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We use the density-matrix renormalization group to study the one-dimensional bosonic Hubbard
model, with and without disorder. We obtain the gaps in all phases, certain correlation functions, and
the superfluid density. A finite-size-scaling analysis enables us to obtain an accurate phase diagram
and the B function at the superfluid—Mott insulator transition and the Kosterlitz-Thouless essential
singularity in the pure case. We also obtain coupling constants used in effective field theories for this
system.

There has been a renaissance in the study of quantutne Mott insulator phase occurs only 4gf is an integer
phase transitions in interacting disordered Bose systems [d]. Thus for integerp we expect Bose glass—superfluid,
recent years. In particular, experiments“bte adsorbed superfluid—Mott insulator, and Mott insulator—Bose glass
in porous media [1] and disordered superconducting filmgransitions but only the first of these transitions for
[2] motivated the study of transitions between superfluidnhonintegerp. In this paper we concentrate on the integer
Bose glass, and (bosonic) Mott insulator phases. Alsg@asep = 1 since this displays all these transitions.
type-ll superconductors with columnar defects may show Our density-matrix renormalization group for model (1)
analogs of these phases [3]. The disordered, bosonigelds many interesting results. Firstin the pure casex
Hubbard model is the simplest model which has thes®), the superfluid phase should exhibit only quasi-long-
three phases, so it has been studied extensively [4—7jange order ini = 1 andT = 0; and the superfluid—Mott
In particular, numerical simulations [5] of this model insulator transition should be of the Kosterlitz-Thouless
have been more successful than those of its fermionitype [4,10]. We confirm this behavior via a direct calcula-
analogs for reasons such as the absence of a Mont®n by computing the gag, (Fig. 1) for different system
Carlo sign problem for bosons. However, in dimensionsizesL and couplingd/. A plot of LG, versusU (Fig. 2)

d = 1, the pure fermionic Hubbard model can be solvedshows that, folt/ < U. = 1.7, curves for differenf. co-
exactly at temperatur@ = 0 by the Bethe ansatz unlike alesce, indicating the power-law nature of #he= 1 su-

its bosonic analog [8]. It is interesting, therefore, toperfluid phase. By using Roomany-Wyld approximants
study thed = 1 disordered, bosonic Hubbard model at[11] we obtain the3 function which shows the Kosterlitz-
T =0 by the best approximate method available forThouless essential singularity (inset of Fig. 2). We also
such purposes, namely, the density-matrix renormalizationbtain the universal jump in the superfluid dengityat the
group [9]. In this paper we present such a study. Perhagsosterlitz-Thouless transition and théIn(L) corrections
this is the most complex model to which the density-

matrix renormalization group has been applied so far. So,

apart from the intrinsic interest of the model, it provides a 0.6
good testing ground for this technique.

Thed = 1 bosonic Hubbard Hamiltonian is 0.5
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where —¢ is the hopping amplitude between nearest- 0.2
neighbor pairs of site§), U the on-site repulsive energy,
a,-T (a;) the boson creation (annihilation) operator at site 0.1
i, andn; = a;rai. The on-site chemical potential; is a
random number distributed uniformly betweer andA, 0 15 2 25
i.e., A = 0 for the pure case. We work in the canonical u

ensemble with a fixed boson densjiyand set the energy g 1. Squares show the gap. vs U in the Mott insulator

scale by choosings = 1. Model (1) has qualitatively phase. The solid line i&(U) = 7.5 exp(—3.22//U — 1.7).
different behaviors forinteger and noninteger p; e.g., Inset:G, vs1/L for U = 1.5 and 3.0.
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FIG 4. LG, vs A showing the coalescence of the curves for

FIG 2. LG, vs U showing the coalescence of the CUIVES gifferent L at the Mott insulator—Bose glass transition.

for different L at the Kosterlitz-Thouless type Mott insulator-
superfluid transition (see text). Inset: data fBr function
(squares) and the fit (solid lingg(U) ~ 0.59(U — 1.68)'7.

We obtain the desired target state of the Hamiltonian for

B>; and use that to construct the reduced block density
to p,(L) in the superfluid phase (Fig. 3) that are consis-matrices forB’ andBj [9,14]. The target state is chosen
tent with the presence of a marginal operator [12]. Nexto be the ground (first-excited) state Bf; if we want the
we identify parameters in an effective field theory for thisground (first-excited) state of model (1). We diagonalize
transition obtained via bosonization [13] and show that thehe block density matrices, retain as basis stat€s
asymptotic behavior of the correlation functl(m a;j)is  eigenvectors (usually¥ = 64, often checked against
consistent with the prediction of this field theory. In the M = 96) corresponding to thel/ largest eigenvalues,
disordered case)( # 0), we use analogs of Fig. 2 to ob- and obtain matrix representatlons of operators (),
tain the Mott insulator—superfluid, Mott insulator—Bosefor the sub- bIocksBL and B in this basis. We now
glass (Fig. 4), and the superfluid—Bose glass (Fig. 5) phaseld two sites taB,; and repeat the above procedure by
boundaries. Our data are consistent with a gapless Boseplacing the sub-blocks bg: ., = B'e and B} ,; =
glass phase. From plots like Figs. 4 and 5, we obtain, foB; e, where e represents the added site. This procedure
the first time, an accurate phase diagram (Fig. 6) of thés repeated until the energy per site converges to the
d = 1 disordered bosonic Hubbard modelat= 1. desired accuracy [15]. For periodip) and twisted §)

Our density-matrix renormalization group, done in theboundary conditions we use the superblock configuration
standard way [9], starts with a superblagl, of 2L sites B. e B} e, whereas we useB, e eB; for open )
which consists of left EZL) and right B7) blocks with  boundary condition [9]. Fo® boundary conditions we
L sites each. B} and B} are not identical ifA # 0.  multiply 7 by ¢/?/2 on the two bonds that connect the left

and right sub-blocksg = 0 and 6 = 7 yields periodic
and antiperiodic ) boundary conditions, respectively.

