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We present detailed mean-field and random-phase-approximation studies of the negative- U, extended
Hubbard model with a view to understanding the properties of the doped barium bismuthates. In partic-
ular, we obtain the phase diagram, the excitation spectrum, and the optical conductivity in the semicon-
ducting phase of the bismuthates. We show by explicit calculations how this model leads to a natural ex-
planation for the two, well-separated transport and optical gaps observed in the semiconducting phases
of the bismuthates. We fix the parameters in our model by fitting these experimentally observed gaps;
and with these parameter values we compute other properties of these systems. We also show how me-
tallic screening and disorder can decrease the superconducting Tc dramatically. Our theory leads to an
exotic charge-transport mechanism, dominated by charge ±2e bosons (cooperons), in the semiconduct-
ing phases of these systems.

I. INTRODUCTION

The materials BaPb^^Bi^Oj and Ba1_xKJCBiO3 have
drawn a lot of attention over the past few years. This in-
terest stems principally from their superconducting Tc's
(13 and 34 K for Pb and K doping, respectively) which
are 3-5 times higher than for other three-dimensional
oxides with similar, low densities of states at the Fermi
level.1'2 In addition these materials exhibit charge-
density-wave (semiconducting) and metallic phases; tran-
sitions from one phase to the other occur as the doping or
temperature are changed.1'2

A negative- U, extended Hubbard model was proposed
for these systems by Rice and co-workers,3 who suggested
that the negative U arises because of electron-phonon in-
teractions. However, Varma4 has recently proposed that
the negative U occurs because of electronic processes in
the solid, coupled with the' chemistry of valence skipping
displayed by the bismuth ion (see below). In a recent arti-
cle5 (henceforth referred to as I)-we have studied some of
the consequences of the negative- U, extended Hubbard
model for these bismuthates, focusing on what we believe
is one of the key issues here: whether the source of the
negative U and the superconductivity is phonon mediated
or electronic. We have shown that, if the negative U has
an electronic origin, then the semiconducting charge-
density-wave (CDW) phase of these materials is unique,
in that charge ±2e bosonic bound states (cooperons) of
two electrons or two holes dominate its transport proper-
ties. We have also shown that this offers a natural ex-
planation for the remarkable difference between the opti-
cal and the transport gaps observed in these systems.

We have argued elsewhere2 that the large- U limit of
the negative- U extended Hubbard model, studied by
many authors,4 is inadequate for a realistic description of

these bismuthates (at the simplest level because the super-
conducting coherence length is too small compared to
those found experimentally). In I we showed that the
intermediate- U regime of this model is far more suitable
for this purpose; and we summarized our theoretical
findings for this regime. (We display the negative sign of
U explicitly when required and take U itself to be posi-
tive.) In this paper we give the details of the calculations
that led to our results in I. Furthermore, we evaluate
critically the feasibility of using the negative- U, extended
Hubbard model for these bismuthates by fitting a variety
of experimentally measured quantities, such as the optical
and transport-activation gaps in the semiconducting
phase, the superconducting transition temperature and
the superconducting coherence length. In the remaining
part of this introduction we give a brief summary of the
experimental findings that have led us and other workers
to use,the negative-U, extended Hubbard model for these
bismuthates, a brief list of our principal results, and a
plan of this paper.

A. Summary of experimental results

Systems like BaPb^^Bi^Oj (Ref. 6) and Ba^^K
(Ref. 7) are intriguing as they show remarkably high su-
perconducting transition temperatures1'7 in spite of being
three dimensional and having small densities of states at
their Fermi levels. Other important experimental
findings are

(1) Their structures are slight distortions of a cubic
perovskite.1'6'8'9 Bi (or Pb) atoms occupy the cube
corners, O atoms the face centers, and Ba (or K) atoms
the body centers; each Bi atom lies at the center of an oc-
tahedron of O atoms. Slight distortions or rotations of
these octahedra lead to many structural transitions.1'6"12



In pure BaBiO3 the octahedra are alternately dilated and
contracted: there are two distinct nearest-neighbor Bi-O
distances differing by = 10%. Powder-neutron-
diffraction measurements on Ba!_xKxBiO3 show a
frozen, breathing-mode distortion of the oxygen octahe-
dra in the monoclinic phase, but not in any of the other
semiconducting phases.10'13 In the semiconducting region
(at least for the lead-doped system) the bismuth ion has a
tendency to skip the valence 4+, its formal valence in
both the potassium- and lead-doped systems, and forms a
three-dimensional, charge-disproportionated structure9'13

with alternating "3 + " and "5+" ions.
(2) BaBiO3 doped with Pb or K exhibits semiconduct-

ing, metallic, and superconducting phases.
(3) BaBiO3 is a diamagnetic (not a Mott) insulator,6'9

even though it has a half-filled Bi6s-O2p band.14 Both the
potassium- and lead-doped systems are diamagnetic in
the entire ranges of concentrations studied so far. The di-
amagnetic susceptibility is essentially a very small
paramagnetic contribution from the valence electrons
added to the large diamagnetic contributions from the
atomic cores.

(4) The semiconducting phases of these bismuthates
persist for an unusually large range of doping with Pb
(0.35 < x < l ) which changes both the local correlation
and the electron concentration, and K doping (x <0.6)
which changes only the latter. In both cases, there is
considerable disorder. The properties of the semicon-
ducting phase are unconventional. For example, in
BaPb!_xBixO3 transport-activation and optical gaps2'6'15

differ by nearly an order of magnitude (for x = 1 the
transport and optical gaps are, respectively, 0.24 and 2
eV). The temperature dependence of the resistivity shows
that the transport-activation gap increases from 0 at
x =0.35 to 0.24 eV at x = 1. This transport gap does not
show up in photoconductivity, optical-absorption, or
photoacoustic measurements. At x = 1 the carrier con-
centration nCT)=l.lX1022(cm~3)exp(-0.24 eV/kBT);
the large pre-exponential factor2'6 indicates an intrinsic
transport mechanism. In optical-conductivity spectra,
the metal-semiconductor transition is marked by a
transfer of the spectral weight into a high-frequency peak
that grows, with increasing x, into a peak containing
nearly all the spectral weight.6'15

(5) BaPb1_xBixO3 has a fairly high resistivity (540
/iflcm at x=0.24) throughout its metallic range
(0<x <0.35); this resistivity is nearly temperature in-
dependent. Carrier concentrations in the metallic phases
of these bismuthates are surprisingly small ( =; 1021 cm"3)
and transport properties have an anomalous temperature
dependence for 0.2 <x < 0.35. In the same region of x
values, the ac conductivity deviates from the Drude form.
We note that this is well before the metal-semiconductor
transition, which occurs for x =0.35. The dependence of
the specific heat on the temperature T shows slight devia-
tions from linearity at low T".16 Resistivity measure-
ments17 on thin films of Ba1_,tK;cBiO3 show a linear
dependence on T from Tc up to room temperature
though the extrapolated residual resistivity is rather high
= 250 /xilcm. Tunneling measurements show18'19 a
linear, V-shaped tunneling density of states somewhat

similar to those in cuprate superconductors.
(6) For the potassium-doped (lead-doped) system the

maximum Tc for superconductivity is 34 K (13 K).6'9 The
observed densities of states at the Fermi levels for both
these systems are very low compared to conventional su-
perconductors. In addition, a variety of experiments
yield 2&/kBTc close to the BCS value of 3.5,18'19 a con-
siderable isotope effect,9'11 and a superconducting coher-
ence length around 70-80 A.

B. Theoretical conclusions

Since some of the basic features of these barium bismu-
thates suggest an effective local attraction between elec-
trons, we explore the properties of such a model, and
compare our results with the unusual behavior summa-
rized above. We study a tight-binding model for elec-
trons on a cubic lattice, with negative (attractive) on-site
U, and a nearest-neighbor repulsion V (i.e., an extended,
negative- U Hubbard model). The V term is indicated
since it stabilizes a charge-disproportionated state, which
(for V=0) is degenerate with a superconducting,
Cooper-pair state at half filling. We have analyzed this
model (in the absence of any disorder) in a mean-field ap-
proximation, for the phase diagram, and in the random-
phase/ladder approximations for various propagators
and physical response functions. Our principal results
are summarized below and calculational details given in
subsequent sections.

(1) We obtain the mean-field phase diagram [Figs. l(a)
and Kb)] of this model. We can distinguish between
semiconducting (CDW), superconducting (s-wave and
extended-i-wave), intermediate (both superconducting
and CDW), and metallic phases. We find5 that the inter-
mediate phase is unstable with respect to phase separa-
tion into CDW and superconducting states in contrast to
earlier claims.20'21 Phase diagrams that are qualitatively
similar to ours2'5 have been obtained recently by Aharony
and Auerbach22 in the large- U limit where the model
reduces to a spin model21 whose mean-field phase dia-
gram was studied in detail by Liu and Fisher.23 Our
phase diagram is in qualitative accord with experiments
in so far as it exhibits three stable phases: a semiconduc-
tor (CDW), a singlet superconductor, and a nonordered
metal. Phase transitions between all excepting CDW and
superconducting phases are continuous; the
superconductor-CDW transition is first order.

