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Abstract. – We study the transition at T = 0 from a ferromagnetic insulating to a ferromag-
netic metallic phase in manganites as a function of hole doping using an effective low-energy
model Hamiltonian proposed by us recently. The model incorporates the quantum nature of
the dynamic Jahn-Teller(JT) phonons strongly coupled to orbitally degenerate electrons as well
as strong Coulomb correlation effects and leads naturally to the coexistence of localized (JT
polaronic) and band-like electronic states. We study the insulator-metal transition as a func-
tion of doping as well as of the correlation strength U and JT gain in energy EJT , and find, for
realistic values of parameters, a ground state phase diagram in agreement with experiments.
We also discuss how several other features of manganites as well as differences in behaviour
among manganites can be understood in terms of our model.

The colossal magneto-resistance(CMR) exhibited by manganites (Re1−xAxMnO3 , Re =
La, Nd, Pr etc. and A = Sr, Ca, Ba etc.) for a range of hole doping x around x ∼ 0.3 and
near the Curie temperature Tc, where they undergo a transition from a low temperature fer-
romagnetic metallic phase to a high temperature paramagnetic insulating phase, has led to
a great deal of interest [1, 2] in these systems, which also show a variety of other interesting
phenomena such as charge and orbital ordering and incipient phase separation. The interplay
of orbital degeneracy of the itinerant eg electrons of Mn, their coupling to lattice degrees of
freedom, especially to degeneracy removing Jahn-Teller(JT) phonons, strong Coulomb cor-
relation effects and related Hund’s rule coupling (between the eg electrons and the t2g core
spins of Mn) are believed to be responsible for these phenomena, but achieving a detailed
theoretical understanding has been a major challenge.

We have recently proposed [3, 4] a new effective low-energy Hamiltonian starting from
the two qualitatively different coexisting vibron [5] states at the each site of the lattice, one
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consisting of localized JT polarons [6], which we label ℓ, and the other, which we label b,
dispersive and forming a broad band as outlined below. In the presence of strong correlation
U and ferromagnetic Hund’s rule coupling JH on site between eg and t2g spins this leads
[3, 4] to a consistent description of many known features of these systems such as the finite
temperature insulator metal transition (IMT) near Tc for a range of x, CMR, the existence
of a ferromagnetic insulating phase at low doping, good metallic behaviour of electron doped
systems, etc., and a heuristic understanding of several other features, such as the isotope effect
on Tc and the two-phase coexistence seen by a variety of experimental probes over a range of
x and T [2, 7]. In this paper, we present in detail our theory for the ground state behaviour

of manganites in the ferromagnetic state as a function of doping x (for x < xco where charge
ordering occurs) in terms of the Falicov-Kimball model (FKM) [8] involving the ℓ and b states.

The un-doped compound, eg. LaMnO3 is an Mn−O bond (JT) distorted but structurally
ordered, A-type anti-ferromagnetic insulator with ferromagnetic order of the t2g spins in plane
(defined by the JT distortion pattern) and anti-ferromagnetic order perpendicular to it. On
hole doping, say with Sr, anti-ferromagnetism disappears at x = xc1 = .08 and the ground
state is a ferromagnetic insulator till x = xc = .16, beyond which it is a ferromagnetic metal.
For LaCa, xc1 = 0.1 and xc = 0.18 whereas for NdSr, xc1 = 0.18 and xc is not accurately
known. The occurrence of the fully ferromagnetic insulating phases and the IMT at such
large values of x cannot be understood in a model for manganites with only eg electron
double exchange caused by JH [1, 9]. For, since doping generates holes (unoccupied sites) in
the eg band, one expects a metal especially when the t2g spin alignment is ferromagnetic,
since the eg electrons can then move without hindrance. This is true even for large U .

