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Abstract. Issues related to the dynamic regulatory control of a chaotic
process are discussed and illustrated using phenomenological descriptions
of nonlinear systems from different disciplines. The controller design is
based on internal model control principles with a capability of handling
constant load and stochastic disturbances. Simulation studies assess the
control performance and the studies reveal the intricate stability features
of chaotic dynamics which need to be considered for regulatory control.
The studies also suggest that a proper choice of the controller variable,
leading to a suitable range in the values for the controller output, may
be required.
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1. Introduction

In recent years, a subject of importance that has emerged is the study of the observed
dynamical chaos in many physical, chemical and biological systems (e.g., see Berry
et al 1987, Grebogi et al 1987, Thompson & Stewart 1989). It is generally accepted
that chaos arises due to nonlinear process characteristics which allow a system to show
extreme sensitivity to parameter values as well as initial and boundary conditions.
Indeed, dramatic variations in the dynamic output behaviour can ensue for insignificant
errors in specifying the initial state of the system. Comprehension of the behaviour
of a chaotic system from both theoretical and practical points of view is considerably
enhanced by the availability of a prototype mathematical model which may be
obtained either from a priori mechanistic knowledge or from experimental data. Apart
from other interesting system features, a study of the mathematical model can possibly
indicate the advantages that may arise when a chaotic system operates in an identified
parameter/phase space. This suggests that it would be useful to design control methods
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that would allow a practical system to operate within the framework of a chosen set

of objectives. Understandably, any control method for a chaotic system would require -

considerable rigor due to its inherent dynamic sensitivity features. In this article,
therefore, we propose to discuss in some detail the special features which need to be
surmounted for the dynamic control of chaotic systems. We shall highlight their role
by attempting to control the chaos ansmg in seminal model examples from the
engineering, physical and chemical sciences.

Several recent reviews and articles (Cutler & Ramaker 1980; Richalet et al 1982,
Isidori 1985; Kravaris & Chung 1987; Lee & Sullivan 1988; Kravaris & Kantor
1990z, b; Kravaris & Soroush 1990; Limqueco & Kantor 1990; Bequette 1991; Gattu
& Zafiriou 1992) covering different perspectives in the design of nonlinear controllers

are available. As seen in these articles, among the different techniques studied for

controlling nonlinear systems, the method of internal model control (IMC) has
developed considerably and controller designs based on linearized versions of the
model (Garcia & Morari 1982) to those that are totally nonlinear (Economou et al
1986) have been carried out. Loosely speaking, formulating the control strategy on
these lines uses advanced levels of mathematics. Further, stability considerations for
a controlled system have shown that the incorporation of a linear or nonlinear filter
to impart robustness to the controller may be required (Henson & Seborg 1991).
Employing a different approach, an IMC controller design has been proposed which
can regulate the dynamics of a nonlinear system at a desired stable stationary state
(Kulkarni et al 1991). The inclusion of an adaptive mechanism for the model
parameters in the procedure has found application in controlling a number of more
difficult situations arising due to the process operating in multistationarity and
unstable regions, presence of noise etc. (Ravi Kumar et al 1991; Bandyopadhyay et al
1993b; Shukla et al 1993).

Broadly stated, most internal model based nonlinear controllers use state variable
feedback in some form or the other to compute the driving action in a properly
chosen manipulable variable of the system. The monitoring of state variables dyna-
mically is usually limited by the availability of measurement methods with the associated
sampling time constraints, and can therefore pose real-time difficulties in achieving
control of chaotic processes. In this respect control algorithms which do not use state
feedback are better placed (Hubler 1989; Hubler & Luscher 1989; Jackson 1990;
Jackson & Hubler 1990), although they tolerate mismatch in process-model parameter
value specifications and modelling errors (inadequate model representation of the
process) to a lesser extent. Also, disturbance rejection can be better handled by

allowing for a state feedback mechanism in the control strategy. A control algorithm:

incorporating feedback may be more generally applicable than one without, and
for this reason, a method with feedback for controlling chaos has been developed
(Bandyopadhyay et al 1992). In this study the original framework of IMC was im-
provised so as to make it applicable to the requirements of controlling chaotic systems.
The noteworthy feature of this method has been to additionally include a feedback
mechanism that minimizes the deviations in the rates of change of the process variables
with those of the desired dynamics. We shall, for the purpose of studying the various
aspects involved in controlling chaotic systems, employ thlS method so as to famhtate
comparison of results. ‘