(2) If the negative value of U is electronic in origin [see
point (7) below], then, in the CDW phase, there are two-
particle and two-hole bound states, i.e., cooperons, with
energies in the gap of the two-particle spectrum (Fig. 2).
We calculate the pairing susceptibility in the ladder ap-
proximation in the particle-particle channel and use it to
obtain these bound-state (cooperon) energies in the CDW
phase. (In the large- U limit, this energy evolves smoothly
into the anisotropy gap of the pseudospin-wave spectrum
of the pseudospin model that obtains in this limit.2) The
bound-state energy moves continuously towards the
chemical potential as V, the nearest-neighbor Coulomb
repulsion, approaches zero.

(3) These cooperons dominate charge transport in the
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FIG. 1 (a) and (b) The mean-
field phase diagrams of the
negative- U, extended Hubbard
model in the filling-temperature
plane, for two different values of
the interaction parameters. The
solid lines are second-order
phase boundaries that separate
the nonordered metallic phase
from the singlet superconducting
(SS) and the charge-density-wave
(CDW) phase. The hatched re-
gion is the two-phase coex-
istence region (SS and CDW)
corresponding to the first-order
phase boundary between CDW
and SS phases (c). The values of
Coulomb interactions and zt
needed to obtain these phase di-
agrams are shown, (c) The
mean-field phase diagram of the
negative- U, extended Hubbard
model in the chemical
potential-temperature plane,
with the same parameter values
as in (b). The solid and the
dashed lines denote continuous
and first-order transitions, re-
spectively.

CDW semiconducting phase. This possibility was quali-
tatively recognized in the bipolaron language by Uchida,
Kitazawa, and Tanaka.6 In the large- U limit this yields
the conductivity mechanism that we have discussed else-
where.2'5 The random-phase-approximation (RPA) con-
ductivity shows activated behavior with the activation
energy equal to the particle-particle bound-state energy.
In the CDW semiconducting phase, therefore, the trans-
port gap is clearly different from the optical gap, which is

2AC
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FIG. 2. (a) The single-particle excitation spectrum in the
mean-field CDW phase where Ac is the CDW gap parameter.
In (b) are shown the two-particle (hole) bound states that form
inside the gap of the two-particle spectrum. The energy of these
bound states (with respect to the chemical potential indicated as
zero) is the transport gap (EA ) in our theory.

the gap in the single-particle spectrum (twice the CDW
gap parameter in the small- U regime, and = U, for large
U).

(4) Our RPA calculation of the optical conductivity in
the single- and two-particle channels shows that, in the
large- U limit, the conductivities in these two channels
differ by nearly a factor of 10. This, together with possi-
ble nonperturbative orthogonality effects, may be the
reason why the transport gap does not appear in optical
measurements.

(5) At large U the pairs are tightly bound in real space
and can be thought of as a quantum lattice gas of hard-
core bosons (i.e., no more than one boson per site); at
small U, &>space pairing is the proper description for
these pairs. Our calculation yields a natural interpolation
between these two limits at T=0.

(6) The ac conductivity in the metallic phase is of the
Drude form. At large U the carriers are charge-2e,
hard-core, bosons as we have discussed earlier;2'5 at small
U the metal is, of course, a conventional Fermi liquid.
There is a smooth crossover between them which we do
not investigate here.

(7) For the above explanation of the two gaps to be val-
id, the attractive, on-site interaction must be electronic in
origin since an attraction mediated by phonons is retard-
ed and operates only over some characteristic phonon
frequency. Such an interaction cannot produce the
necessary binding to form a two-particle bound state with
binding energy =1-2 eV.

The remaining part of this paper is organized as fol-



lows: In Sec. II we describe our calculations in the
intermediate- U regime of the negative- U, extended Hub-
bard model. We first describe our mean-field theory and
the phase diagram we obtain from it. We then present
our calculations for the excitation spectrum in the
particle-particle channel, the pseudospin-wave spectrum
in the large- U limit and the conductivity (corresponding
to the mechanism of charge conduction in the CDW
phase mentioned above). In Sec. Ill we conclude with a
discussion of the strengths and weaknesses of this model,
suggest future directions of study, and propose some ex-
periments which can be used to verify our theory.

II. PHASE DIAGRAMS, ELEMENTARY EXCITATIONS
AND RESPONSE FUNCTIONS

In Sec. IIA we discuss our mean-field theory for the
negative- U, extended Hubbard model. In Sec. II B we de-
velop the formalism for calculating the two-particle exci-
tation spectrum (i.e., the susceptibility in the Cooper
channel).

A. Mean-field phase diagram

The one-band, negative- U, extended Hubbard Hamil-
tonian that we use (on a simple-cubic bismuth lattice) is

( ij }aa
ja'^P 2

ia
(1)

where t is the hopping matrix element between nearest-
neighbor pairs of sites (i,j), U is the onsite attraction
(see above), V is the nearest-neighbor Coulomb repulsion,
and /z is the chemical potential. Reductions of a three-
band model that includes Bi and O sites to such a one-
band model have been discussed elsewhere.2'4

Though the qualitative features of the phase diagram
of model (1) are known,20 some earlier20'21 mean-field
treatments of it are not entirely correct.24 We correct
and extend the mean-field theory for model (1). The or-
der parameters we use are

and

/Q.r,.
(2)

where Q = ir/a(l,\,l),bc is the CDW order parameter,
bs and be are, respectively, on-site and extended singlet-
superconducting order parameters, and C0 a self-
consistent contribution to the bandwidth. Clearly our
mean-field theory can distinguish between phases charac-
terized by any one or a combination (as in the intermedi-
ate phase mentioned above) of these types of ordering.
We consider only translationally invariant, real order pa-
rameters. A Hartree-Fock decoupling yields the mean-

field Hamiltonian

TJ — 'amf—~
k<7 ktr

-2 A s(k)(c_k ick T +chcLki'.
k

+N Ub?-

(3)

where N is the total number of lattice sites, ck(T is the
Fourier transform of cia, and um = U — 2zV,
up = U + 2zV, p.=fi + umn, ?k=zFyk, T=t + VCQ, with
yk=z~12aexP( i 'k-a), {a} being the nearest-neighbor lat-
tice vectors. The quantities &c=upbc/2 and
A s(k)= Ubs— zVbeyk are, respectively, the gap parame-
ters in the CDW and superconducting phases.

The mean-field Hamiltonian (3) can be easily diagonal-
ized (Appendix A) and the four eigenvalues we obtain are
±Ek

t, where E£ =[£k±2Pk]1/2, R k = A2 + U2b 2

?k, and

whence the mean-field free energy per site is (Appendix
A):

f=~~^' In |4cosh2

+ ln 14 cosh2

A[

un

where the prime over the summation sign indicates that k
is restricted to half the Brillouin zone.

The self-consistency equations for the order parameters
follow from a minimization of this free energy (Appendix
B). We solve the self-consistency equations by a numeri-
cal, iteration method for different values of U/zt and
V/zt (z, the number of nearest-neighbor sites, is six here)
and the filling 8 = n — 1. To find the stable phases we
start from a large number of different initial values for
the order parameters and ensure convergence by check-
ing that successive iterates of the order parameters do not
differ by more than 10~5. If more than one solution is
obtained, we choose the one which yields the lowest value
of the free energy.

We show phase diagrams in both filling-temperature
[Figs. l(a) and Kb)] and chemical potential-temperature
[Fig. l(c)] planes. The topology of the phase diagram is
the same as in the large- U case2 but the positions of phase
boundaries, etc., are quite different. There are three ther-
modynamically stable phases: A CDW phase (C0=£Q,
&C¥=Q and bs = be=0); separated from this CDW phase
by a first-order line in the f^-T plane is the superconduct-
ing phase (C0¥=0, bs^0, be¥=0 and Ac=0); and the
nonordered, metallic phase (all the order parameters ex-
cept C0 are zero) at high temperature (at S = 1 this phase
goes down to T=0). The phase transitions between the



ordered phases and the nonordered phase are all continu-
ous. The two lines of continuous transitions meet at a bi-
critical point. The first-order line in the T-/J, phase dia-
gram [Fig. l(c)] opens out into a region of two-phase
coexistence (CDW and superconducting phases) in the
T-8 phase diagram [Figs. Ha) and Kb)].

For V=0 and 6=0 in model (1) the CDW and super-
conductor solutions of the self-consistency equations are
connected by a pseudospin-rotation symmetry25'26 of the
Hamiltonian and hence are degenerate; their free energies
are equal and they coexist. Away from half filling this
degeneracy is removed and the superconducting phase
becomes stable. The degeneracy between CDW and su-
perconducting phases is also lifted when V becomes
nonzero: at half filling the CDW phase is the thermo-
dynamically stable one; of course, sufficiently far away
from half filling, the superconducting phase becomes
stable.

Typical phase diagrams are shown in Figs. l(a)-l(c).
For comparison, we give the filling-temperature phase di-
agram for two different sets of values of U /zt and V/zt.
Full lines indicate continuous, second-order phase boun-
daries and the dashed line in Fig. l(c) indicates a first-
order boundary. The hatched regions in Figs. l(a) and
Kb) are the two-phase coexistence regions. In these two-
phase region (and in equilibrium) the system phase
separates into semiconducting (CDW) and superconduct-
ing phases, with one interface between them.