We outline below (see ref. [3] for details) how the FKM [8] describing the correlated ℓ and b
states arises in the context of manganites at T = 0 from a conventional lattice model with two
eg orbitals per site, large electron JT phonon coupling g and perfect spin alignment resulting
from a new ferromagnetic ’virtual double exchange’ coupling JF . We treat it using dynamical
mean field theory (DMFT) [10], and show that the b band has a reduced effective width, 2D,
roughly equal to

√
x times its bare width 2D0 for large U . Hence, below a critical doping xc the

b band bottom lies above the localized JT polaronic ℓ levels of energy −EJT , which are then
the only ones occupied, leading to an insulator. For larger x, the b-band bottom lies below
the ℓ level, so the system is metallic. The ferromagnetism is largely due to JF (with a small
contribution from conventional double exchange in the metallic phase). Thus the observed
T = 0 pattern of phases and phase transitions follows naturally from our picture [11]. We
discuss the ground state properties of the FKM as a function of the hole doping (x) and
the model parameters, namely U , D0 and EJT , and show that for realistic values of these
parameters, the calculated phase boundary is in good agreement with experimental trends.
We conclude by discussing some other implications of our work in regard to experiments.
A detailed discussion of the finite temperature properties of our model, including the ferro
metal- para insulator transition and the CMR, is presented elsewhere [3].

We start with a model with two degenerate eg orbitals per site and strong degeneracy
breaking electron JT phonon coupling g. For large g, at each site there will be one vibron

solution [5], labelled ℓ, with its energy reduced for single occupancy due to a large JT distortion
by an amount EJT = (g2/2K) ≃ 1eV [12] where K is the force constant of the JT phonon
mode. The orthogonal vibron solution [5], labelled b , is not JT distorted, and hence has no
gain in JT energy. Inter-site hybridization of the ℓ states is reduced by the phonon overlap
or Huang-Rhys factor [13] η = exp(−EJT /2h̄ω0), which for manganites is ∼ (1/200) since
(EJT /h̄ω0) ≃ 10. As a first approximation, we neglect this altogether and treat the ℓ states as
site localized. Inter-site hybridization amongst the b electrons is not suppressed. They hence
form a broad band. In the presence of large U the b states have their largest amplitudes on
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hole sites (x) as they are strongly repelled from the polaronic sites ℓ. In the presence of large
JH the spins of both ℓ and b electrons are aligned parallel to the t2g core spins.

An additional consequence [3] of the existence of JT distorted, localized ℓ states is that
virtual, adiabatic hopping processes involving them in the presence of large U and JH (where
an ℓ electron at site i quickly hops to an empty neighbour j and back, with an intermediate
state energy cost of 2EJT due to the unrelaxed lattice distortion at i) give rise to a new, major,

doping dependent ferromagnetic nearest neighbour exchange coupling JF between the t2g core
spins of order t2(1 − x)x/(2EJT S2). In the ground state for x > xc1 when this interaction
dominates the anti-ferromagnetic super-exchange, the t2g are fully ferromagnetically polarized;
then so also are the eg (both ℓ and b) spins due to the large JH(>> t). Hence the spin degrees
of freedom are frozen.

Thus we are led to effectively spin-less localized ℓ and mobile b electrons with a strong
local Coulomb repulsion U . The relevant effective Hamiltonian is just the Falicov-Kimball
model (FKM) [3, 4, 8] , given by

Heff = −
∑

〈ij〉

t̄ijb
†
i bj − (EJT + µ)

∑

i

ℓ†i ℓi − µ
∑

i

b†ibi + U
∑

i

nbinℓi (1)

Here b†i and ℓ†i create the band and localized polaronic states described above at site i, and
t̄ij are effective, orbitally averaged [14] inter-site hopping amplitudes for the b states. The
chemical potential µ is determined by the doping-dependent constraint that the total number
of eg electrons is (1− x) per site. The relevant parameter regime of Heff we are interested in
for manganites corresponds to t̄ ∼ 0.2 eV [15], U very large (∼ 5 − 8 eV [15]) and EJT in the
range 0.5 − 1.0 eV [15, 12].

