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We study the T = 0 crossover from the BCS superconductivity to Bose-Einstein condensation in
the attractive Hubbard Model within dynamical mean field theory(DMFT) in order to examine the
validity of Hartree-Fock-Bogoliubov (HFB) mean field theory, usually used to describe this crossover,
and to explore physics beyond it. Quantum fluctuations are incorporated using iterated perturbation
theory as the DMFT impurity solver. We find that these fluctuations lead to large quantitative
effects in the intermediate coupling regime leading to a reduction of both the superconducting order
parameter and the energy gap relative to the HFB results. A qualitative change is found in the
single-electron spectral function, which now shows incoherent spectral weight for energies larger
than three times the gap, in addition to the usual Bogoliubov quasiparticle peaks.

1. INTRODUCTION

The problem of the crossover from BCS superconduc-
tivity to Bose-Einstein Condensation (BEC) of compos-
ite bosons, where the superconducting coherence length
(roughly the size of the fermion pair binding) is respec-
tively much larger than or much smaller than the aver-
age inter-fermion spacing, has been a problem of great
interest from the very early stages of development of the
theory of superconductivity. It was first addressed in
the very early work of Eagles [1]. In 1980 Leggett [2]
showed, using a variational approach, that at zero tem-
perature the superconducting BCS ground state at weak
coupling evolves smoothly into a Bose condensate state of
tightly bound ”molecules” at strong coupling. Noziéres
and Schmitt-Rink [3] extended the analysis to lattice
models and to finite temperature and showed that the
transition temperature Tc between the normal and the
superconducting state evolves continuously as a function
of the magnitude of the attractive interaction between
the fermions. The discovery of high Tc superconductors,
which are characterized by short coherence length com-
parable to (but larger than) the inter-particle spacing, led
to a resurgence of interest in the BCS-BEC crossover. A
variety of interpolation schemes between weak and strong
coupling developed using variational methods, functional
integrals, and diagrammatic methods have been explored
[4, 5, 6], and the existence of pseudo-gap anomalies in the
normal state of a short coherence length superconductor
has been established in two-dimensional systems [7, 8].
Recently it has become possible to directly realize the
BCS-BEC crossover in a dilute atomic gas of Fermions
in a trap, by varying their two-body interaction (scatter-
ing length) using a Feshbach resonance [9].

In this paper we analyze the BCS-BEC crossover in
the attractive Hubbard model using the dynamical mean

field theory (DMFT) [10, 11] approach. Our goal is to
focus on the intermediate coupling regime U/t ≈ 1 where
one has no obvious small parameter. Since the DMFT
becomes exact in the limit of infinite dimensions [10, 11],
we are, in a sense, using the inverse coordination number
of the lattice as the small parameter. The attractive
Hubbard model has been studied recently using DMFT,
but primarily in the normal phase [12] to analyze pair
formation above Tc and related phenomena. We focus
here on the superconducting phase at zero temperature,
in part because the DMFT method has been much less
explored in broken symmetry phases.

The remainder of the paper is organized as follows. In
Section 2, we define the model and review the Hartree-
Fock-Bogoliubov (HFB) mean field theory. In Section
3, we briefly summarize the DMFT approach in the su-
perconducting (SC) state and then describe the specific
implementation of DMFT which we use, namely the iter-
ated perturbation theory (IPT), in Section 4. In Section
5 we present our results for the chemical potential, en-
ergy gap, SC order parameter, density of states, spectral
function, occupation probability and superfluid stiffness.
We discuss how each of these evolves from the weak cou-
pling BCS limit to the strong couping BEC limit, and
to what extent the quantum fluctuations included in the
DMFT implemented using IPT modify the results rela-
tive to HFB mean field theory.

2. MODEL

We use the simplest lattice model which exhibits the
BCS-BEC crossover, defined by the Hamiltonian

H = −t
∑

ij,σ

c†iσcjσ − |U |
∑

i

ni↑ni↓ − µ
∑

i

ni (1)
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The first term describes the kinetic energy of fermions
with nearest neighbor hopping t, the on-site attractive
interaction (−|U |) induces s-wave, singlet pairing and
leads to a superconducting ground state for all n 6= 1,
with the chemical potential µ determining the filling fac-
tor n. (We will not study the system with n = 1 for
which superconducting and charge-density wave orders
coexist).

The simplest mean-field description of this system uses
the Hartree-Fock-Bogoliubov (HFB) theory leading to
the following self-consistent equations for the “gap” ∆
and µ at a temperature T ≡ 1/(kBβ):

1

|U | =
∑

k

tanh(βEk/2)

2Ek

(2)

and

n = 2
∑

k

[

1 − ξk

Ek

tanh

(

βEk

2

)]

. (3)

We use standard notation where ǫk is the band disper-
sion for the fermions and Ek =

√

∆2 + ξ2
k with ξk ≡

ǫk − µ − |U |n/2. As is well known [4, 5, 6, 13] at T = 0
the solution of these equations leads to a BCS supercon-
ductor in the weak coupling |U |/t ≪ 1 limit, to a BEC of
hard core bosons in the opposite extreme |U |/t ≫ 1, and
interpolates smoothly in between. However, the finite
temperature solutions of these equations for |U |/t ≫ 1
yields a Tc ∼ |U |, not the BEC transition temperature
scale expected to be of order t2/|U |, and the HFB ap-
proach therefore does not constitute an interpolating ap-
proximation at finite T [4].