The equations for the two boundaries separating the
ordered phases from the disordered phase can be ob-
tained explicitly (Appendix C). The gap equation for the
CDW gap parameter is

1
:TJ „>*)- (4)

where 2W is the noninteracting bandwidth. At half
filling /Z=0 and if we take the density of states p(e) to be
a constant, then this gap equation assumes the BCS form

\ i /2

-w \ l /2 -de

from which the CDW-nonordered (metal) transition tem-
perature rCD is obtained by setting Ac =0 at this temper-
ature. Thus we get (the BCS form)

_ 2 us /it
TCD=2/Y/irWe p, where -y is the Euler constant
and 2y/-n-^1.13. At T= 1 7/3=0 straightforward in-
tegration yields the CDW gap parameter

For the superconducting phase the calculations are
also of the BCS type. Since there are two Cooper-pair or-
der parameters, namely, the on-site pairing amplitude bs

and the nearest-neighbor pairing amplitude be, the gap
equation is now a 2X2 matrix equation. The transition
temperature Tc is obtained from the condition that the
determinant of the matrix

M =
tanh(?k+/Z) U ~VzYk

-Vzyt (5)

should vanish at this temperature (Appendix C); here 1 is
the 2X2 unit matrix. Note that, in mean-field theory, the
maximum superconducting Tc occurs at the bicritical
point.

B. The cooperon bound state in the CDW phase
and elementary excitations

In the large- U limit a pseudospin model emerges natu-
rally from the negative-!/, extended-Hubbard model2'5

and the well-separated optical and transport gaps6 can be
explained by identifying the optical gap with the pair-
breaking energy or the energy for breaking up the spin
and the transport gap with the pseudospin-wave gap in
the CDW semiconducting phase. Even in the
intermediate- U case the CDW phase continues to show
two well-separated gaps, whose physics is understood as
follows: Our mean-field theory yields quasiparticle
valence and conduction bands [Fig. 2(a)] with a gap
separating them (along the entire noninteracting Fermi
surface in k space). At half filling (i.e., pure BaBiO3) this
system is insulating in the ground state, since the valence
band is full and the conduction band is empty. If we put
two electrons into the conduction band, they still feel a
residual attraction U (modified by appropriate coherence
factors), so they form a bound state (a cooperon) whose
energy lies within the gap in the two-particle excitation
spectrum [Fig. 2(b)]. Two holes in the valence band form
a similar bound state. These bound states form provided
the source of the negative U is electronic4 and not pho-
non mediated,3 since U must remain attractive over ener-
gy scales larger than the charge-density-wave gap Ac ( =; 1
eV, as measured from the Fermi level) in order to pro-
duce a state with binding energy = Ac. Clearly, the ener-
gy required for exciting these bound pairs or cooperons is
that needed for creating two free quasiparticles, namely
2AC, minus their binding energy EB. This difference,
which is always less than 2AC, is shown in Fig. 2(b). Note
that such a bound state is always present no matter how
weak the attraction U is. We find that, for large U and
small V, the cooperon excitation energy is of order zV,
which is rather small. The cooperons are the lowest-lying
current- and charge-carrying excitations of the CDW
ground state. Furthermore they are extended states,
characterized by a center-of-mass momentum. Thus, in
this model, the cooperons are expected to determine the
transport properties of the CDW state. For example, the
activation gap for electrical transport is ( 2 A C — E B ) .
However, optical experiments which excite single parti-
cles across the CDW gap, measure the gap Ac.

The actual calculation of the pair spectrum is some-
what complicated, and proceeds as follows. The propa-
gation of a pair of electrons (or holes) with total momen-
tum q and energy v is described by the function
XP,ij-i'j'(<l,v) given by



where TT indicates time ordering, i,j, etc., are band in-
dices (in the CDW ground state there are two bands), the
subscript p stands for pairing, and the expectation value
is calculated in the interacting ground state, since we re-
strict ourselves to T=0. A pole in the pair susceptibility
(at wave vector q=0) below the bottom of the continuum
of the two-particle excitation spectrum [which starts at
2AC in Fig. 2(b)] indicates a two-particle bound state of
zero total momentum.

We calculate this pair susceptibility in a ladder approx-
imation (Appendix D), in the presence of a CDW back-
ground and starting from a negative- U, extended Hub-
bard model at half filling. The ladder describes the re-
peated scattering of pairs by the local attractive two-body
potential (Fig. 3). Thus we obtain the two-particle (two-
hole) excitation spectrum and thence the location of the
cooperon bound state (cf., the f-matrix calculation of
Migdal27 for superconductors). If zF<A c (which is the
case for the barium bismuthates since Ac == 1 eV), the
two-particle bound state falls within the gap of the two-
particle spectrum [Fig. 2(b)] and, for any nonzero V, it
lies above the chemical potential (from which all energies
are measured).

The bound-state energy we calculate here evolves into
the pseudospin-wave gap of the large- U model, where the
pseudospin-wave spectrum is obtained from the poles of

where S + is the pseudospin raising operator. S±, can be
written in terms of the fermion operators ck a by using
S^ =l/A r2kck+qfck, 4 > and shown to be equivalent to
the pair susceptibility defined above. It is interesting that
the excitation spectrum we calculate here evolves into the
RPA pseudospin-wave spectrum we calculated directly in
the large- U limit2'5 (for it is not evident that the approxi-
mations used in the two cases are equivalent in all
respects).

k+q k + q k't q

ktq ktq ktq
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FIG. 3. The diagrammatic representation of the ladder series
for the pair susceptibility in the mean-field CDW state. Double
lines denote mean-field, single-particle Green function in the
CDW state and the wavy line denotes the interaction

The Cooper-pair problem in a CDW background, with
on-site and nearest-neighbor interactions is complicated,
for there are the two CDW split bands, with the electron-
ic states of interest being, in general, superpositions of
these band eigenstates. However, with a separable inter-
particle potential, the Cooper problem is exactly solvable.
Hence we rewrite the nearest-neighbor interaction V as a
sum of separable terms. (The on-site term is trivially se-
parable, since it has no momentum dependence.) This
finally leads to a 14X14 matrix secular equation, a gen-
eralization of the one-band, Cooper-instability equation
(see Appendix D). As in the conventional Cooper prob-
lem with an attractive U, a two-particle bound state splits
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FIG. 4. (a) The bare and the screened, on-site Coulomb in-
teractions (empty circles and triangles, respectively) as functions
of half the band width. The screening mechanism is explained
in the text, (b) The extended Coulomb term V( X2z,z = 6 for a
simple-cubic lattice) as a function of half the bandwidth. The
condition we used to obtain this graph is that the bound-state
energy should be equal to the transport gap (see the text). Note
that in the bandwidth —>0 limit the value of 2zK approaches
0.24 eV, the result obtained in the large-[/limit (Ref. 2).



off from the two-particle continuum. It should be em-
phasized that the bound state is characterized by total
momentum. It is a spatially extended, current-carrying
state, intrinsic to the system, unlike the localized nonpro-
pagating state within the band gap, induced by a local
impurity potential.

C. Estimates and limits

The energy of the bound state depends on U, V, and zt.
In order to fix at least some of our parameter values, we
proceed as follows: (1) We set Ac = 1 eV, taking the opti-
cal gap ( = 2AC) to be 2 eV for BaBiO3. (We use the
mean-field gap equation and a constant density of states,
so &c=z7/sinh(2z7/up), where up = U + 2zV and zt is
half the bandwidth.) (2) We set the cooperon bound-state
energy (measured from the chemical potential) equal to
the transport gap of BaBiO3, i.e., 0.24 eV. The values of
U (both screened and unscreened, see below) and V given
by these two conditions are plotted versus zt in Figs. 4(a)
and 4(b). For the potassium-doped system the bandwidth
is roughly 1.6 eV from the experimental density of states9

in the vicinity of the metal-semiconductor transition.
This yields U= 1.9 eV and 2zF=0.13 eV [Figs. 4(a) and
4(b)]. Clearly then we must consider the intermediate- U
and not the large- U case. The main results obtained from
the above calculations are summarized below.

(1) In Fig. 5 we show the values of the interaction pa-
rameters obtained from the two conditions described
above, for a fixed value of zt, as a function of the bound-
state energy. The two-particle bound-state energy goes to
zero (relative to the chemical potential) continuously as V
approaches zero (Fig. 5). At K=0 there is a gapless, two-
particle mode that signals the instability of the CDW
state towards superconducting order.

(2) The bound-state energy goes to 2zV as zt—.>0 [Fig.
4(b)]. In the large-U limit the anisotropy gap is 2zV, a
feature that is reproduced correctly here as zt —»0. Thus

our results interpolate smoothly between small- and
large- U results for the extended Hubbard model at T = 0.