While there are no known techniques for exactly solving Heff , a dynamical mean field
theory(DMFT) treatment of it can be carried out exactly [10]. In this approximation, which is
exact in infinite dimensions, and quite accurate for three dimensions [10], the lattice problem is
mapped to a single site problem embedded in a self consistent effective medium or electron bath
that represents all the other sites of the lattice. We assume that the system is homogeneous
[14]. The b electron self energy Σij(ω) due to the interactions U is site local i.e. Σij(ω) =
δijΣ(ω), and is determined from the single site or local effective action

Seff = −
∫ β

0

∫ β

0

dτdτ ′b†(τ)G−1(τ − τ ′)b(τ ′) + β(−EJT − µ)nℓ + Unℓ

∫ β

0

dτnb(τ) (2)

Here b†(τ) and b(τ ′) are fluctuating fermionic Grassmann fields, nℓ = 1 or 0 corresponding to
the ℓ state being occupied or not, and G(τ) is the bare on site local propagator in the presence
of the effective medium. The local partition function, obtained by summing exp(−Seff )
over all the configurations, is expressible as Zlocal = Z0 + Z1. Here Z0, Z1 are constrained

partition functions corresponding to nℓ = 0, 1 respectively, and are calculable using standard
techniques [10] in terms of G(ω+),the Fourier coefficients of G(τ) analytically continued to real
frequencies. Explicitly, Z0 ≡ exp(βα0(T )) ; Z1 = exp(βα1(T )) × exp [−β(−EJT − µ)]; where

αm(T ) = π−1

∫

dωn−
F (ω − µ) Im

{

ℓn(G−1(ω+) − Uδm1)
}

, (3)

n−
F (ω) being the Fermi function [1 + exp(βω)]

−1
. The local single particle Green’s function

G(ω+) is given by

G(ω+) = −〈bb+〉Seff
= w0G(ω+) + w1(G−1(ω+) − U)−1 (4)
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with w1 ≡ Z1/(Z0 + Z1) = n̄ℓ and w0 = (1 − w1) being the annealed probabilities for the ℓ
state being occupied and empty respectively. The condition that the average eg occupancy
n̄ℓ + n̄b = (1− x) determines the chemical potential µ. A re-normalized or effective ℓ electron
energy can be defined by writing w1 = n−

F (ǫ∗ℓ − µ), whence ǫ∗ℓ = −EJT + α0(T ) − α1(T ).
Clearly, at T = 0, µ is necessarily pinned to ǫ∗ℓ as long as n̄ℓ is non zero.

In the DMFT [10] Eq. 4 relating G(ω+) and G(ω+) for our model has to be supplemented
by two other equations: namely the Dyson equation, G−1(ω+) = G−1(ω+) − Σ(ω+), and
the self consistency relation which expresses the local Green’s function in terms of the lattice
Green’s function, as G(ω+) =

∫

dǫD0(ǫ)/(ω+ +µ− ǫ−Σ(ω+)), where D0(ǫ) is bare density of
states (DOS) for the b-band. These coupled equations for G, G and Σ have to be solved self-
consistently, and typically numerically, to obtain all the quantities of direct physical interest.
The self consistency relation becomes algebraic, considerably simplifying such calculations,
for a semicircular DOS, i.e., for D0(ǫ) = (2/πD2

0)
√

D2
0 − ǫ2 where D0 is the half bandwidth.

This DOS, exact for the Bethe lattice in infinite dimensions [10], is fairly accurate for our
model in 3d, especially for trends and magnitude estimates [16]. Hence we confine ourselves
to the semicircular DOS results in this paper. In this case, G(z) = 2/(z +

√

z2 − D2
0) where

z ≡ (ω+ + µ − Σ(ω+)) is complex. Using this result, Eq. 4, the Dyson equation, and the
equations for w0, w1 we have numerically solved the DMFT equations self-consistently for a
wide range of values for the correlation U , JT polaronic energy EJT , bare bandwidth 2D0 and
doping x. The results are discussed below. A broad perspective of the trends in these can be
obtained in the simpler limit when U → ∞. Hence we discuss these first.