1 We diagonalizen’M? X n?M?* Hamiltonian matrices at
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FIG 3. The universal jump inp, at the superfluid—Mott A

insulator transition. Top inset: data (squares) for (U) (see
text) and the fitz ~'(U) = 2.5 exp(—3.22//U — 1.68) (solid  FIG 5. L/&,; (see text) vsA showing the coalescence of the
line). Bottom inset;p, vs 1/In (L) for U = 1.5. curves for different. at the Bose glass—superfluid transition.



1.5 for different L crossing at the critical point. Our data
p=T1 (Fig. 2) show that not only do these curves come together
at U. = 1.7, but they coalesce after that; i.e., the ldv-
phase is itself critical [11]. These data can be used with
a phenomenological renormalization group [11] to extract
the B function lim,—;0(U)/a(b) = 9 In(G)/o(U), where

b =1 + 6b is the scale factor. It is convenient to use
the Roomany-Wyld approximants [11]

1+ In(GL/GL/)/In(L/L’)
(GLGL/GLGL)'?

where G} = dG(L)/aU. As L,L' — », BRY(U) —
B(U). At a Kosterlitz-Thouless transition3(U) =

207 — 1.5 ; ; o
FIG 6. The p =1 phase diagram for model (1) showing «(U — Uy~ Our g function [obtained withL = 20

superfiuid (SF), Bose glass (BG), and Mott insulator (M)and L' =22 in Eq. (2)] is consistent with this be-
phases. The phase boundaries have been drawn through thavior (Fig. 2 inset) with U, = 1.68 = 0.01 and

computed points (squares with error bars) to guide the eye. Al = (0.59 + 0.05. We also expect a universal jump
transitions are continuous. in p, across the superfluid—Mott insulator transition.
This behavior (Fig. 3) is not easy to extract numerically

. ) o but follows thus: In the Mott insulator phase we find
each density-matrix renormalization group step, where , (1) ~ exd—Ls'(U)], with (U) ~ &(U). By
is the number of states per site. For bosans «, but  computing p,(L) for U > U, = 1.68, we have ob-

in a practical calculation we must use a truncated basiggined (top inset of Fig. 3} ! ~ exp(U*_jU), whence
Clearly n =2 suffices in the hard-core limiV = ., () — (for U > U, [18]. In the superfluid phase we
ForU > 1.5 we findn = 4; i.e., a truncated occupation- fing (hottom inset of Fig. 3)p,(L) = p,() + C/In L,

number basis with 0, 1, 2, or 3 bosons per site, Work%vhereC depends or/; we extractp,(L = %) from such
well. Our results are hardly modified when we use= 5 g fit The(in L)~! term is consistent with the presence of

W) =

(2)

or 6 [14]. , . a marginal operator [12] in the superfluid phase. We find
We denote the ground (first-excited) state energy of
a chain of lengthL by E§(L) [ES(L)], with bound- [(r) ~ r KW/2 (3)

ary conditiona (= o, p,a,6). The gapG, is obtained )

most accurately [9] a€{ (L) — ES(L). To extractp, for U < U, with K an exponent _that depends an
we use [16] p,(L) = %[ES(L) — EL(L)] or py(L) = (Table 1) as expected for a Kosterlltz-Th_ouIess transition
. PENL) . . . [10]. ForU > U,, I'(r) decays exponentially.
limy—oL—55=; these are equivalent in the thermody-" ; ; _ 1 interacting boson problems like model (1) are
namic limit L — <, but we find that the second EXPres- sten studied [13] via an effective Hamiltonia®l,¢; for
sion converges better. We also compute the Co”elat'oﬂ)ng-wavelength and low-energy properties. For integer
function T.(r) = (W& la) a4, 1) and its second mo- filling (say, p = 1)

ment &, =3, r2I.(r)/ Y, TL(r), where |yg;) is the

ground-state wave function for siZe with open bound- Hoy = 1 [dx(l(ﬂ'fl)z + uKa,[¢2(0)]
ary conditions. 2 K
We have tested our density-matrix renormalization + cod26(x)]),

group forU = o, p = 1/2, andA = 0 when model (1)

L
becomes the exactly solvable, spinkY model [17]. Our  wherell and ¢ are canonically conjugate bosonic fields,
results (withM = 64 and a finalL = 50) agree well with  ;, the phase velocity of sound waves, afdis given

the exact ones:E{/L and Ej, /L are accurate to 8 and by Eq. (3). A renormalization group study [13] &{.s
4 figures, respectively (both must be equal in the limit

L — =); andp,(L) = 3 + O(L™2) [17].

Figure 1 showsG;, for various values ot/ with A =
0. As L —», G, — G» >0 for U> 17, yielding  TABLE I. The field theory coupling constants and K (see
the Mott insulator phase. A gapless superfluid phaseext) forU = 1.5,1.6, andU = U, = 1.68.
appears fol/ = 1.7. The gapG, ~ &;'. If a Kosterlitz-
Thouless transition occurs d/, then [10], for L =
0, &y ~ exp(U+Uc). Our data are consistent with 1:
this (Fig. 1) and yieldU. = 1.7; this estimate can be
improved [11]: A plot of LG, vs U should show curves

U u K = u/mp, K from Eq. (3)

5 0.789 0.459 = 0.003 0.464 = 0.003
. 0.756 0.493 = 0.003 0.482 = 0.005
1.68 0.723 0.525 = 0.004 0.521 = 0.007
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