At 8 = 0 and F=0, the CDW phase is degenerate26

with the superconductor because of a continuous
pseudospin-rotation symmetry (see above and Ref. 24).
The spontaneous breaking of this symmetry should yield
a gapless spectrum (in the large- U or pseudospin-model
limit this corresponds to a>Kq as q—>-0 for the isotropic
Heisenberg antiferromagnet28). In Appendix E we show
how we obtain this gapless spectrum from the poles of
Xp(v,q) at F=0 and show how, at large U, we obtain the
same spin-wave velocity as we did for the pseudospin
model.2 If F^O, the bound state is pushed up from the
chemical potential to a finite value (determined by F) and
the spectrum acquires a gap.

At half filling and withF=0, the negative- U Hubbard
model can be transformed into a positive- U model by a
particle-hole transformation on one of the spin species
and a subsequent rotation by tr of the spins on one of the
sublattices. (This rotation is necessary because the degen-
erate particle and hole states are separated in momentum
space by a zone-corner wave vector for a tight-binding
model on a bipartite lattice.) Thus (for F = 0) the
pseudospin-wave spectrum obtained for the negative- U
model from this particle-particle susceptibility in its
CDW phase should be identical to the corresponding
spin-wave spectrum for the positive- U model obtained
from the spin susceptibility in the particle-hole channel
and in its spin-density-wave phase, which has been stud-
ied earlier.29'30 Indeed our results for F=0 (transformed
as described above) are the same as those of Schrieffer,
Wen, and Zhang, Kostyrko,29 and Singh and Tesanovic30

for the positive- U model. (We agree completely with the
second set of authors; the former have missed a factor_of
y.) The spin-wave velocity28 that we obtain is vs = V2J,
where J = 4T2/U and the spin-wave spectrum is given by
a>2=4J2(l-yjj), with yq= l/z^e ~''a'q, where j a j are
the nearest-neighbor lattice vectors.
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FIG. 5. The Coulomb interactions U and zV as functions of
the bound-state energy. This graph is obtained with the condi-
tion that the CDW gap parameter is half the optical gap of
BaBiO3 (i.e., I eV). Note that Kgoes to zero as the bound-state
energy approaches zero.

D. Optical properties

We also calculate (Appendix F) the optical conductivi-
ty in the single- and two-particle channels by using the
Kubo formula and the RPA. For simplicity and the pur-
poses of illustration, we do this calculation in the large- U
limit. The resulting optical conductivity is shown in Fig.
6. These calculations were done at a moderately large
U =; 2zt and with reasonable values of the rest of the pa-
rameters (for the bismuthates). We assume that scatter-
ing yields the same phenomenological relaxation time for
both the channels (thus the 8 functions that appear in our
calculation in Appendix F broaden into Lorentzians).
Note that, even at this level of approximation, the peak
in the two-particle channel (at 0.24 eV) is nearly a factor
of 10 smaller than the one-particle peak (at 2 eV). The
main reason for this suppression of the two-particle peak
is that the cooperon current (vertex) has an extra factor
of t /U with respect to the single-particle vertex, because
it arises out of second-order hopping (in ttj) and the ratio
(t/U)2^ 10""'. Thus the optical-absorption peak at the
transport gap is indeed intrinsically much weaker than
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FIG. 6. The optical conductivity (in arbitrary units) in the
large- U limit using the random-phase approximation plotted as
a function of frequency. The parameter values chosen are zt = \
eV, U = 2 eV, and 2zF=0.1 eV. We have used the same phe-
nomenological broadening (F=0.09 eV) for the two channels.
Note that the two-particle absorption peak (at 0.24 eV) is down
by a factor of 9 compared to that in the single-particle channel
(at 2 eV).

the one at the optical gap. It is also possible that there
are other nonperturbative, orthogonality effects that ex-
ponentially reduce the optical absorption at the transport
gap, which is why it does not show up at all in optical-
conductivity experiments.

III. COMPARISON WITH EXPERIMENT

We return now to the barium bismuthates and com-
pare our results with experiments. However, we cannot
naively use our estimates for the values of U and V to cal-
culate the superconducting and CDW transition tempera-
tures for the following reasons: Our estimates of U and V
have been made at the extreme insulating limit of
BaBiOj, whereas superconductivity and the metal-
semiconductor transition occur after significant doping
(8 = 0.4 for the potassium-doped system). We must,
therefore, try to incorporate the effects of metallic screen-
ing on the strength of the Coulomb interaction. Also it is
conceivable that, at high doping levels, as the system
moves towards the metallic side and the lattice distorts
and the charge-disproportionated, highly ionized Bi
configurations begin to disappear, the mechanism,4 which
leads to the attractive interaction, gets suppressed. At
this stage it is difficult to account for these effects as we
do not have a first-principles theory for the negative
value of U. Further, we have completely neglected the
effect of disorder. It is clear from the persistence of the
insulating state with doping, for example, that disorder
effects are very important (see Sec. IV for further discus-
sion).

In order to account for some of the physical processes
that occur on doping, we have included the effect of me-
tallic screening at the simplest level via the RPA (the
screening diagrams Figs. 7(a) and 7(b) represent repeated
excitations of particle-hole or particle-particle pairs, as
the case may be, out of the Fermi sea). Screening

(b)

FIG. 7. A diagrammatic representation of the screening (in
RPA) of the particle-particle and particle-hole vertices. Note
that the particle-particle vertex (a) is screened by the particle-
hole excitations whereas the particle-hole vertex (b) is screened
by particle-particle processes.

operates in both particle-particle and particle-hole chan-
nels. Hence the effective interactions responsible for
CDW ordering and superconductivity are both reduced.
We use the RPA to calculate the t matrix and write the
effective (screened) interaction as u sc (q) = u (q) /[ 1
— u(q)j0(q)], where v is the bare interaction and #o(q) is
the appropriate, bare susceptibility (particle-particle or
particle-hole). Since the particle-hole susceptibility at
q = Q is the same as the particle-particle susceptibility at
q = 0, at the simplest level, we can replace Xo by the den-
sity of states N(0) at the Fermi level and get the effective
screened interaction governing the CDW or supercon-
ducting transitions. For N ( 0 ) we use the experimental
value at the metal-semiconductor boundary of the
potassium-doped system. Note that we have used screen-
ing31 for the on-site Coulomb term only, as a calculation
of the t matrix for the momentum-dependent V term is
rather complicated. Since the values of V we are interest-
ed in are quite low (see below) compared to U, we feel it is
justifiable to neglect the screening corrections to V.

In Figs. 8(a) and 8(b) we plot the superconducting and
CDW transition temperatures [Eqs. (4) and (5)] as func-
tions of the bandwidth (with both bare and screened in-
teractions). The results of our detailed mean-field calcu-
lation (Appendix C) are shown in Fig. 9 (where the pa-
rameter values are the same as in Fig. Kb), but the two-
phase coexistence region is now shown). V has a negligi-
ble effect on Tc in the range of interactions that we are
interested in. This can be seen from the dashed line in
Fig. 9 for the superconductor-nonordered metal phase
boundary with V=0. [Indeed V has no effect on the su-
perconducting Tc if 8 vanishes; Eq. (C6), Appendix C.]
Our values for the superconducting and CDW transition
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FIG. 8. (a) The superconducting and (b) the CDW transition
temperatures with bare and screened onsite Coulomb interac-
tions, obtained from a BCS formula (see text) as a function of
(half) the bandwidth. The lower graph in each case is obtained
with the screened interactions.

temperatures, especially the former, are still too high
compared to experiments. (The limited data that exist on
rCD are10 in the range 0.06 to 0.0025 eV, for different
fillings.) There could be several reasons for this. Even in
a clean system, the interaction parameters U and V may
decrease on doping because of additional nonlinear
screening effects. Also, quantum-fluctuation effects,
prominent since both pairing and CDW instabilities are
close to each other, must further reduce Tc. Finally,
there is the strong effect of disorder; this is clearly indi-
cated by the fact that the superconducting Tc is highest
close to the critical disorder, where normal-state resistivi-
ties are very large, and, more generally, by the persistence
of the insulating phase for very large deviations from half
filling.

The effect of disorder is very hard to quantify reliably.
An estimate, valid for BaPb1_xBixO3, can be made by as-
suming simple dilution as follows. Since Bi ions are the
source of the local negative U, we replace U by Ux when
their concentration is x. This replacement also leads to a
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FIG. 9. The superconductor-nonordered phase boundary
with the same parameters as in Fig. Kb) (we do not show the
two-phase coexistence regime here). To show that the screening
of V does not affect the phase boundary in the range of parame-
ter values we are interested in, we have drawn the phase bound-
ary for V = Q (dashed line). Note that this boundary is quite
close to the boundary with 2zF=0.13 eV (this boundary is also
continuous).

deviation 8=1— x from half filling (at which the system
is a CDW). A calculation of the Cooper instability leads
to a substantial reduction in the Tc (by an order of mag-
nitude near the bicritical point of Fig. 1), even though
our method, a kind of average f-matrix approximation,
greatly underestimates the effect of disorder.