This paper is structured as follows. In subsequent sections we shall summarize the
pertinent aspects of the control alogrithm in a general fashion and also discuss the
issues related to controlling chaotic dynamics. We then present the results of simulation
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studies which bring out the system features on attempting control for three representa-
tive chaotic systems with different dynamical topologies highlighting these issues.

The first system to be considered is that which is used in engineering applications
and very often as a generic model, for its simplicity in conceptualizing a number of
physical-cum-chemical processes, i.e., the exothermic reaction in a continuous stirred
tank reactor (see, Kahlert et al 1981, Jorgensen & Aris 1983, Jorgensen et al 1984,
Retzloff et al 1987). The second example is the well-studied idealized mathematical
model of Lorenz (Lorenz 1963; Sparrow 1982; Guckenheimer & Holmes 1983) describing
the thermally driven fluid convection considered by Rayleigh. Simple chemical reactions
with the minimum of nonlinearity have been proposed and analysed for their bifurcation
structures and complex dynamics. A mechanism from this class is the autocatalator
model (Peng et al 1990, 1991; Scott et al 1991) and we shall therefore study a possible
controller law formulation for this system.

1t may be worth noting that controlling chaos for situations when a mathematical
model for the system is not available is also being actively pursued. Thus, in the
instance when time series data are available, Ott et al (1990) have suggested a method
for the regulatory -control of a chaotic system by analysing the system properties
for reduced dimensionality on a suitably chosen Poincaré section. Specifically, a
proportional feedback controller has been designed which requires an initial standar-
dization of the sensitivity characteristics of the system for small parameteric variations
in a controlled variable. Applications of this method to important nonlinear systems
are also available (Ditto et al 1990; Peng et al 1991; Roy et al 1992; Bandyopadhyay
et al 1993a).

2. Basic principles for the control strategy

Our first assumption for controlling a chaotic process is that a reasonably accurate
process mathematical model is known. Second, for the purpose of stating our control
objectives we assume that controlling a chactic process implies regulating the dynamics
of the process on some chosen orbit (set orbit) embedded in the chaotic attractor.
We may identify these orbits by experiment or by solving the process mathematical
model such that the beginning and end points of the chosen orbit lie in the dense
region of the chaotic attractor. Thus, suitable control action should facilitate moving
the process state to the initial point of the set orbit on dynamically reaching the
neighbourhood of its end point. The controlled process can then follow the set orbit
dynamics in a periodic fashion. To help outline and discuss the control framework
the block diagram in figure 1 shows the linkages between the process, its mathematical
model and controller design. We shall develop the subject matter based on this
diagram section-wise. :

2.1 Process description

We begin by writing in a general fashion the process dynamics to be described by a .

~ set of ODE of the type,

dx/dt = f(x, k) + u,£'(x, k) + d, | 1)

- where x is an N-dimensional vector of process state variables for the system, k a set
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Figure 1. Schematic showing implementation of internal model control (IMC) for
a chaotic process.

of process parameters and 4, a manipulable control variable whose magnitude can
be dynamically adjusted on the process by external means. The f and f’ represent
nonlinear functions affecting the time evolution of the process. The second term on
the RHS, u,f’ indicates that the manipulable variable is of a separable form and can
always be solved explicitly by algebraic manipulation and substitution. The vector
d allows for stochastic or constant disturbances that the process may experience in
time from various sources. Although we have in hand a mathematical model for the
process, it may be emphasized at this point that the process equations in the form
of (1) are used only for simulation purposes and in real-life applications the x will be

the measured quantities of the state variables. The process has been depicted by
Block A in figure 1.