In the U → ∞ limit, the DMFT equations stated above (for the semicircular DOS) can
be solved analytically. The local Green’s functions have the simple form

G(ω+) = 2w0/
(

ω+ + µ +
√

(ω+ + µ)2 − D2

)

= w0G(ω+)

with D ≡ √
w0D0. The local spectral function or re-normalized DOS of the b-band is simply

ρ(ω) = 2
√

D2 − (ω + µ)2/(πD0
2), i.e., once again of the semi-circular form, but with a re-

duced effective bandwidth 2D, and reduced weight w0. At T = 0, n̄b, w0 = 1− n̄ℓ and ǫ∗ℓ can
hence be evaluated from (numerically solving) the equations:

ǫ∗ℓ = −EJT + (µn̄b/w0);

n̄b = (w0 − x) = (w0/π)
{

sin−1(µ/D) + (π/2) + (µ/D)
√

1 − (µ/D)2
}

θ(µ + D).

In addition, when n̄ℓ 6= 0, there is the pinning condition ǫ∗ℓ = µ. These equations have the
self consistent solution n̄b = 0, ǫ∗ℓ = −EJT = µ, for EJT > D ≡ √

w0D0 =
√

xD0, since
w0 = x for n̄b = 0. Thus we have the analytic result that for x < (EJT /D0)

2 the effective
half bandwidth D =

√
xD0, the localized ℓ levels lie lower than the b band bottom, only the

former are occupied and the system is an insulator. The T = 0 electrical gap between the
occupied ℓ levels and the unoccupied b band bottom in this ferro-insulator phase is given by
∆ = EJT −D = EJT −√

xDo. The critical doping for the T = 0 ferro-insulator to ferro-metal
transition, determined by the vanishing of ∆, is thus xc = (EJT /D0)

2. As x increases beyond
xc, the system becomes a ferromagnetic metal, with ǫ∗ℓ the re-normalized ℓ level lying above
the b band bottom. n̄b increases with x ,till at some value xc2, n̄b = (1 − xc2) so that n̄ℓ = 0.
Beyond xc2, only the b band is occupied.

Thus our theory leads naturally to an insulating (ferromagnetic) state for x < xc, a ferro-
metallic state with coexisting band b and localized ℓ electrons for xc < x < xc2, and a metal
with only b electrons and bandwidth 2D0 for x > xc2. Indeed, for x close to 1 (”electron
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doped limit”) there are surprisingly successful calculations [17] of (magnetic) ground states
based on a model of independent broad band tight binding electrons moving in appropriate
magnetic superstructures of t2g spins which have AF super-exchange interactions, completely
ignoring JT interactions. Our theory provides a rationalization for this.

Detailed zero temperature results from our theory are shown in Figs. 1(a)-(c) and in Fig.
2. We choose EJT = 0.5 eV and D0 = 1eV . Fig. 1(a) shows the variation of the re-normalized
ℓ level and the b band edge positions (U = ∞, full line, U = 5eV , a realistic value, dotted line)
with doping x. The effective b bandwidth 2D becomes very small (0 for U = ∞) as x → 0.
The physical reason is that, as mentioned before, the b electrons reside mostly on the hole
sites(fraction x), being strongly repelled from those occupied by ℓ polarons (with repulsion
energy U >> 2D). At x = xc (= 0.25 for U = ∞, and very nearly this value for U = 5 eV ),
the band bottom crosses the ℓ level. The system is metallic for x > xc, with both n̄b and n̄ℓ

being nonzero, as shown in Fig. 1(b). We note that in the ‘metallic’ regime xc < x < 0.5, n̄b,
the average band occupancy, is small, eg. at x = 0.4, n̄b ≃ .08. For the set of parameters
chosen, the ℓ level empties out completely for x = xc2 ≃ 0.72, and beyond this only band
states are occupied. Double exchange and anti-ferromagnetic super-exchange describe the
magnetic behaviour of the system in this regime. In Fig. 1(c), the effective band or electrical
gap is shown as a function of x. The gap vanishes smoothly as x → xc and rises as x → 0 to
a value EJT , and not U ; this should be the electrical gap seen at any finite x no matter how
small, or in a T 6= 0 experiment. Fig. 2 shows how the T = 0 insulator metal boundary (xc)
shifts as a function of D0 and U . xc increases as D0 decreases, and as U increases. We note
that all physical quantities for U = 5eV are close to those for U = ∞.