The DMFT is one of the simplest schemes that has the
potential to overcome some of these limitations of simple
HFB theory. As we discuss in the following sections, the
lattice dependence of quantities that arise in the DMFT
is not via the momentum k but only via the band disper-
sion ǫk, and hence we can make the replacement

∑

k

→
∫

dǫρ(ǫ), (4)

where ρ(ǫ) is the (bare) band density of states(DOS).
The implementation of the DMFT is often simplest on a
Bethe lattice with a large coordination number z → ∞,
for which

ρ(ǫ) =

√
4t2 − ǫ2

2πt2
θ(2t − |ǫ|). (5)

if the bare hopping is normalized as

t → t√
z

(6)

We conclude this section by calculating the effective
two-body interaction or the low energy scattering ampli-
tude. This will give us a clear idea about the regime of
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FIG. 1: The real part of the T-matrix T (ω → 0) for the two-
body problem is plotted as a function of the attraction |U |/t
between two fermions in an otherwise empty Bethe lattice
of infinite connectivity. |U |/t = 2 is the threshold for the
formation of bound state in vacuum.

|U |/t where we expect the corrections to HFB at T = 0 to
be the most severe, and it will also emphasize the similar-
ity between the continuum Fermi gases often studied the-
oretically (and now experimentally) and the lattice model
studied in this paper. The low energy scattering is de-
scribed by the real part of the T-matrix ReT (ω → 0) for
the two-body problem in vacuum, i.e., for two fermions
in an otherwise empty lattice. This is the analog of the
well known three-dimensional “scattering length” for the
case of the Bethe lattice studied in this paper. As shown
in Fig. 1, for |U |/t < 2 the attractive interaction is not
sufficient to cause a two-body bound state in vacuum,
and |U |/t = 2 is the threshold for bound state formation
at which the scattering amplitude diverges [14]. We also
note that at |U |/t = 2 the effective interaction diverges,
i.e., one reaches the unitary limit, even though bare |U |
is in the intermediate coupling regime. We expect that
the deviations from the HFB theory will be maximal in
the vicinity of |U |/t = 2 where the system is efectively
very strongly interacting.

3. DYNAMICAL MEAN FIELD THEORY

To explore the intermediate coupling regime we use the
dynamical mean field theory (DMFT) approach [10, 11],
which reduces a lattice problem with many degrees of
freedom to an effective single-site problem by ”integrat-
ing out” all the fermionic degrees of freedom except those
at one site – the “impurity site” – and retaining the ef-
fects of this only in the form of a self-consistently deter-
mined bath with which the ”impurity site” hybridizes.
This retains non-trivial local quantum fluctuations miss-
ing in conventional mean field theories and the descrip-
tion can be shown to be exact in the limit of large di-
mensionality. Since there are many excellent reviews of
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DMFT we will only outline the elements of the technique
in order to introduce our notation and to indicate the
changes in the standard formalism necessitated by the
presence of the superconducting long range order.

To take the superconducting order (with singlet pair-
ing) into account we use the Nambu formalism with the

spinors Ψ†
k ≡ (c†k↑, c−k↓) and the matrix Green’s function

Ĝ(k, τ) ≡ −〈TτΨ(k, τ)Ψ†(k, 0)〉

=

(

G(k, τ) F (k, τ)
F †(k, τ) −G(−k,−τ)

)

(7)

where F (k, τ) ≡ −〈Tτck↑(τ)c−k↓(0)〉 satisfies
F (−k,−τ) = F (k, τ). We will denote all Nambu
matrices by a ‘hat’ on top. In this formalism the
interaction effects are described in terms of the self
energy matrix

Σ̂(k, iωn) =

(

Σ(k, iωn) S(k, iωn)
S⋆(k,−iωn) −Σ⋆(k, iωn)

)

(8)

where ωn = (2n + 1)π/β are fermionic Matsubara fre-
quencies.

In the limit of infinite dimensions it can be shown that
the self energy is purely local, i.e., is k independent (see
ref. 10), so that Σ̂ = Σ̂(iωn) . Furthermore, the SC order
parameter can be chosen to be real in a uniform system,
which implies that S(iωn) = S⋆(−iωn). Hence using the
Dyson equation the full Green’s function for the lattice
can be written as

Ĝ−1(k, iωn) =

(

iωn + µ − ǫk 0
0 iωn − µ + ǫk

)

− Σ̂(iωn)

(9)

=

(

iωn + µ − ǫk − Σ(iωn) −S(iωn)
−S(iωn) iωn − µ + ǫk + Σ(−iωn)

)

Thus, in DMFT the k-dependence in Ĝ−1(k, iωn) enters
only via the dispersion ǫk.