2.2 Model description

Without any loss in generality we may write the set of equations to describe the
mathematical model of the process in terms of the model state variables & as

d&/dt = (%, k) + u,f'(8, k) + d, ’ 2

where introducing the notation k allows for setting parameter values of the model
different from the true operating value in the process as specified in (1). A similar
argument holds for the load disturbance vector d, where for d in (1) with finite values
for its elements, if d is null then the model outputs & do not consider the presence
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of the loads on the process. In figure 1, Block B denotes the available model
description.

2.2a Convergence considerations for chaotic dynamics

We now draw attention to the non-intersecting property of the phase space trajectories
of a deterministic process. This property allows the dynamics of the system at any
given instant to be calculated using the model, provided the values of the state
variables are known precisely. Sensitivities of nonchaotic systems to a lack of precision
in inputs are much lower than the dynamics of chaotic systems which calls for a very
high degree of precision in state variable measurements X. In real-life, measurements
of this order are not easily achievable. One way to give the mathematical model
better information for calculating model outputs for control purposes is to consider
including in the mathematical model, the effects of deviations in the evolutionary
directions of the process trajectories from those of the set orbit. Thus, the N local
difference in the derivatives (say elements of a vector F) that exists in the state variables
between those of the process (measured to the best possible precision) and the desired
set trajectory dynamically, may be defined as

F = (dx*/dt) — (dx/dt) 3)

and included in the model (2) so as to obtain a set of modified model equations
having the form '

dg, /dt = f(&n, K) + 8/ (R, K) + d + F. - )

For clarity we have the nomenclature for the modified model variable outputs in (4)
identified as ,,. Particularly, when the derivative values of the process trajectories
dx/dt match those of the set orbit dx*¢'/dt dynamically F becomes a null vector,
indicating a direct correspondence between the above modified model (4) and the
known mathematical model of the process (2). Note that elements of F are numerical
values that may be supplied to the model at every integration step-size.

The dynamical systems we consider are dissipative and so the trajectories of the
chaotic attractor converge onto a lower-dimensional manifold after the initial
transients are over and continue to do so without the trajectories intersecting in
space. This is achieved by the trajectory repeatedly going through a process of folding
and unfolding. Thus, in general, there are regions, where small perturbations (say, in
the control variable u,) given to the process may die down, or others where the
trajectories would diverge. The knowledge of the process mathematical model 2
may be used to identify the phase space points wherein control is likely to achieve
the objective. A possible method for ascertaining the convergence properties in .the
neighbourhood of a point on the trajectory is to monitor the process evolutl‘on
properties of suitably chosen states lying on an infinitesimal hyper-sphere surrounding
the point. A convenient choice of the chosen states would be those with an ortt.lo-
normal frame of reference. The evolution properties may be studied by linea'ri.zmg
the model (2) and integrating sets of these equations for appropriate initial con@txons,
corresponding to the chosen states on the hyper-sphere surrounding the true trajectory.
point. The procedure can, therefore, facilitate the monitoring in time of the growth
of the hyper-radii as integration proceeds. A decrease (increase) in the ra(?n i:rom
those of the hyper-sphere in each (any) of the orthogonal directions would indicate
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that the system occupies a phase space point wherein the effects of perturbation
would die down (grow). In essence, the method parallels the principles involved in
calculating the Lyapunov exponents used for characterizing the presence of chaos in

a system and we shall next discuss the physical significance of the exponents to bring
about the connection.

2.2b  Including convergence considerations in the model by a switch (6)

For an N-dimensional system following (2), the N-Lyapunov exponents quantify the
sensitivity of system dynamics to its initial conditions and also indicate the degree
to which nearby phase space trajectories diverge (Guckenheimer & Holmes 1983;
Bai-Lin 1984). Chaotic behaviour is exemplified by the presence of at least one positive
Lyapunov exponent and a zero exponent. The existence of more than one positive
Lyapunov exponent shows a hyper-chaotic system and arises due to orbits diverging
in multiple directions in phase space. Limit cycle or more complex multi-peak periodic
situations have an associated zero valued exponent with all others negative while
stable dynamics have all negative exponents. The evaluation of the Lyapunov
exponents from a known set of differential equations can be carried out by observing
the evolution of small perturbations to the system orbit during its time evolution.
Thus, if J(%[t], k,d) is the N x N Jacobian matrix evaluated along a dynamic system
trajectory whose states are represented by the vector %[t], then a perturbation J%,
to the trajectory satisfies, the linear relationship :