In spite of obtaining large transition temperatures, our
theory yields many interesting results: (1) We can easily
understand why the transport gap is well separated from
the optical gap because of the two-particle bound state in
the CDW phase (see above). The conductivity is given by

) = [n(T)e*2T/m*]/(l-icoT), where m* is the
effective mass of the cooperons, e* — 2e their charge,
n(T)~exp(—EA/kBT) their number at temperature T,
and EA is the transport gap. Clearly cr(co-+0) exhibits
activated behavior. (2) Our theory obtains various quali-
tative features of the phase diagrams of these bismu-
thates. (3) In addition, 2&/kBtc =3.5, all low-Tphases in
our model are diamagnetic, and the superconducting
coherence length is =* 30 A, far closer to the experimental
value ( =80 A) than that predicted by the large-U limit,2

in which case we have on-site paired electrons. (To ob-
tain the coherence length we have taken the standard
mean-field expression and used the observed values of the
Fermi velocity.) Since our calculation grossly overesti-
mates the superconducting Tc, it is not surprising that
our estimate for the coherence length is somewhat small-
er than the experimental value.

IV. CONCLUDING DISCUSSIONS

In this paper and elsewhere2'5 we have investigated the
negative- U, extended Hubbard model for the bismuthate
superconductors both in intermediate- and large- U re-
gimes. Our study leads to an understanding of many of
the properties of these bismuthates and sharpens certain



questions that remain unanswered.
Perhaps the most important result of our treatment is

the detailed theory we provide for the two gaps in the
semiconducting phase of these bismuthates. This leads to
the identification of the transport gap with the energy of
the two-particle bound state and the optical gap with
twice the CDW gap. Our calculations also show how this
picture of the two gaps is consistent with the inaccessibil-
ity of the transport gap in optical-reflectance, pho-
toacoustic, and photoconductivity studies, all of which
involve single-particle excitations. Note that our picture
also implies that the semiconducting phase of these bismu-
thates is unique, with transport properties dominated by
the motion of charge-Is bosons (cooperons).

By fitting our predictions for the gaps to the experi-
mental ones we have estimated the interaction parame-
ters for these bismuthates and used them to calculate oth-
er normal-state and superconducting properties. We
have also calculated the particle-particle excitation spec-
trum in the ladder approximation in the CDW phase of
model (1); our intermediate- U excitation spectrum
evolves smoothly into the pseudospin-wave spectrum ex-
pected in the large-U limit.2

For typical intermediate values of [/and V(i.e., U <2zt
and V< U) our phase diagram [Fig. l(a)] has the same
qualitative features as the large-U phase diagram,2'5 and
shares many features with the experimental phase dia-
gram. The charge contrast in the CDW phase is lower in
the intermediate- U case (in agreement with experiments)
relative to the large- U case. Similarly, the intermediate-
U superconducting coherence length is enhanced over its
large- U limit, in better accord with the experiments.

We have also argued that the processes that give rise to
the attractive interaction must be electronic in origin and
that these processes must become less and less effective as
the system is doped towards the metallic side, so the
strength of the attractive interaction must go down in or-
der to produce the experimentally observed supercon-
ducting transition temperatures.

Our theory rules out a purely phonon-mediated mecha-
nism for the negative U (unless an alternative explanation
can be found for the well-separated optical and transport
gaps): A phonon-mediated attraction is necessarily re-
tarded (cutoff at characteristic phonon frequencies =^100
K); however, in order to produce the two gaps, the at-
traction must operate over a range =; 1 eV. This observa-
tion is important in view of the recent observation10'11

that calculations based on realistic phonon spectra for
the bismuthates can produce a rather large superconduct-
ing Tc without requiring a very strong electron-phonon
coupling strength (A.e.p = 0.6-0.8) or a large density of
states at the Fermi level. We have argued that, at least in
the semiconducting phase of these systems, the attraction
should have an electronic origin. However, we do not
rule out the possibility that this electronic component of
the attraction becomes weak as the system is driven to-
wards the metallic side by doping; here the electron-
phonon coupling could become important near the super-
conducting phase.

In a recent paper Liechtenstein et a/.,32 have carried
out what is perhaps the best band-structure study of

Ba]^A.KxBiO3 to date using the LDA and the full linear
muffin-tin-orbital method. For x=0 they find a lattice
instability for a combination of both tilt ( u t ) and breath-
ing ( ub ) distortions which correctly reproduces the ex-
perimentally observed monoclinic structure. For x =0. 5
they correctly find the cubic phase, with ut = ub=0, to be
stable.

An interesting point that emerges from this band-
structure study is that, when the details are put in,
BaBiO3 may have a rather small indirect band gap. (The
actual number that we have been able to glean from Fig.
2 of Liechtenstein, et a/.,32 roughly 0.025 Ry or 0.34 eV,
may not be reliable.) Hence one must consider the possi-
bility that the small transport gap (0.24 eV) reflects this
aspect of the band structure. However, optical experi-
ments must be able to see this as a phonon-assisted
threshold, starting around 0.68 eV, in order to be con-
sistent with the transport gap. However, all the data that
we have seen have thresholds starting at 1 eV. (For re-
cent spectroscopic data see Ref. 40.) If the latter is taken
as the indirect gap, the discrepancy with the transport
gap is still too large to be understood in conventional
terms. (For example, if one were to attribute it to pola-
ronic or bipolaronic effects, as some groups have
done,6'40'41 the resulting Franck-Condon factors would be
too large, leading to self-trapped rather than mobile car-
riers as required by the observed mobilities.) Thus one
clearly needs a mechanism of the sort we have been dis-
cussing, although for a proper comparison with experi-
mental data and a better estimate of the parameters U
and V it seems crucial to include the details of the band
structure.

In our theory the carriers responsible for charge trans-
port in the semiconducting phase of these bismuthates
are charge-2e bosons (cooperons). Hence an experiment
that can pick up the charge of the carriers in this phase
would be of great value in verifying our theory. It is well
known that, in transport measurements, it is very difficult
to determine the charge of a carrier as the electrical con-
ductivity depends on the ratio of the effective charge and
the effective mass. At a simple level the following experi-
ments might be able to measure the charges of the car-
riers in the semiconducting phase of the bismuthates: (1)
Stanton and Wilkins36 show that the noise spectrum of
high-field transport in a semiconductor is

where E is the external electric field, T0 is the equilibri-
um lattice temperature, r0 is the phenomenological relax-
ation time of the charge carrier of effective charge e * and
mass m * , and A and L are, respectively, the area and
length (in the direction of transport) of the sample. If the
thermal- and electric-field-dependent components of the
noise spectrum could be separated, the above expression
for S(o),E) would allow one to calculate the charge of the
carriers and their effective mass separately. To measure
the noise spectrum, however, one must do a very con-
trolled experiment at low temperatures on a pure, single-
crystal sample of BaBiO3. (2) A Bohm-Aharanov mea-



 

surement of the phase change on passing through a mag-
netic field can, in principle, detect the charge of the car-
rier. (3) The charge-2e cooperons may also show up in
tunneling from a metal to the semiconductor or in
Andreev-reflection measurements. (4) It is also possible
that the existence of the local on-site attraction can lead
to strong fluctuation effects in the metallic phase;37 these
could show up in transport and magnetic properties at
temperatures close to Tc. (5) Optical-absorption experi-
ments on optically pumped BaBiO3 or a two-photon ab-
sorption experiment might be able to pick up lines corre-
sponding respectively to the breaking or formation of the
cooperons. (Photomodulation studies41 show some evi-
dence of states in the gap, but their interpretation re-
quires detailed modeling, including band-structure
effects, which is beyond the scope of this paper.) We be-
lieve that such experiments that confirm or rule out this
picture of the semiconducting phase of the barium bismu-
thates would be of great interest, for that would confirm
or fuel out the electronic (as opposed to phonon-
mediated) origin of the negative U. One should note that
such experiments may be difficult to perform and hard to
interpret.

Our mean-field phase diagram (Fig. 1) for model (1)
does not contain an intermediate phase (with both CDW
and superconducting order) unlike the mean-field phase
diagram of Micnas and co-workers,20'21 which is not
correct (since it does not allow for first-order phase coex-
istence between CDW and superconducting phases). In
the large- U case Liu and Fisher23 and Matsuda and
Tsuneto38 have shown that, in mean-field theory, an in-
termediate phase occurs only when next-nearest-neighbor
interactions (extended Coulomb) are included.

The ladder summation we do in the intermediate- U
case to calculate Jp(<?) considers only a small subset of
the processes (diagrams) involving two-particle interac-
tions. There are other many-body processes that are
probably important in the range of interactions we are
considering. Our choice of the ladder approximation was
motivated by its physical importance and its simplicity.
It is interesting that this, in itself, leads to excitation
spectra that evolve smoothly from the intermediate- U
case to the pseudospin-wave spectrum expected at large
U.2

Even though the negative- U extended Hubbard model
leads to many appealing results for these bismuthates, it
has its limitations. The main shortcomings arise because
we neglect electron-phonon interactions, the long-range
part of the Coulomb interaction, and disorder effects
(charge disorder in the case of Bal_x'KxEiO3). We com-
ment on these shortcomings below.

