pion field operator.

iii) The SU(2) JS SU(2) defined in eq. (4) is a good symmetry of the

strong interaction Hamiltonian for hadrons at rest, in which case

P^XQ) = 0.

The validity of these assumptions can be tested by comparing the

consequences that follow from them with experiment. With these

assumptions eq. (3) reduces to

T*(m) = + — < t | 2 l J t > + 2Mm<t | s | t> . (6)
m «5

In obtaining this from eq. (3), Jacobi identity has been used

to convert <tIlP±(0), 6*(0)] | t> into <t][P±(0) J O+(0)] ]t>,which

vanishes by virtue of assumption (iii). From eq. (6) we have

T . , { m ) = - — T (m) = 2Mm<tjSlt> (7)
odd m even \ i i /

where T , , and T are defined by the equation;
odd even

T + f [ 0 ) = T e v e n ( w ) i : < t ! 2 I 3 l t > Todd(w) * ( 8 )

On using the definition,

T(m) - 8T (1 + —) a ,

for the dimensionless s-wave scattering length "a", we obtain from eq. (7),

aodd 4T \~rnj ' even 4T \ m / \ 1 I / *

where \x is the reduced mass of the pion and the target. Since <(tj sjt)>

- 4 -



cannot be calculated vithout further dynamical input, we obtain from our

SU(2) H SU(2) symmetry only the odd isospin scattering length. The

results for nucleon, pion and kaon targets are given in Table I along

with the corresponding results obtained from vector-axial vector algebra

and the experimental results. It will be noticed that our scattering

lengths are different from those of the V-A current algebra which are

expressed in terms of weak interaction parameters. Our results do not

contain such parameters because we work in terms of strong interaction

operators alone. For JTN scattering our value for the odd scattering

length is about 20% below the experimental result whereas the V-A current

algebra value is about 20% above. Although we cannot obtain any definite

result for the even isospin scattering lengths, it is possible to make an

estimate based on eq. (9). From dimensional cons iderations/<^t] S]t y

must be proportional to the inverse of the square of some mass. It is not

unreasonable to take this mass to be the target mass. In that case

^ (
even \ M

do)

which has the same order of magnitude as the experimental s-wave

pion-nucleon even scattering length. It should be noted here that V-A

current algebra gives a = 0. It may be noted in- this context that
6 6 even J

one goes to the soft pion limit in the V-A current algebra method. If we

take such a zero pion mass limit of our result,we should also get vanishing

value for the even scattering length,except in the pion-pion scattering

case where the vanishing of this scattering length would follow only if the

target pion mass is kept finite while letting the scattered pion mass go

to zero.
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A further application of our scheme can be made in the determination

of the pion-nucleon coupling constant. This is done by combining eq. (7)

with the unsubtracted dispersion relation

4Mu)f2'

Re
.2

/
2Mu T~ , . Vw'2 - m2

m

This leads to the sum rule

— J
- " m

(12)

2
from which a numerical evaluation of f can be made. Using the results

4)
of Adler and Weisberger for the integral over pion-nucleon total cross-

sections we get

| - - 0.078 ,
~ n

f
2

which agrees fairly well with the result — = 0. 081 + 0. 002 obtained

by comparing forward dispersion relations with experiment

The good agreement of our results with experiment implies that the

SU{2) & SU(2) algebra of isospin and source, operators of pions is a good

symmetry of the strong interactions, at least for hadrons at rest. The

source operators P connect nucleons at rest with negative parity pion-

nucleon resonant states in addition to the pion-nucleon continuum. Our

assumption that the sources are time independent amounts to neglecting

the contribution of the negative parity resonant states to threshold
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scattering. This sounds fairly reasonable in view of the high

excitation energy of these resonant states.

Table I

TARGET
SCATTERING LENGTHS FROM
ALGEBRA OF MESON SOURCES

SCATTERING LENGTHS FROM
ALGEBRA OF V & A CURRENTS

EXPERIMENTAL VALUES

Nucleon
M.

1/2 3/2 ~4TT ^

= 0.21

ai/2 " a3/2
N

= 0.30

Kaon a i /2 " a 3/2 ~ 4JT I

= 0.18

M.

m 1/2 3/2 ~ 2ir ,2

= 0.27

Pion 0 2
= — = 0.49

2

s-wave scaiiertng lengths for collision of pions with N. K and tr .
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