OR[t + At] = J(&[1], k, d)oj[£]. | (5)

The divergence of nearby orbits can be studied by monitoring the growth rate of the
infinitesimal N-dimensional hyper-sphere constructed about the initial state of the
system trajectory by specifying a set of N orthonormal vectors (¢, [t], k=1,2,...N)
around this state. Solution of the system equations with the N sets of linearized
equations of motion [obtained in the form of (5)] yields the growth rate of these
vectors in time. The hyper-sphere is seen to deform into a hyper-ellipse and the multi-
plicative ergodic theorem (Osledec 1968) states that the characteristic radii of this
hyper-ellipse converge in time. The Lyapunov exponents are related to the converged
value of these radii. Let the norm |o(c0)|,k=1,2,...,N be the metric quantity
measuring the magnitude of these radii vectors. The N Lyapunov exponents (A, k=1,
2,...,N), can be calculated as

. he=lm9InC ool 1V Ia011], (k=12,...,N), L ®

where if an orthonormal frame of reference is chosen, then, ||, (0){| =1,k =1,2,...,N.
To aid the numerical solution of the system (5) employing a time interval At, the
discretized version of (6) may be written as

Alt] = {21: In( [l [o0] /1|4 [0] II)}/(rAt), (k=1,2,...,N) (7)

where as t— 0o (7) converges to the Lyapunov exponents 4,. Repeated applicatio"l\ls‘
of (5) can, however, lead to an ill-conditioned nature of the matrix J (%[t], k,d).
Moreover, due to the finite precision normally used in calculations we observe that

e TR TR
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each of the vectors «,[t],k=1,2,...,N tends to align itself with the local direction
of most rapid growth and effectively all the o, converge to the largest Lyapunov
exponent. Ortho-renormalizing the o, [t} k=1,2,...,N’s at frequent intervals can
circumvent these problems and yield reasonable estimates of the exponents in decreasing
order. '

It may be seen that evaluating the Lyapunov exponents involves a process of
averaging the dynamical properties of the system trajectories in time. At every time
step each contribution to the average portrays the local nature of the dynamics, in
the sense that they provide a ready inference on whether the hyper-ellipse radii are
shrinking or expanding. Therefore, to identify- the regions where control may be
implemented we use the conservative condition of ensuring that the linear dynamics

for points on the orthonormal frame of reference shrink towards the true system

trajectory, i.e. we check to see if the values of

In[ |l (rAt) | 1/ [01W] <0, (8)

for k=1,2,...,N. For convenience let us assume that if the criterion in (8) is satisfied
(or not satisfied) a switch 6 takes on a value =1 (or 6=0). :

Based on the above discussion it becomes clear that before obtaining modified
model outputs x,,, via (4), dynamically, it is necessary to check whether the process
occupies a point in a convergent phase space. This step is clearly indicated in figure 1.
Testing for the convergence may be carried out by evaluating the lhs of (8) and
suggests that F values be included in (4) only in such instances. Thus the modified
model (4) may be written including the role of the switch 6 as

dg,, /dt = £(%ye, K) + t,f' (%, K) + d + OF. | 9)

2.3 Controller design

We shall now indicate the IMC methodology for designing an equation which
calculates the controller outputs u, needed to direct process trajectories towards a
desired orbit. As stated earlier (4) may be rearranged to obtain an explicit calculation
for the manipulable variable in a function g, i.e.,

u = g(d&,,/dt, %, k, 4, F). | | - (10)

Choosing a reference- vector x; whose N elements describe a convenient reference
state, e.g., the process condition at t=0 or those of a stationary solution of the
system, we define instantaneous set points in deviation variable form as X°¢ = x*' —x,.
We can then dynamically obtain values of the output «, under controlled conditions as