The local self energy is itself obtained from an effective
single site problem which can be regarded as arising from
integrating out fermionic variables on all sites except one.
The effective action for this single site problem within the
DMFT approximation is given by

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′Ψ†(τ)Ĝ−1(τ − τ ′)Ψ(τ ′)

− |U |
∫ β

0

dτn↓(τ)n↑(τ). (10)

Here the host (Matrix) Green’s function Ĝ is not the non-
interacting local Green’s function, as it includes the ef-
fects of the fermionic degrees at other sites which have
been integrated out in the presence of interactions, i.e., it

includes (local) self energy corrections at all these other
sites, and needs to be determined by a triangle of self-
consistency relations as described below.

The first of these relations comes from the requirement
that the ”impurity” Green’s function for the single site
problem should be the same as the local Green’s function
of the lattice, so that

Ĝ(iωn) =
∑

k

Ĝ(k, iωn). (11)

This gives the diagonal and off-diagonal components of
the impurity Green’s function as

G(iωn) =

∫ ∞

−∞

dǫ ρ(ǫ)
ζ1 − ǫ

(ζ1 − ǫ)(ζ2 − ǫ) + S2(iωn)
, (12)

and

F (iωn) = S(iωn)

∫ ∞

−∞

dǫ ρ(ǫ)
1

(ζ1 − ǫ)(ζ2 − ǫ) + S2(iωn)
(13)

Here ζ1 ≡ iωn +µ−Σ(iωn) and ζ2 ≡ iωn +µ+Σ(−iωn).
For the case of the semi-circular DOS of eq. (5) the inte-
grals can be evaluated in closed form as

G(iωn) =
2ζ1

x1 − x2

[

1

x1 +
√

x2
1 − 4t2

− 1

x2 +
√

x2
2 − 4t2

]

(14)

F (iωn) =
S(iωn)

x1 − x2

[

1

x1 +
√

x2
1 − 4t2

− 1

x2 +
√

x2
2 − 4t2

]

(15)
with x1,2 ≡ ζ2 − ζ1 ±

√

(ζ2 + ζ1)2 − 4S2(iωn)/2 .
The second relation comes from the Dyson equation

connecting the full Green’s function Ĝ at the impurity
site, the host Green’s function Ĝ and the self-energy Σ̂,
typically used in reverse, in the form

Ĝ−1(iωn) = Ĝ−1(iωn) + Σ̂(iωn). (16)

The final relation comes from the solution for the self
energy of the impurity problem defined by (10), i.e., the
determination of

Σ̂(iωn) = Σ̂[Ĝ(iωn)] (17)

from a knowledge of the host Green’s function. This is
the task of the “impurity solver”, and is typically the
hardest step in the triangle of self consistency. In this
paper, we use iterated perturbation theory (suitably ex-
tended to deal with the broken symmetry associated with
the superconducting ground state as described in the fol-
lowing section) as the impurity solver.

4. ITERATED PERTURBATION THEORY

We adapt the iterated perturbation theory (IPT), orig-
inally developed for the paramagnetic phase of the re-
pulsive Hubbard model [10, 15], to the SC phase of the
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attractive Hubbard model. IPT is an approximate tech-
nique which is much simpler than the more accurate
but elaborate alternate methods such as quantum Monte
Carlo [16], exact diagonalization [17], numerical renor-
malization group [18], local moment approximation [19]
etc. IPT gives semi-analytical results which can be di-
rectly and easily continued to the real frequency domain.
It has been well studied in the context of the DMFT
of the Mott transitions in the repulsive Hubbard model
[10, 15] where it gives results in complete qualitative
agreements with the more accurate methods mentioned
above, and only quantitative disagreement typically no
more than 10-20 % in the transition temperatures and
critical values of U/W ; see, e.g., the comparison of re-
sults obtained using different impurity solvers by Bulla
et al. [18]. One can reasonably expect similar levels of
qualitative and quantitative correctness in the present
context in general. If qualitative changes are likely, this
is commented on at appropriate places in the paper.

In the form in which we use it here [20], IPT rests on
the following ansatz for the self energy as a functional of
Ĝ :

Σ̂IPT (ω+) = Σ̂HFB + ÂΣ̂(2)(ω+). (18)

Here Σ̂HFB is the Hartree-Fock-Bogoliubov (HFB) self
energy as in eq. 19 (see note [21]), Σ̂(2) is the second
order perturbation theory result (in powers of |U |) but

calculated in terms of the Hartree-corrected host Green’s

function (see eq. 24), and Â is to be determined as de-
scribed below (see eq. 28). All the calculations we report
and discuss in this paper are done at T = 0, and we work
directly in real frequency ω+ = ω + i0+.