The neglect of Coulomb interaction is probably the
main reason for one important discrepancy between the
experimental phase diagrams1'10 and our phase diagram
(Fig. 1): the former have no two-phase region for x <0.4,
unlike the latter. The CDW and superconducting phases
have different average Bi occupancies (or charge), so the
long-range Coulomb interaction will strongly disfavor
any bulk phase separation; instead it might favor the for-
mation of a new phase consisting of a dispersion of glo-
bules of superconducting material in a semiconducting

(CDW) background. If the background compensating
charge (because of K ions) were smeared uniformly, one
might expect this dispersion to be a periodic array. How-
ever, in the actual system the K ions are distributed ran-
domly, so the dispersion might well be random. Certain-
ly for small deviations from half filling (i.e., « =; 1) one ex-
pects a dispersion of superconducting globules (which, in
the large- U limit and with small-enough globule sizes,
can be thought of as discommensurations4 inside a CDW
background). Such a phase would be semiconducting
above a new critical temperature (much lower than the
critical temperature for the bulk superconductor) corre-
sponding to the destruction of the phase coherence be-
tween the different superconducting globules (a tempera-
ture determined by the weak, Josephson coupling be-
tween the globules). It is interesting to speculate that the
semiconducting region, which extends away from half
filling experimentally,1'10 is such a dispersed phase.

An alternative possibility that one ought to explore,
both theoretically and experimentally, even in the
nearest-neighbor model (2) and within the mean-field
framework, is whether the first-order phase-coexistence
region of Fig. l(b) gets replaced by an incommensurate
phase, or a succession of commensurate phases.

Next, one should take into account the effects of disor-
der: In the potassium-doped case, K1+ replaces Ba2+.
Thus, in addition to one electron being removed from the
system (which we have considered in our model), a ran-
dom Coulomb potential is introduced (K is like a 1 ~ im-
purity). In our theory we neglect this random, impurity,
Coulomb potential. The effect of randomness is even
more serious in lead-doped BaBiO3, since the Pb atoms
remove the negative- U Bi centers randomly. Only the
simplest studies of the effects of this on CDW ordering
have been carried out so far.3

Since BaPbO3 is a metal, it is clear that, for a serious
study of the entire range of lead doping, the one-band
model (2) is inadequate and a more complex, three-band
model2'4 must be studied. Also, the electron-phonon in-
teractions in these systems are strong, so they have to be
taken into account much better than has been done so
far, especially to understand the structural transitions in
these bismuthates. Clearly more detailed experimental
and theoretical studies are called for to address these is-
sues.
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APPENDIX A: THE HARTREE-FOCK APPROXIMATION
FOR THE NEGATIVE- U, EXTENDED HUBBARD

MODEL, AND THE MEAN-FIELD FREE ENERGY

We start from the Hamiltonian (Sec. II)
rr=_t ^ ,tr _ ^ V » ».

-*••*• ' Si ^ i f T ^ i f r « >^j f*irr i—-fr

(AD

where U > 0, and use the order parameters of Eq. (2).
We use a standard mean-field decoupling (i.e., for^two

operators A and 'B we write AB—*( A )B + (B )A
io obtain the mean-field Hamiltonian

kcr
k+ QcrC

+N Utf

(A2)
where the symbols have been defined after Eq. (3).

In terms of the operators cko. defined in Fourier space,
the principal order parameters are bc =2k,<7^c^+Q(7ck(T ),

The mean-field Hamiltonian Hmt(2) can be written in
the form:

(A3)

by using the Nambu representation

ck+QT

c-k-k-Q4

(A4)

The const in Eq. (A3) comes from the term inside square
brackets in Eq. (A2), the prime over the summation indi-
cates that k is restricted to half the Brillouin zone, and

— A s(k) M+?k °

— Ac 0 — /Z+?k

0 -Ac -As(k + Q)

0

-A

(A5)

which can be diagonalized easily. Its four eigenvalues are
±Ek, where

E±=[Rk±2Pk}
1

and

(A6)

(A7)

(A8)

With these four eigenvalues the mean-field free energy
per site, f=-(l/Np)lnE([i,T), where E = Tre~Wfmf is
the grand partition function,

(A9)
ka

where a = 1 • • • 4 refer to the four eigenvalues and the
prime over the product indicates that k is restricted to
half the Brillouin zone. Finally
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(A 10)

APPENDIX B: SELF-CONSISTENCY EQUATIONS
FOR THE ORDER PARAMETERS

The equations for the order parameters follow from the
minimization of / [Eq. (A 10)] with respect to the order
parameters. Hence bs is obtained from the equation
3//8bs =0 which yields

tanh +tanh

(Bl)

where

's~ Pv

are coherence factors and Vk =zKyk.
Equations for the other order parameters A,,, bs, and

C0 follow similarly:

zVb=-
1

2N
tanh 8k,be

+ tanh (B2)



where
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One also has

1/W' = ̂

2
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(Ubs)

2+fl
tanh-

+ -
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(Ubs)

2+Jl
tanh-

(B4)

and

tanh

+ tanh

2

pEk
(B5)

where

™± =. V

Et

The filling is determined by the condition 8 = —
and we obtain

(B6)

8 =
1

2N
tanh h+.+tanh

(B7)

where 8 = n —1 and hk- = dEk /d/j..

APPENDIX C: THE MEAN-FIELD PHASE BOUNDARIES

1. The charge density wave-nonordered metal (CDW-NO)
phase boundary

The four energy eigenvalues [Eqs. (A6)-(A8)] reduce to
two sets of doubly degenerate eigenvalues in the CDW
phase (bs=be=Q) given by

(CD

At the phase boundary between CDW and NO phases,
as T rises from below towards rCD (the transition tem-
perature between CDW and NO), Ac—»0. Hence to ob-
tain TCD as a function of 8 we consider the self-
consistency equation (Appendix B) in this limit.

When bs=be= 0, the self-consistency equation (B4) for
A_ becomes (with Ar = 0)

! ! .+w tanh[(l/2)j3CD(e-/Z)l
^=y/_^(e) -f

 de' (C2)

where W is half the width of the (noninteracting) single-
particle band and p ( e ) is the corresponding density of
states. (Note that this equation gives the BCS expression
for the transition temperature at half filling, i.e., at p. = 0
and for a constant density of states.) From Eq. (B7) we
get, in the CDW phase,

-w
p(e)de ,

(C3)

where Rf = \
These integrals can be evaluated analytically if we ap-

proximate p ( e ) by a constant density of states. In three
dimensions such an approximation is known to give fairly
good results. We takep(e)= 1/2W, so that the normali-
zation condition f^'£rp(e)de= 1 is satisfied. Then the
above equation for 8 gives (with Ac = 0 at the phase
boundary)

-PC
cosh/3CT>(p,-W)/2

(C4)

where /3CD = 1 /7"CD. Straightforward manipulations with
Eq. (C4) give the chemical potential in terms of rCD and
8:

Jl=W +rCDln
1-e

(C5)

Hence to determine 2"CD as a function of 8 (or fi) we
choose a value of 8, substitute for Jl from Eq. (C5) into
Eq. (C2), and obtain Tcv by numerically evaluating the
resulting integral.

2. Superconductor-nonordered (SS-NO) phase boundary

In the superconducting phase (Ac =0,bs
l¥=0, and

be¥=0) we again get two doubly degenerate eigenvalues:

As for the CDW-NO phase boundary, we obtain Eq.
(C5) for /J as a function of 8, with TCD replaced by 7"ss,
the superconductor-nonordered transition temperature.
The self-consistency equations for bs and be can, in this
case, be written as a 2 X 2 matrix equation:

2N 2'
u

uYk

(C6)

and the SS-NO transition temperature can be obtained
from the pairing-instability condition, i.e., it is the tem-
perature at which the matrix

/tanh(?k+/Z)/2r
'

2N

U

(CD



has a vanishing determinant (1 denotes a 2 X 2 unit ma-
trix). This is equivalent to finding the temperature at
which the largest eigenvalue of this matrix becomes zero
(in the nonordered phase, all the eigenvalues of this ma-
trix are negative). As for the CDW-NO phase boundary,
we choose a value of 8, determine p, from the analog of
Eq. (C5), and obtain rss from Eq. (C7) (we use a constant
density of states as above). The CDW-SS boundary, be-
ing first order, must be obtained numerically by equating
the free energies of these two phases.

APPENDIX D: THE PAIR SUSCEPTIBILITY
AND THE COOPERON BOUND STATE

IN THE CDW PHASE

Here we calculate the two-particle susceptibility when
the system is in the CDW ground state using the ladder
approximation. In Sec. D 1 we briefly discuss the quasi-
particle excitations. We use these in Sec. D 2 to calculate
the pair susceptibility and, from its poles, the cooperon
bound-state energies.

1. Quasiparticles in the mean-field CDW state

In the absence of superconducting order (bs = be = 0)
the mean-field Hamiltonian is (Appendix A)

where = (

/Zl

(Dl)

(D2)

is a 2X2 matrix, (7l and cT3 are the first and third Pauli
matrices, respectively, 1 is the unit matrix, and Ac is the
CDW gap parameter. If we introduce the unitary trans-
formation

ak=cos#kck — sin#kck+Q ,

/?k=sin0kck+cos0kck+Q ,

and choose

(D3)

cos20k= — 1 + -

and
_*k_
Ek

(D4)

then the Hamiltonian (Dl) is diagonal when written in
terms of the operators ak and /3k. Here we have set /Z=0
to restrict ourselves to half filling. £k = ±V/?k + A2 are
the energy eigenvalues of the new quasiparticles ak and
/?k. The inverse of the transformation (D3) is

ck

ck+Q

= £ ' ( Bt, )
«k

Pk
(D5)

\

where .£(0k) = cos0kl — i'a2sin0k. Thus in the CDW
phase we have two quasiparticle bands with energies Ek

and — Ek, separated by a gap 2AC along the entire nonin-
teracting Fermi surface.