' u(=g(E”E9xs’Esa’F)9 : 2 I R (11)

where the functional dependencies involving the variables in (10) are replaced by
error signals E. The error signal vector E is defined as E = %¢ —(x —%,,) and relate
the set point (¥°¢'), the measured process outputs (x), and the model outputs (Xp)-
The E' are the derivatives of the error signal vector E. Thus, (11) is the desired
expression for the controller action and, as may be noted, receives as an input, the

correction terms F at all ¢. This is because F measures the derivative deviations
between the set and the actual trajectory and provides the corrections necessary for
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appropriately orienting the trajectories. In convergent regions the controller outputs
are additionally influenced by the modified model output X, [since the switch 0 takes
a value of unity in (9)] via the error signals E. For a system mathematical model,
the functional form for g in (11) has to be suitably derived so that controller outputs
may be calculated dynamically. Block C in figure 1 denotes the controller design
arrived at in the form of (11). It may be noted that as a first step, in the present
analysis derivatives in the error measurements are employed, although increased
robustness may be achieved by incorporating filters of the Kalman type.

In the subsequent section, for the chaotic systems under study, we use appropriately

derived forms for the controller block and discuss the obtained control performance
via simulations.

3. Results and discussion

3.1 Example 1. The control of a chaotic nonisothermal continuous stirred tank reactor

We shall formulate the control strategy for a Jjacketed continuous stirred tank reactor
(CSTR) in which an irreversible consecutive first-order endo-exothermic reaction A —
B - C takes place. The system has been analysed (Kahlert et al 1981; Bandyopadhyay
et al 1992) and shows a sequence of period doubling bifurcations of a limit cycle to
chaos for realistic parameter values. The dimensionless equations describing this

system consist of mass and energy balances with provision for controlling the system
by regulating the coolant temperature and are given by

dx, /dt =1—x; — Dax, exp[x; /(1 + ex3)] — d,,

dx,/dt = — x, + Dax, exp[xs /(1 + £x;)] ~ DaSx,exp[icxs (1 + ex3)] — ds,

dx3/dt = — x5 + DaBx; exp[x; /(1 + ex5)] — DaBuSx, exp[rx;/(1 + &x3)]
—Bx3 = x,) + Bu, + dy. (12)

Here, x,,x, represent dimensionless concentrations of species A and B, while x;°

denotes the dimensionless temperature. The other system parameters are dimensionless
and relate to: B, the adiabatic temperature rise; Da, the Dimkohler number; S, ratio
of the rate constants for the series reaction; x,_, a reference value for the dimensionless
coolant temperature; a, ratio of heat effects for the series reaction; f, the heat transfer
coefficient; ¢, dimensionless activation energy; and «, ratio of activation energies for
the series reaction. The term u, represents a deviation in the coolant temperature in
the jacket from x,, and may be conveniently chosen as the manipulated control
variable. The terms d,,d,,d; are added to take account of load disturbances which
the process may experience while on stream. ‘ :

To distinguish the process from the mathematical model used in the IMC structure
a modified model version of (12) as discussed earlier is now introduced with the

variables x; replaced by Ry m 1€,
d%, ,/dt=1~2%, —Dag,  exp[%,,/(1+e%,, )]—d,+0F,,
dg,,/dt = ~%, . +Dag, exp[%,,/1+e,,)]
—DaS%, ,exp[K,, /(1+¢%, )] —d3 + 6F,,

e Y R |
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dﬁs,m/dt ==, t DaBzx, . exp [ﬁs_m/(l + aﬁs’m)]
— DaSBazx, , exp [k, /(1 + Xy ,,)]
— B(Ry— 3,) + Brie + d, +0F;. (13)

We shall now obtain the controller design equation for the process under study.
The first step is to algebraically manipulate the modified model equation set (13) with
6 =1 so as to obtain an explicit functional form for u, in terms of the other system
variables and parameters [i.e., in the form of (10)]. On doing so, we get

= (1/B) (% + X3y — BLL =X — dy o+ Fi— % )
+ Bo(— %y — Xg 1 —~x1’m—¢72 _x,,m_as +F,+F,)
+ B(xy, — X3.) — d, —F,}. (14)