The IPT ansatz is constructed so that [20] it

• reproduces the leading order terms for the self en-
ergy in the weak coupling limit |U |/t << 1,

• is exact in the atomic limit t/|U | = 0, and

• reproduces the leading order terms for the self en-
ergy in the large ω limit for all |U |/t, which ensures
that some exact sum rules are satisfied.

Thus IPT is expected to provide a reasonable interpolat-
ing scheme between the weak and strong coupling limits.

The HFB self energy is given by

Σ̂HF = −|U |n
2
τ̂z − ∆τ̂x (19)

Here τ̂z and τ̂x are Pauli matrices in Nambu space. The
filling factor n =

∑

σ〈c†σcσ〉 and ∆ = |U |Φ = |U |〈c↓c↑〉
with Φ being the superconducting order parameter, are
obtained from the full Green’s function within IPT as

n = − 2

π

∫ 0

−∞

Im G(ω+)dω (20)

∆ = −|U |
π

∫ 0

−∞

Im F (ω+)dω (21)

The diagonal and off-diagonal components of the sec-
ond order self energy Σ̂(2) are given by

Σ(2)(t) = −U2
(

G̃11(t)G̃22(−t)G̃22(t) − F̃0
†
(t)G̃22(−t)F̃0(t)

)

(22)
and

S(2)(t) = −U2
(

F̃0(t)F̃0(−t)F̃0
†
(t) − G̃11(t)F̃0(−t)G̃22(t)

)

(23)

Here G̃11, G̃22, F̃†
0 and F̃0 are components of the Hartree

corrected Host Green’s function matrix

(

G̃11(ω) F̃0(ω)

F̃†
0 (ω) G̃22(ω)

)−1

=

(

G0(ω) F0(ω)
F0(ω) −G⋆

0 (−ω)

)−1

−Σ̂HFB

(24)
The subscript 0 has been added in order to distinguish
the components of the host green functions that arise
in the specific context of the IPT approximation to the
impurity problem.

Each of the terms in (22) and (23) is the product of
three factors of the form

H(t) = h1(t)h2(−t)h3(t) (25)

where each hi is either G̃11, G̃22, F̃†
0 or F̃0. Using the

spectral representation for each Green’s function we ob-
tain for the Fourier transform,

H(ω+) = −
∫ ∞

−∞

3
∏

i=1

dǫiρ̃i(ǫi)
N(ǫ1, ǫ2, ǫ3)

ω+ − ǫ1 + ǫ2 − ǫ3
(26)

where ρ̃i(ǫi) = −Im[hi(ǫ
+
i )]/π and N(ǫ1, ǫ2, ǫ3) is a ther-

mal factor

N(ǫ1, ǫ2, ǫ3) = f(ǫ1)f(−ǫ2)f(ǫ3) + f(−ǫ1)f(ǫ2)f(−ǫ3)
(27)

involving the Fermi function f(ǫ) ≡ 1/[1 + exp(βǫ)] =
1 − f(−ǫ).

The matrix Â in (18) is fixed by demanding that
Σ̂IPT (ω+) is ”exact” in the large ω limit up to order 1/ω.
As shown in Appendix A, we find Â to be proportional
to the identity matrix τ̂0 in Nambu space and given by

Â =

[

U2n0

2

(

1 − n0

2

)

− ∆2
0

]−1 [

U2n

2

(

1 − n

2

)

− ∆2

]

τ̂0

(28)
where τ̂0 is the identity matrix. Here n0 and ∆0 denote
fictitious “filling factor” and “gap function” values eval-
uated for the Hartree corrected Host Green’s function,
i.e.,

n0 = −2/π

∫ 0

−∞

ImG̃11(ω
+)dω (29)
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and

∆0 = −|U |/π

∫ 0

−∞

ImF̃0(ω)dω. (30)

In the atomic limit, as discussed in Appendix B, we
find that the second order self energy vanishes. Thus
the IPT self energy for t/U = 0 is simply the HFB self
energy. We show in Appendix B that the HFB result is
exact at zero temperature in the broken symmetry phase
for t/U = 0, and thus our ansatz for the self energy is
exact in the atomic limit.

5. RESULTS

We have solved the DMFT equations within the IPT
approximation as follows. For a given |U |/t and n, we
start with a guess for the self energy Σ̂(ω+) and the
chemical potential µ . With this self energy as input,
we compute the full local Green’s function Ĝ(ω+) us-
ing analytically continued form of eqs. (14) and (15) at
T = 0. Then we use the Dyson equation (16) to de-
termine the host Green’s function Ĝ. Next we use the
IPT ansatz (18-24) to determine the (new) self energy
in terms of Ĝ, using new values of parameters ∆, ∆0 and
n0. Finally we obtain the new chemical potential by solv-
ing the filling constraint equation (20) using the Broyden
method [22]. We then iterate the whole procedure until
a self-consistent solution is reached, i.e., convergence in
the self energy matrix is achieved.