2. Calculation of the pair susceptibility in the singlet channel

In the extended Hubbard model, the interaction be-
tween electrons with antiparallel spin can be written as

(D6)

where the H function is defined on a lattice and takes care
of umklapp processes also, i.e., k]+k2— k 3— k4 can be
zero or G, a reciprocal-lattice vector. In the CDW state,
it is convenient to consider bands with dispersion rela-
tions ?k and ?k+p as two separate bands labeled 1 and 2.
Thus we can decompose the interaction term into various
components involving these two bands (Fig. 3). The in-
teraction vertex becomes

where

'j' — 7 ( 1 + Si . ),

(D7)

(D8)

i,j, etc., are band indices (1 or 2) and Sj = l( — I), for
.7 = 1(2), The S function in Eq. (D6) now requires that
the center-of-mass momentum q of the pair be conserved
modulo G (but Kdoes not depend on q). •

It is convenient for later purposes to write Eq. (D7) in
a separable form. For this we write

a=l

where

for l < a < 3 ,

, for 4<a<6 ,

(D9)

(D10)

and klt k2, and k3 denote the three Cartesian com-
ponents of k. We can now write Eq. (D7) as

(DID

where

and

a=0

for l < a < 6

(£0i,.(k) = (£a(k)=l fo ra=0 ,

va = 2V f o r l < a < 6 , va = — U for a=0 .

In the CDW ground state there are two bands, so there
are 16 pair susceptibilities:

( q,v) =
k,k'

(D12)



 

where TT represents time-ordering, i,j, etc., are band in-
dices, the subscript p indicates pairing, and the expecta-
tion value is calculated with respect to the interacting
ground state. (We restrict ourselves to T=0 for the most
part, but a finite-temperature generalization is straight-
forward.)

The Dyson equation for this pair susceptibility in the
ladder approximation is described diagrammatically in
Fig. 3 and has the form

k' t,m,l',tn'

(D13)

where Xij-i'j'^k,q} is the value of the diagram shown in
Fig. 3, with

Xn.i,.,-r(<l) = ^Xi,:i-,-(k;q) , (D14)

k' u,v,r",s"

(D18)

where r,s,u,v, etc., refer to the quasiparticle bands (and
each assumes the values 1 or 2 only).

In the quasiparticle basis the interaction vertex be-
comes [via Eqs. (D5) and (DID]:

(D19)

where

k) for l <

for a = 0 ,

have used theand where we
fc=(k,ffl), and
shown in Fig. 3 and we have

notations o=(q, v),
>- Here x(k;q) is

(D20)

r̂* y~r 0 / 7_ I \ f~i 0 / 7 \ /T"\ 1 ^ ^
^. *3 H' * ̂  ' T ' / / ' ^ ' J ^ '

A:

where x°p,ij-i'f(k',q) and G°.(/c) are, respectively, the
mean-field (two-particle) pair susceptibility and the
mean-field, single-particle Green function in the CDW
ground state. G°. ( k ) is the 2X2 matrix (in the basis of
-ktr

and (D21)

s; = sr cos0k + sin0k

In this basis the mean-field, single-particle Green-
function matrix in the CDW state [defined in the basis of
otk's in Eq. (D16)] is diagonal. The elements of this
Green-function matrix are

G° (D16)

Since the frequency does not appear in the potential,
we can rewrite Eq. (D13) in terms of
Xij.:i'j'(l6.;q)= fd(aXjj-i'i'(k;q) and a similarly defined

j°.,...(k;<?) to get (henceforth we use 2k = '

k' lrm,i,m'

V I/

(D17)

Equation (D17) is an integral equation with a separable
kernel though this may not be evident at first) and can be
solved in a straightforward way. The separability and the
solution is simplified greatly if we work in the quasiparti-
cle [ak and /?k of Eq. (D3)] basis rather than the basis of
ck(J's since in the quasiparticle basis the mean-field
single-particle Green function (D16) is diagonal. In the
following we transform Eq. (D17) into the quasiparticle
basis and also set q=0. (For the cooperon bound-state
energies we need the pair susceptibility at q=0 only.)
Some aspects of the q=^0 case are discussed in Appendix
E.

From Eq. (D17) we get, in the quasiparticle basis,

Bfj (k,Q)) = Slj(co—siEk) , (D22)

where Ek is the quasiparticle energy defined in Sec. D 1.
Now Eq. (D18) can be rewritten as

2 2
k' u,v;r"s

(D23)

The solutions of this integral equation can be obtained
in the standard way by using the eigenvalues and eigen-
functions of the kernel. The poles of the pair susceptibili-
ty are determined by the zero eigenvalues of this kernel.
The eigenvalue equation can be written as

k' rV

Xe rV(k';v) = (D24)

where e ra(k;v) is the eigenvector with eigenvalue A,. We
have used a simplified form for ^s;r.s.(k;/vm) in the
quasiparticle basis which can be easily derived by using
Eqs. (D16), (D22),and the definition of £?s.,.v(k;g) given
above. This simplified form for j£^.rV(k;i'vm ) is



Hence

(D25) k' r'

(D26)

We give the solution of this equation separately for the
We have used the finite-temperature form with ivm the
discrete Matsubara frequency, f ( E ) the Fermi function,
and E r ( k ) = tjrEk, where t\r = 1( — 1) for r = l (2). Given cases F=0and
the form of Eq. (D25), we can choose ere(k;v) to be diag- Case I: F=0. Let us substitute Eq. (D19) in Eq.
onal in the band indices, i.e., of the form 8reer(k;v). (D26) to get

U

k' r'

If we multiply both sides of Eq. (D37) by |^(k) and sum over r and k we obtain (grCk) is an even function of k),

(D27)

(D28)
k,r k,k',r,r' k,r

Similarly by multiplying both sides of Eq. (D27) by t^Ck.) and summing over r and k we get [f r(k) is an even function
ofk]:

k,r k,k',r,r'
(D29)

k,r

If we define

(D33)

k,r

2

U
(D30)

we can write Eqs. (D27) and (D28) as a 2X2 matrix ei-
genvalue problem:

M
/o

1 +
00 -^00

R 00

/o /o
(D31)

Here we have suppressed the v dependence of the matrix
elements for notational convenience. To get the pair sus-
ceptibility, we need to solve the equation det/M,=0. For
the purposes of interest here, this is equivalent to the con-
dition A,max=0, where ^max is the largest eigenvalue of M.

Case II: V=^0. The eigenvalue equation (D26), in the
case of F=^0, is

k'r'

We now define

= A.er(k;v) . (D32)

Next we multiply Eq. (D32) by £j(k)#fi,(k) on both sides
and sum over k and r to get

- S *««/* = A*« - (D34)

Similarly if we multiply Eq. (D32) by ^
both sides and sum over k and r we get

where

on

(D35)

k,r
(D36)

Equations (D34) and (D35) can be written as matrix equa-
tions:

and (D37)

The set of equations (D37) is a 14 X 14 matrix equation of
the form



J a

80
(D38)

where 1 denotes a 14 X 14 unit matrix. The poles of the
pair-susceptibility jp(q=0,v) are obtained from the con-
dition that the determinant of the matrix Mp vanishes.

Let us show a few matrix elements explicitly. At zero
temperature the expressions for the pair susceptibilities
[Eq. (D21)] yield via standard analytic continuation onto
the real v axis (ivm —

*?(k;v) = i
r-2Ek

If we define

andxS(k;v)=- (D39)

(l-Ac /£k)

v-2Ek

and

r

then the following matrix elements can be written as

.R32 =

.R42 =

etc. From this it is not hard to see that Mp and !R have
block-diagonal structures, since any sum of the form
2fc sinkxf(kx ), where f(kx ) is an even function, is zero
by parity. Thus the matrices Mp and ^? are both block
diagonal with one 8X8 and one 6X6 block each.

The top 8 X 8 block of the matrix 31 is

oo

10

20

R

U
R

n
R

00

oo

10

10

01 ^01 rc
n0i *c

n,

02 03

{03

•"•03

n.,3
]2

20 r21 .R21 22

H!
R

n

20 n20 21 n21 R22
30

22

32

R 30 n33

(D41)

Note the following points.
(a) The upper left 2X2 block is the matrix obtained in

the V=0 case discussed earlier.

(b) The elements in the first two columns of this matrix
depend on U and are independent of V. All the rest of
the elements depend on V and do not depend on U.

(c) The lower 6X6 block, obtained from the above
8X8 block by considering elements other than the first
two rows and columns, is a symmetric block.

(d) The largest eigenvalue of the full matrix Mp can be
obtained by diagonalizing the above 8X8 block. We re-
quire the determinant of Mp to vanish to obtain the poles
of j/,(q=0,v); this is equivalent to the vanishing of the
determinant of the upper 8X8 block. The value of the
frequency v at which this determinant vanishes gives the
pole of the pair susceptibility.