Let us now define the following deviation variable % =x; —x,, and the error
signals as E; =X — (x; — %, ,,) with the respective derivatives E;=dE;/dt. As seen
from the definition, the E; signals relate the set points (x5*"), the measured process
outputs (x;) and the model outputs (%, ). Following the IMC methodology (see
Kulkarni et al 1991) we may replace x, ,, with (E; +x,,) and X, with E; in (14) to
yield the final form of the controller equation

w,=(UB){E, + (E3 + X,,) — B[1 — (Ey +x,,) —dy + F — E/]
+ Ba[l —(E; + x,,)— (E; +xis)—32—33+F1 +F,—E, —E}]
+ BL(Es + x5,) — X3,1 —dy — F3}. (15)

Dynamic solutions to the coupled set of differential equations (12) simulating the
process, and the modified model (13) were obtained by using the IMSL gear package.
The outputs from the process and the model, at increments of dimensionless time
At = 0-0001, were used to evaluate the error signals E; and E; by finite differences.
These signals were then passed to the controller block for evaluating the controller
output by (15). Each dynamically evaluated controller output 4, was implemented
on the process and simultaneously updated in the modified nrodel prior to further
time integration. To implement the derivative corrective action F; in (13), the validity
of the criteria (8) (and thus the value for the switch 6) was dynamically evaluated by
solving simultaneously sets of linearized model equations (5) for an orthonormal
frame of reference. _ ‘

The process parameter values for chaotic system operation have been identified as
Da=026, =0, S=05, k=1, B=5777, a=0426, x, =0 and p= 799999 and
adapted from Kahlert et al (1981). The Lyapunov exponents calculated by (7) for the
process operating in this parameter space were characterized as (+,0, —) confirming
the presence of chaos (using the procedure of Shimada & Nagashima 1979).

Figure 2a shows a two-dimensional projection of the dynamics of the chaotic
attractor without load disturbances of any kind introduced. Choosing a dense region
of this attractor a suitable set orbit was identified on which regulatory control of the
system would be the desired goal (figure 2b). For control purposes it was assumed
that the initial difference between the process outputs (x;) and set values (x3*) anywhere
upto 5% could be tolerated before initiating the control action. Further, it was also
ensured that these points (x; and x*) lie in the convergent phase space before initiating
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the control action. The results obtained on simulation, with control implemented are
shown in figure 2c. Clearly, the system dynamics shows that adequate control is
achieved and the dynamically implemented controller outputs are shown in figure 3a.
It is of interest to re-examine the above problem in the presence of load disturbance
that may occur in the process while on stream. The open loop process dynamics for

a simple case when d, =01, d, =d, =0, is seen in figure 2d. We wish to control this

problem with the constraint that the model is unaware of this disturbance (d; = 0-0).
Thus, figure 2e shows the phase-space representation of the controlled process and
figure 3b the u, profile that is required to accomplish the dynamics of the desired
orbit (i.e. figure 2b).

More frequently, the process may be subjected to stochastic load disturbances with
the model being unaware of their presence. We have therefore simulated a situation
where d, is of random character with a Gaussian distribution having a mean of 0-1

and variance of 0-25. In the presence of noise the natural dynamics of the process

(figure 2f) is affected when compared to the corresponding open-loop process without
any disturbance (figure 2a). Once again the calculated controller outputs (figure 3c)
control the process which now follows the desired set dynamics (see figure 2g).
Clearly, the capability to handle constant and stochastic load disturbances indicates
controller robustness for the system.