Within this self-consistency loop the evaluation of n
and ∆ using eq. (20) and (21) (and similarly for n0 and
∆0) involves integrals with singular integrands: the func-
tions Im G(ω+) and Im F(ω+) have square root singu-
larity at a gap edge ω = Eg which is not a priori known.
We fit these functions in a small neighborhood of the gap
edge to the form K/

√

ω − Eg, where the fits determine
the gap in the spectrum Eg. Then the singular part of
integral near the gap edge is easily evaluated analytically
and the part away from the singularity evaluated numer-
ically using Gaussian quadrature.

All of the results reported in this paper have been ob-
tained at a fixed density of n = 0.5 (quarter filling) in or-
der to avoid special features that arise at half-filling. (At
half-filling, corresponding to n = 1, charge density wave
order becomes degenerate with SC order and the Hamil-
tonian has SU(2) symmetry, and is in fact isomorphic to
the repulsive Hubbard model which has been well studied
within DMFT.) We expect similar results for n 6= 1.

Chemical potential: Fig. 2 shows the chemical po-
tential µ tuned to obtain n = 0.5 at T = 0. We see that
it decreases monotonically as a function of |U |/t and the
system becomes non-degenerate with increasing attrac-
tion between the fermions. For |U | > 3.5t the chemical
potential goes below the bottom of the band.
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-1.6

-1.2

-0.8

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

µ/
t

|U|/t

FIG. 2: The chemical potential µ/t as a function of |U |/t for
n = 0.5 and T = 0 within IPT (filled circles) and HFB theory
(full line).
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ω
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(ω

)

FIG. 3: Single particle density of states (per unit energy per
unit area) for n = 0.5 and T = 0 within IPT for Bethe lattice
of infinite connectivity.

Density of states: The single particle density of
states (DOS) N(ω)

N(ω) = − 1

π
Im G(ω+) (31)

is plotted in Fig. 3 for various values of |U |/t. We ob-
serve a spectral gap (Eg) in the single particle DOS ,
which increases with U |/t as shown in Fig. 4, where the
gap as obtained within the HFB theory is also shown for
comparison.

For weak coupling the HFB spectral gap has the form
t exp(−πt/2|U |), characteristic of BCS theory, while for
large attraction it approaches to the binding energy of
the composite bosons being proportional to |U |/2. The
differences of the DMFT result for the energy gap from
the simple HFB estimates will be discussed below. Near
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FIG. 4: The spectral gap in the single particle density of
states for n = 0.5 and T = 0 as a function of |U |/t within
IPT (filled circles) and HFB theory (full line). Note that the
spectral gap within IPT is suppressed as compared to that
obtained from HFB theory.
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FIG. 5: The superconducting order parameter Φ for n = 0.5
and T = 0 within IPT (filled circles) and HFB theory (full
line). Note that the order parameter within IPT is suppressed
as compared to that obtained from HFB theory.

the gap edge the DOS has a square root singularity char-
acteristic of a s-wave superconductor. But the DOS far
from the gap edge does not simply look like the non-
interacting semi-circular DOS of the Bethe lattice (as
would be the case in weak coupling BCS theory). The
structure at larger energy values comes from the ω de-
pendence of the self energy, as we discuss below.

Order parameter and energy gap: The supercon-
ducting order-parameter is calculated using

Φ = 〈c↓c↑〉 = −1/π

∫ 0

−∞

ImF (ω+)dω

and plotted in Fig. 5. We see that, as expected, the
quantum fluctuations included in DMFT suppress the
order parameter below its HFB mean-field value. The
effect of quantum fluctuations in the intermediate cou-
pling regime can be seen more clearly in Fig. 6 where we
plot the fractional deviation of DMFT order parameter

 0
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δEg/Eg

δΦ/Φ

FIG. 6: δΦ = ΦHF B − ΦIPT where ΦHF B is the SC order
parameter within HFB theory and ΦIPT is the same within
IPT. δEg = (Eg)HF B − (Eg)IPT where (Eg)HF B is the spec-
tral gap within HFB theory and (Eg)IPT is the same within
IPT.

and the energy gap from their corresponding HFB values.

For small to intermediate values of the coupling U
∼
< t

the quantitative differences are quite large with the HFB
results being larger than the DMFT ones by more than
100%.

Spectral function:

Another important quantity of interest is the one-
particle spectral function

A(ǫ, ω) = − 1

π
ImG(ǫ, ω+) (32)

where G is the “11” component of the Nambu Matrix
Green’s function for the lattice obtained by inverting eqn.
9, and is given by

G(ǫ, ω+) =
ω + ǫ − µ + Σ∗(−ω+)

D(ǫ, ω)
(33)

with

D(ǫ, ω) = (34)

[

ω + ǫ − µ + Σ∗(−ω+)
] [

ω − ǫ + µ − Σ(ω+)
]

− S2(ω+)

Since we are working within the DMFT framework, we
have traded the k label for the energy label ǫ.