APPENDIX E: PSEUDOSPIN-WAVE EXCITATION
IN THE NEGATIVE- U HUBBARD MODEL

In this appendix we discuss some aspects of ̂ (q.v) for
We do this only for F=0, as the calculations with

i are numerically very complicated. The essential re-
sults of the pseudospin-wave theory (valid at large U) can
be demonstrated in the K=0 case quite neatly. The main
result we obtain is that the excitation spectrum for the
negative- U Hubbard model, derived from the poles of the
pair susceptibility in the CDW state at any U, reproduces
the excitation spectrum of the large- U limit of this model
(obtainable from the pseudospin Heisenberg model,2

^spin=J/22<;y>(Si-Sj-j), where J = 4T2/U). We also
show that the excitation spectrum obtained in the ladder
approximation for the CDW state of the negative- U Hub-
bard model is identical to the corresponding RPA excita-
tion spectrum29'30 of the positive-U Hubbard model in its
spin-density-wave phase (for the equivalence of these two
models at half filling see Sec. II).

To obtain the excitation spectrum in the case where
q¥=0 and V=0, we require the poles of the pair suscepti-
bility at V=0, i.e., the determinant of the following 2X2
matrix Mp should vanish:

oo(q,v) .Rnofq.v)

U_
2

(El)

where

(l-Ac /£k)(l-Ac /£k + q)

v+Ek+Ek+q

U

(E2)

and



) = —*oo<q,v)

•̂  J 7 F ,,2 f 17 _i_ 17 \2 '
k ^k^k + q V (,.Ck-t-.fck + q )

where all symbols have been defined in Appendix D or
earlier.

The mean-field pair susceptibility in the CDW phase is
the 2X2 matrix

which obeys the symmetry property
E°(q + Q,v) = (73E°(q,v)cr3, where a3 is the third Pauli
matrix and Q is the zone-corner wave vector IT /a (1,1,1).
The pair susceptibility matrix in the CDW state in the
F=0 case is given by E°M~l, where M,~l is the inverse
ofMp defined above.

The negative- U Hubbard model has a pseudospin rota-
tion symmetry at half filling (Sec. II). In the CDW state
this symmetry is spontaneously broken. Hence there will
be Goldstone modes in this phase. In the large,
negative-U limit, i.e., for the pseudospin model, these
gapless modes are the transverse, pseudospin-wave exci-
tations in the antiferromagnetic phase, which breaks the
pseudospin-rotation symmetry of the Heisenberg model.

The bound-state energy of the two-particle excitation
spectrum at half filling in the CDW state at q=0 goes to
zero as F—>-0 (Sec. II), i.e., the pseudospin-rotation sym-
metry (broken by the F term) of the Hubbard Hamiltoni-
an is restored, the spectrum becomes gapless. Hence the
energy of this bound state as a function of momentum
(for small momentum) yields the spectrum of the low-
lying modes. As this state is at zero energy for q=0, we
can make an expansion in the energy and momentum
close to zero to get the spectrum of the lowest-lying
modes at small q and frequency v. At large U we find
that the spectrum evolves smoothly into the pseudospin-
wave spectrum of the Heisenberg model. This shows
clearly that there is a smooth interpolation of the zero-
temperature excitation spectra, at least at the level of
RPA calculations. We give the details of our calculation
here, which is similar to that of Singh and Tesanovic.30

The condition detMp = 0 turns out to be equivalent to

Xm a x+l/ t /=0, (E3)

where A.max is the largest eigenvalue of y2p(q,v). We do

a small-v and small-q expansion to get the spectrum.
Note that the minimum value of .Ek +J?k+q is 2AC which,
in the t/^*oo limit, is just U. Hence, for v— >0, v/2Ac is
the expansion parameter we use.

The off-diagonal terms of 5°, J°2(<l>v)> a«d ;di(q,v),
do not contain any term linear in v, so the leading term in
their expansion above v=0 is O( v2). If we write

where c2(q,v) contains terms of order higher than v,
whereas c r ( q ) is independent of v, then

(E4)

where we have used ^°2(q,v)=^2](q,v). Since the lead-
ing v dependence of the off-diagonal terms ^?2(q>v) an<^
#°i(q,v) is O(v2), the leading v-dependent term in the ex-
pansion of lmax is O(v2). One can similarly argue that
the leading q-dependent term in Xmax is of O(q2). This
can be verified by a direct expansion to this order

J_
U 2s n

v2-co(ql,q2,q3) , (E5)

where H0, s0, and c20 are constants independent of v and
q, and 55 depends quadratically on the Cartesian com-
ponents of q denoted by qa, where a— 1 • • • 3. One has

1 1

20 (E6)

and, by using the symmetry of the cubic lattice,

-__ 3 _!L2r
El '

z k -^k a

which together with ?k=2f2acos/ca yields

sin2fc, (1 — 3??) /2E2 — | cos2*:, — cosfc, cask..
(E7)

By substituting Eqs. (E5)-(E7) in Eq. (E3) we get the ex-
citation spectrum in the CDW phase: v(q)~vsq, where

1/2
2s Ow

(E8)

and w is the coefficient of q 2 in Eq. (E7).
The large- U limit of Eq. (E8) yields the spin-wave ve-

locity of the Heisenberg model that obtains in this limit.
In the large- U limit £k—>AC . For any dimension d, by
keeping terms of order A~3, we get the spin-wave spec-



y2, where yq=(l/z)2
'™i* y|—>-l~ <?2 /«>

for a hypercubic lattice.
— q2/d, so

(E9)

as expected for the Heisenberg antiferromagnet in linear
spin-wave theory. The same result was obtained by
Schrieffer, Wen, and Zhang,29 and by Singh and Tesano-
vic.30 Our calculation of E^(q,v) is more general,
though.

APPENDIX F:
A COMPARISON OF THE OPTICAL CONDUCTIVITIES

IN THE ONE-AND TWO-PARTICLE CHANNELS

For the purposes of illustration we work in the large- U
limit of the negative- U, extended Hubbard model and
show that the conductivity in the one-particle channel is
nearly a factor of 10 smaller than in the two-particle
channel. We begin with the two-particle channel, so the
charge carriers are cooperons (in the CDW phase we con-
sider), for which we write an effective boson model whose
conductivity we calculate.

The anisotropic Heisenberg model that is obtained in
the large- U limit of the negative- U, extended-Hubbard
model can be written as

by using the transformations s,
one *

* and sf —>•—.?/ on
sublattice only, where s,*, are conventional spin

operators.2 [Note that this makes the mean-field ground
state of model (Fl) ferromagnetic, i.e., ('sf} =\, for all i.]
From this Hamiltonian it is easy to see2 that the current
operator is

J1a(s,+sJ
+ -H.c. ) (F2)

We now make the linear spin-wave approximation
y , - — >a,- and Sf— *(a/a,- — 1/2), where a,, etc., are boson
operators, and rewrite Eq. (Fl) as

J,

(F3)

where we have Fourier transformed the resulting Hamil-
tonian and yk is defined in Appendix A. This Hamiltoni-
an is diagonalized by the usual transformation to the
quasiparticle operators alk and a2k:

d __ t,

«2k
(F4)

where

-+1

-Jiri

and

1

(F5)

In the quasiparticle basis the Hamiltonian (F3) becomes

•u— ^z Nz •*? t t
4 2 k

where uk
 =-/z

2~-/2yk.
The Green functions for the original Hamiltonian (F3)

can be written as

si
(F6)

where the double angular brackets are used following Zu-
barev39 to denote Green functions. The conductivity is
related to the imaginary part of the current-current
correlation function via

(F7)

(Fl) We can rewrite the current operator (F2) as

(F8)

A Wick decoupling of the right-hand side of Eq. (F8) into
products of two-point correlation function yields

X
1

(F9)

which along with Eq. (F7) gives

)yk [ 2 n ( v v

(F10)

where 2n(t;k) is the Bose distribution function. Hence
the zero-temperature conductivity is given by



JTk 97k 8(<a-2u t;
d/c^ o/Co 2v\,

The conductivity in the single-particle channel

which defines the two-component spinor */> and the 2X2
(Fll) matrix M. The prime over the summation indicates that

we restrict ourselves to half the Brillouin zone. The
current operator for the Hamiltonian (F12) is

In the mean-field, CDW phase, the Hamiltonian can be
written as

ek A

A -ek

j= 6yk
' - (F13)

(F12)
ko-

v,k ° a

The right-hand side of Eq. (F14) can be simplified by noting that

where T3 is the third Pauli matrix and t is the hopping
matrix element for the electrons.

For the one-particle channel also we use the RPA to
get

(F14)

(F15)

where £k = A2 + ek is the quasiparticle energy in the CDW state, the trace is easily performed to get

and the straightforward summation over v yields

_A_ 2

Ek

At zero temperature the conductivity becomes
2 s/

dka

(F16)

(F17)

An estimate of the ratio of the conductivities can be made with the realistic values of different parameters as given in
the text; such an estimate shows that the conductivity in the one-particle channel is about a factor of 10 smaller than in
the two-particle channel (Fig. 6).
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