We now briefly compare our results with observed material trends and experimental num-
bers where available. One of our predictions is that of a ferromagnetic but insulating ground
state (FI) for x < xc. The former arises from the new virtual double-exchange coupling JF

described earlier; the state is insulating because the effective b half bandwidth D < EJT

for x < xc. In contrast, the ferromagnetic state is necessarily metallic if it arises solely due
to double exchange [9]. Experimentally, all doped manganites have an insulating, fully po-
larized ferromagnetic state, for xc1 < x < xc ; eg. for LaCa, xc1 = 0.10 and xc = 0.18.
In our calculations, xc1 = 0 (because we have neglected the small, orbital order depen-
dent, anti-ferromagnetic exchange important at small x [11]), while the critical doping xc

for the insulator-metal transition at T = 0 depends on material parameters roughly as
xc = (EJT /D0)

2 (cf. Fig. 2). This prediction can not be directly compared with experi-
ment since the systematics of EJT and D0 are not precisely known. It is however believed [18]
that the bare half-bandwidth D0 decreases in the sequence LaSr, LaCa, NdSr (and PrCa),
because of cation size and its effect primarily on the Mn-O-Mn bond angle and via this on the
nearest neighbour hopping, while EJT does not change much. The observed xc for this se-

quence has values 0.16, 0.18, and
>∼ 0.20, the trend being consistent with our prediction. The

puzzle as to why some manganites (eg. PrCa) have only insulating ground states unlike the
above can be understood within our theory in terms of the characteristic values of (EJT /D0)
appropriate to the materials (eg., from Fig. 2, for EJT ∼ .5 eV , the ferro-insulator extends

up to x = .5 if D0

<∼ 0.7 eV ).

The electrical activation energy in the Ferro-insulator state goes as ∆eff = D0(
√

xc −
√

x)
for large U in our theory. This dependence cannot be compared with experiment, since there
are no measurements of activation energies close to T = 0; the only experimental results we
are aware of [19] are for T > Tc, in the paramagnetic phase. The corresponding gaps are not
expected to go to zero at xc. However, this high T (> Tc) activation energy does decrease as
x → xc as expected from our theory.
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Fig. 1 – (a) Variation of b band edges and the effective ℓ level ǫ∗ℓ , in units of D0, with doping x.
(b) The number n̄l (of localized JT polaronic ℓ electrons) and n̄b ( of band electrons), per site, as
a function of x. (c) The T = 0 insulating gap ∆ ≡ (EJT − D), as a function of x. In all the cases
EJT = 0.5 eV and D0 = 1 eV . The full line corresponds to U = ∞ and long dashed line to U = 5 eV .

Fig. 2 – The critical concentration xc for the T = 0 insulator metal transition as a function of D0 the
bare b half-bandwidth, in eV . The full line corresponds to U = ∞ and line with circles to U = 5 eV .
The inset shows xc as a function of U/D0 for EJT = 0.5 eV and D0 = 1 eV . The point corresponding
to U = 5 eV is marked by a filled circle.

An additional consequence of our model is that in the ferromagnetic metallic ground state,
the concentration of mobile (b) electrons is rather small (Fig. 1(b)), and not (1−x), the total
number of eg electrons per site. This is exactly the inference from the small Drude weight,
i.e. the integrated optical conductivity, which is a direct measure of the effective number of
carriers. For example, Okimoto et. al. [20] find neff ≃ 0.06 for LaSr at x = 0.3. Our results
for n̄b quoted above are very much in this range of smallness. A related consequence of our
theory, arising from the fact that the large majority of the eg electrons are in polaronic ℓ
states even in the metal, is the persistence of local polaronic distortions well into the metallic
phase, for which there is considerable experimental evidence [6]. Thus our results provide a
natural explanation for several unusual ground state properties of manganites.

In summary, we have presented here a new coexisting polaron/broad band electron model
for manganites, which revives the Falicov-Kimball model in a new, hitherto unexpected and
unexplored, setting. We have completely solved the model in this new context within the
DMFT, and shown that this leads to a physical explanation and a quantitative theory of
many characteristic and hitherto puzzling ground state properties of doped manganites in the
doping regime 0.1 < x < 0.5.
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