Quite generally, we expect that the spectral function
will be of the form

A(ǫ, ω) = Z+(ǫ)δ(w − E) + Z−(ǫ)δ(w + E) + Ainc(ǫ, ω)
(35)

where Z±(ǫ) are the coherent spectral weights in the Bo-
goliubov quasiparticle/quasihole excitation poles at ener-
gies ±E(ǫ), and Ainc is the incoherent part of the spectral
function. We recall that in simple BCS-HFB mean field
theory Z± = (1 ± ξ/E)/2 where ξ = ǫ − µ − |U |n/2 and

E =
√

ξ2 + ∆2 and Ainc = 0. In contrast, as shown in
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Fig. 7 the DMFT result for A(ǫ, ω) not only has sharp
delta function peaks at ±E corresponding to the Bogoli-
ubov excitations but also has a broad incoherent part.
The weight in the coherent excitations Z+ + Z− < 1 and
the deficit from unity is contained in Ainc. All of this is
a consequence of the frequency dependent self-energy as
shown below.

The imaginary part of the (diagonal) self energy is plot-
ted in Fig. 8. It vanishes at low energies (|ω| < 3Eg) since
there are no final states available for a scattering event.
In this regime, from eqs. (32) and (33) it follows that

A(ǫ, ω) = (ω + ǫ − µ + Σ(−ω)) δ (D(ǫ, ω)) , (36)

with D(ǫ, ω) = (ω + ǫ− µ + Σ(−ω))(ω − ǫ + µ−Σ(ω))−
S2(ω), since Σ(ω) and S(ω) are now real. The quasipar-

ticle excitation energies are the two symmetrically placed
zeros at ω = ±E of D which is an even function of ω.
Thus the excitation energies are given by

D(ǫ,±E) = 0. (37)

and the residues at the Bogoliubov quasiparticle poles
are then reduced compared to their HFB values and are
given by

Z±(ǫ) = [±E + ǫ − µ + Σ(∓E)]

/
∣

∣

∣

∣

∂D

∂ω
(ω = ±E)

∣

∣

∣

∣

(38)

The imaginary part of the (diagonal) self energy be-
comes non-zero for ω ≥ 3Eg as shown in Fig. 8. This
can be seen to arise from the form of the second or-
der self energy of eq. (22), because in a system with a
gap, final states for scattering an injected particle off a
particle-hole pair are avaliable only if incident particle
has ω ≥ 3Eg. We should note, however, that the 3Eg

value of the threshold is likely an artifact of DMFT/IPT
which ignores collective excitations. It is well known [13]
that in finite dimensions this model has a linearly dis-
persing sound mode and scattering of a one-particle ex-
citation off such a collective mode should lead to non-zero
ImΣ(ω) above Eg and not 3Eg.

In any case, within IPT, the structure of the self en-
ergy leads to the incoherent spectral weight in A(ǫ, ω)
above three time the gap. The reduction of the coherent
quasiparticle weight and the transfer of spectral weight
to the incoherent part of the spetral function are thus
features related to the ω dependent self energy and are
missing in simple HFB mean field theory.

Occupation probability: We next calculate the ana-
log of the momentum distribution within the DMFT,
namely the occupation probability n(ǫ) of an energy level
ǫ given by

n(ǫ) =

∫ 0

−∞

A(ǫ, ω)dω. (39)

This is plotted in Fig. 9 for various values of |U |/t.
Within the HFB approximation, n(ǫ) has the following

simple form:

n(ǫ) = Z−(ǫ) =
1

2

(

1 − ξ

E

)

(40)

It is easy to see that in the weak coupling limit n(ǫ)
looks like a slightly broadened Fermi function, dropping
from 1 to zero over an energy scale of order ∆; its width
hence increases monotonically with |U |/t. As one be-
gins to form more and more tightly bound pairs, higher
ǫ states need to be involved in the pairing and eventually
the system becomes non degenerate even at T = 0 as
already argued from the chemical potential. Note that
n(ǫ) within IPT is always less rounded than that within
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HFB because quantum fluctuations reduce the gap in the
single particle dos relative to HFB value.

We find that the exact sum rule
∫ ∞

−∞
n(ǫ)ρ0(ǫ)dǫ = n/2

is satisfied in our IPT calculation within the estimated
numerical errors (0.4% − 2%).