3.2 Example 2: Control of the Lorenz chaotic attractor

We shall now formulate the control strategy for the seminal example of chaotic flow
that arises from solving the hydrodynamic equations in a truncated form (Lorenz
1963). The nonlinear features of the Lorenz model have been reviewed in Sparrow
(1982) and Guckenheimer & Holmes (1983). The equation set describing the model is

dx,/dt = — 6(x; — x;) — d;,
dxz/dt=—xIX3—(r+ul)x3—X2;d3, »
dx3/dt=x1x2—-bX3+d1. (16)

Here, x, represents the amplitude of convection motion, x, the temperature difference
between ascending and descending currents and x, the distortion of the vertical
temperature profile from linearity. The other dimensionless parameters are o the
Prandtl number, r the normalized Rayleigh number and b a geometry factor. The

. manipulable control variable u, is related to Rayleigh number. As in example 1, the

terms d,,d,,d; have been addmonally added to take into account any load dis-
turbances that the system may experience.
The modified mathematical model equations may now be written as:

d”el,np/dt = 0-(321'", - xz,m) - 22 + Fla
2, fdt= =%, 2, —@+u)%;,—%,, —ds+Fy,
de.m/dt = xl,m‘ﬁz.m o bx&.m + Zil + F3' : (17)

Following the procedure, (17) can be algebraically simplified assuming = 1 to obtain
an explicit expression for u,. Substitution of the error signals and derivatives in this
expression gives a controller law for the system as,

u,=[E, +(E; +x,,) —F /(Ey +x;,)+(Es + Xy )]—r. (18)
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Figure 4. x, vs x, phase plane plots for the Lorenz model — opén loop (a) and
set orbits chosen for control studies ((b,c,d)).

We shall now present some representative results obtained on attempting control
of this system under chaotic conditions. The process parameter values required for
chaotic operation are: o =100, b = 26667 and r = 28-0. Figure 4a shows the phase
plane plot (x, vs x3) of the chaotic attractor. The Lorenz model being highly oriented
(ie., non-equivalent left and right-handed trajectories exist) the choice of the conditions
for initiating control can occur frequently and also give rise to topologically different
set orbits. Among the various different possible configurations some typical set orbits
are shown in figures 4b, ¢ & d. Note that the trajectories at the beginning and
the end have been closed to make the set trajectory into an orbit.

Figure 4b which is similar to a period-1 orbit remains completely in the left hand
quadrant and the corresponding time profiles are shown in figures 5a, b & c for the
variables x,, x,, and x,. For initiating control, conditions similar to those in example
1 were imposed. Figures 5d, ¢ & f show the controlled trajectories in the variables
and figure 5g shows the manipulated variable movement. Clearly the set and process
trajectories are identical and suggest effective chaos control.

Set trajectories in figures 4c & d have contributions from both the left and right
half planes of the Lorenz attractor. The désired time profiles on control in x, corres-
ponding to the two cases are shown in figures 6a and 7a. The profiles in both the
cases show them to be complex multi-peak periodic. The respective controlled profiles
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-3000 . T T — Xy vs t dynamics; (b) controlled
0 10 20 30 40 dynamics; (c) the manipulated variable
t ‘ u, profile for achieving the control.

for each of the desired orbits are presented in figures 6b & 7b with the manipulable
variable profiles in figures 6¢ and 7c. It is clearly evident from these figures that the
controller is able to achieve the set trajectory with remarkable accuracy. However,
it may be noted that the ‘manipulated variable values (i.e. the Rayleigh number) to
be implemented seem to be unconstrained and can assume large values, To avoid
this problem we may choose an alternate manipulable parameter. Thus, choosing b
as b +u, in model (16), the design equation for the controller may be derived as

= LBy + %, (P~ Ep)E, +x,)— By Fy A, +x,)
—b(E; +x,,)% | (19)

The controller movement to achieve the set trajectory (see figure 8a) is shown in
figure 8¢ while figure 8b represents the corresponding controlled profile. Note: that
the calculated values of the manipulable variable to be implemented are now realistic
and vary between reasonable limits. This result suggests the need for a judicious
choice of the parameter used for implementing control using IMC.

As a case study we now test the robustness of the algorithm for the Lorenz model
in the presence of a noisy load disturbance for the controller design in (18). We have
analysed a case study where d, is random in character with a Gaussian distribution

having a mean of 0:01 and variance of 0-25 for all the three set-point orbits. For the
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first case, ie. the set orbit in figure 4a, the individual process outputs x; (figures 5d,
e & f) exactly followed the desired process outputs xi (figures 5a, b & ¢), with the
controller action shown in figure Sh. For the remaining two cases (ie., for the set
orbits in figures 6a and 7a) control was again successful (see figures 9a and 10a, res-
pectively) and indicated excellent disturbance rejection characteristics. It is interesting
to note that the presence of noise considerably alters the magnitudes of manipulable
variables to be implemented (compare figures 6¢ and 9b and 7c and 10b).

_Having shown the possibility of controlling chaos dynamically with the above
studies for examples 1 and 2, we shall now turn our attention to controlling the
autocatalator scheme. Using the general methodology we shall formulate a possible
controller law for the system. However, for the sake of brevity we shall present the
results of a simulation study where less successful control was achieved with a view
to highlight the intricate nature of the control problem.

3.3 Example 3: Control of the autocatalator scheme

The three-variable autocatalator model capable of showing chemical chaos for
reaction in a CSTR (Peng et al 1990, 1991) considers the presence of six reaction steps
in the mechanism of the form |

P—)A, r1 = kopo,
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Figure 10. Control performance in the presence of stochastic load disturbance
for a set orbit in figure 6a. (a) Controlled dynamics; (b) the manipulated variable
u, profile for achieving the control.

P+C—->A+C, ry=kpoc,
A—-B, ry=k,a, |
A+2B-3B,r, =k ab?
BoC, rs=k,b,

C—-D, r¢=kjc,

where r; denotes the individual rate of the corresponding elementary step. The balance'
equations for the above scheme can be written in a compact d1mensxonless form in
three variables (Peng et al 1990, 1991) as

dx, /de = (u+ u)(x + x3) — X, — xy X2,
dx, /de = (x; +x; x5 — x;)/0, ;
dx;/dt = (x; — x3)/d, : ' : - (20
with the dimensionless variables and groups deﬁned as el '
xy = (ko ko) 2a; xy = (ky k)12 x5 =(k, kz/k k’)”2
p=(k./k3)po; K =(koks/k.k2)( k1/ku)1/2§ o =k,/ky; O=k,/ks;
t=k,t. | S 1)

The modified model equations 1ncorporat1ng the local denvatwe deviations F is
then R

dﬁlvm/dt,: (# +’ur)(’c + x"3,m).._ ﬁl,mwxl me m+ GF].’ :
-d»%;,../dr=(fl,mel,.,:ez — %, )/0 +0F3, | :
s/t =35, )/5+6F3, * R (22)

and an expressron for u, usmg the controller design procedure can be derived from
(22) as : :

U= {[E’1 +o(E, —F;)+ (E2 +x,)— F1]/[;c,+ (E3 + xSS)]} —u o (23)
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y Figure 11. Open-loop x, dynamics for the

autocatalator model. -

For a set of process parameter values u=0154, k =650, o =35 x 1073, and
8 =2 x 107 % the system shows chaotic behaviour (Peng et al 1991). Figure 11 shows
the description in time of the process output x, . Figure 12a shows the chosen system
orbit along which we wish to control the system dynamics. With the controller
switched on, the chaotic process was seen to intermittently follow the dynamics of
the set orbit (as seen in figure 12b). Figure 12c shows the implemented values of the
. controller output u,. The deviation from the set-point trajectory arises from the fact
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Figure 12. Control performance for
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0 _ (c) the manipulated variable u, profile

t implemented during control.




e

Dynamic regulatory control of chaotic systems 909

that divergent regions arise frequently in the phase space and the controller action

* cannot achieve the desired dynamics accurately enough. Some of the convergent

regions were narrow to the extent that the stability properties altered during one
step of integration. This difficulty causes errors in implementing the derivative
corrections and distorts the error signals.

4. Concluding remarks

In this study, we have discussed and shown some of the intrinsic features of chaotic
systems, which need to be taken into consideration for controlling their dynamics,
and simulations bringing out these issues have been presented. The method used for
controlling chaos show considerable promise, as exemplified by the results presented
for the chaotic nonisothermal CSTR and the Lorenz models. The simulation study
shown for the autocatalator indicates that the control efficiency depends both on the
intrinsic nature of a nonlinear chaotic system and the stability properties of its
dynamics.
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