Superfluid stiffness: We can also estimate an upper
bound on the superfluid stiffness Ds which is the strength
of the delta function in the real part of optical conduc-
tivity :

Reσ(ω) = Dsδ(ω) + Reσreg(ω), (41)

The Kubo formula for the superfluid stiffness [23] can be
written as

Ds

π
= −〈Kx〉 − ReΛT (qx = 0, qy → 0, ω = 0) (42)

where the kinetic energy −〈Kx〉 is the diamagnetic re-
sponse of the system to the vector potential and the
transverse current-current correlation function ΛT is the
paramagnetic response. It is easy to see that ΛT ≥ 0, so
that Ds ≤ π|〈Kx〉|. Thus the the kinetic energy gives an

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  0.5  1  1.5  2  2.5  3  3.5  4

D
s

|U|/t

HF

IPT

FIG. 10: Upper bound on the superfluid stiffness Ds for n =
0.5, T = 0 as a function of the coupling constant |U |/t within
IPT (filled circles) and HFB theory (full line).

upper bound to the superfluid stiffness, and in fact we
may use it to provide a rough estimate of Ds (although,
as emphasized in ref. [24], there is no reason to assume in
general that for a lattice model Ds is identical to π|〈Kx〉|
even though this equality holds within simple BCS-HFB
theory.) In Fig. 10 we plot the superfluid stiffness Ds as
a function of the attractive interaction. We find that it
is of order t in weak coupling, but decreases monotoni-
cally with |U |/t reaching ∼ t2/|U | in the strong coupling
limit, which reflects the increasing effective mass of the
hard core lattice bosons in the large |U | limit.

6. CONCLUSIONS

In this paper we have studied the crossover from BCS
superconductivity to BEC at T = 0 in the attrac-
tive Hubbard model using dynamical mean field the-
ory (DMFT), implemented using the iterated perturba-
tion theory (IPT) scheme. Our main goal was to ex-
plore the DMFT approach in a broken symmetry state,
which has received less attention than the paramag-
netic phase, within a simple, easily implemented, semi-
analytic scheme, and to see how the quantum fluctu-
ations included in this framework modify the Hartree-
Fock-Bogoliubov (HFB) mean field results. For the most
part we found that HFB is qualitatively correct but over-
estimates the SC order parameter and energy gap. In the
intermediate coupling regime, the quantitative changes
can be quite large. The frequency dependent self-energy
of DMFT leads to the appearance of incoherent contribu-
tions to the single particle spectral function at energies
larger than three times the gap, and the consequent re-
duction in the coherent spectral weight in the Bogoliubov
quasiparticle/quasihole poles in the spectrum .
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APPENDIX A : LARGE ω LIMIT

In this Appendix we will first determine the large ω
limit of the self energy and then use it to fix the param-
eter Â in our IPT ansatz (18). The ω → ∞ limit can be
obtained by a moment expansion of the Green’s function

G(ω+) =
1

ω+

[

M (0) +
M (1)

ω
+

M (2)

ω2
+ . . .

]

, (43)

which follows from the spectral representation

G(ω+) =

∫ ∞

−∞

ρG(ǫ)dǫ

ω+ − ǫ
(44)

and the definition of the nth moment of the density of
states M (n) =

∫ ∞

−∞
ρG(ω)ωndω.

To evaluate the moments it is useful to go to a Hamilto-
nian formulation for single site impurity problem, which
requires introducing auxiliary degrees of freedom to de-
scribe the “bath”. For the superconducting phase of the
negative U Hubbard model, one possible choice for the
impurity Hamiltonian is :

Himp = −µ
∑

σ

c†σcσ − |U |n↑n↓ +
∑

kσ

ǫkf †
kσfkσ

+
∑

kσ

Vk

(

c†σfkσ + f †
kσcσ

)

+ D
∑

k

(

f †
k↑f

†
−k↓ + f−k↓fk↑

)

(45)
which describes the impurity cσ coupled to superconduct-
ing bath of f fermions. Here Vk is the hybridization pa-
rameter which allows fermions to hop between the bath
and the impurity site and the D term represents s-wave
pairing of the f ’s.

Using the spectral representation, the moments can be
written in terms of commutators ([, ]) and anticommuta-
tors ({, }) involving the c’s and the impurity Hamiltonian:

M̂
(0)
αβ = 〈

{

cα, c†β

}

〉 = δαβ (46)

M̂
(1)
αβ = 〈

{

[cα, Himp], c
†
β

}

〉 (47)

and

M̂
(2)
αβ = 〈

{

[[cα, Himp], Himp]c
†
β

}

〉 (48)

where α, β =↑, ↓. Explicit evaluation of these commuta-
tors leads to the results

M̂ (1) = (−µ − |U |n/2)τ̂z + ∆τ̂x (49)

M̂ (2) =

[

µ2 +
(2µ|U | + U2)n

2

]

τ̂0 (50)

The Host Green’s function Ĝ is obtained from the im-
purity Hamiltonian setting U = 0, and its large ω limit
is

Ĝ−1(ω+) ≃ w+τ̂0 + (µ −
∑

k

V 2
k /ω)τ̂z (51)

Using the Dyson equation, the large ω limit of self energy
is then found to be

Σ̂(ω+) = Σ̂HFB +
U2n(1 − n/2)/2− ∆2

ω+
τ̂0. (52)

We must now find the large ω limit of IPT self energy,
and compare it with the exact ω → ∞ result (52) derived
above. Begin with the diagonal component of Σ̂(2)(ω)
given by

Σ(2)(ω+) = U2

∫ ∞

−∞

3
∏

i=1

dǫi

g1(ǫ1, ǫ2, ǫ3)N(ǫ1, ǫ2, ǫ3)

w+ − ǫ1 + ǫ2 − ǫ3

(53)
where

g1(ǫ1, ǫ2, ǫ3) = ρ̃11(ǫ1)ρ̃22(ǫ2)ρ̃22(ǫ3)−ρ̃f (ǫ1)ρ̃22(ǫ2)ρ̃f (ǫ3)
(54)

Here ρ̃ii(ω) = −1/π Im G̃ii(ω
+) with i = 1, 2 and

ρ̃f (ω) = −1/π Im F̃0(ω
+). In the large ω limit it suf-

fices to keep terms up to order 1/ω. We thus get

Σ(2)(ω+) ≃ 1

ω+

[

U2n0

2
(1 − n0

2
) − ∆2

0

]

(55)

Next, consider the off-diagonal component of Σ̂(2)(ω)

S(2)(ω+) = U2

∫ ∞

−∞

3
∏

i=1

dǫi

g2(ǫ1, ǫ2, ǫ3)N(ǫ1, ǫ2, ǫ3)

w+ − ǫ1 + ǫ2 − ǫ3

(56)
where

g2(ǫ1, ǫ2, ǫ3) = ρ̃f (ǫ1)ρ̃f (ǫ2)ρ̃f (ǫ3) − ρ̃11(ǫ1)ρ̃f (ǫ2)ρ̃22(ǫ3)
(57)

It is easy to check that in the large ω limit S(2) vanishes
up to order 1/ω.

Comparing the large ω limits of the IPT ansatz
Σ̂HFB + ÂΣ̂(2)(ω) and the exact self energy (52), we find

Â =

[

U2n0

2

(

1 − n0

2

)

− ∆2
0

]−1 [

U2n

2

(

1 − n

2

)

− ∆2

]

τ̂0

(58)
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APPENDIX B : ATOMIC LIMIT

In this Appendix first we first solve the attractive Hub-
bard model exactly in the atomic limit t/U = 0 and then
show that our IPT ansatz for self energy is exact in this
limit. In the atomic limit one can drop the hopping term
in the Hubbard Hamiltonian (and also the hybridization
term in the impurity Hamiltonian) so that

H = −|U |n↑n↓ − µ(n↑ + n↓) (59)

The various sites decouple and so we have dropped the
site label. The four states are |0〉, | ↑〉, | ↓〉 and | ↑↓〉 with
corresponding energies 0,−µ,−µ and −2µ− |U |.

To study the broken symmetry phase we introduce a
pairing field h,

H = −|U |n↑n↓ − µ(n↑ + n↓) − h(c†↑c
†
↓ + c↓c↑) (60)

and finally take the h → 0 limit. The T = 0 equations
for the filling factor and order parameter are given by

n =
2

1 + (h/λ)2
and ∆ =

−|U |h/λ

1 + (h/λ)2
(61)

where λ = (−(2µ + |U |) −
√

(2µ + |U |)2 + 4h2)/2 is the
lowest eigenvalue of the Hamiltonian. We thus find that
in the h → 0 limit we get the atomic limit solution: µ =
−|U |/2 for any filling n and ∆ = |U |

√

n(2 − n)/2.
Now consider the HFB equations in the atomic limit

at T = 0

n = 2

[

1 +
µ + |U |n/2

√

(µ + |U |n/2)2 + ∆2

]

(62)

and

1

|U | =
1

2
√

(µ + |U |n/2)2 + ∆2
(63)

The solution of these self consistent equations is µ =
−|U |/2 and ∆ = |U |

√

n(2 − n)/2, which shows that HFB
theory is exact in the atomic limit at zero temperature.

Finally we will show that the second order self energy
vanishes in the atomic limit. The Hartree corrected Host
Green’s function

ˆ̃G
−1

(w+) = Ĝ−1(w+) − Σ̂HFB (64)

reduces in the atomic limit to

ˆ̃G
−1

(w+) = w+τ̂0 + (µ + |U |n/2)τ̂z + ∆τ̂x (65)

It can be checked that the full Green’s function in the
atomic limit is identical to this, which means that Σ̂(2)(ω)
vanishes. Alternatively one can calculate the density of

states corresponding to ˆ̃G0, which are given by

ρ̃11(w) = (1−n/2)δ(w−|U |/2)+(n/2)δ(w+|U |/2) = ρ̃22(−ω)
(66)

and

ρ̃f (w) = −∆/|U |(δ(w − |U |/2) − δ(w + |U |/2)) (67)

and substitute these in the expression for the Σ̂(2)(ω) and
check that all the components of second order self energy
matrix vanish in the atomic limit.
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