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We use the density-matrix renormalization group to study the one-dimensional bosonic Hubbard
model, with and without disorder. We obtain the gaps in all phases, certain correlation functions, and
the superfluid density. A finite-size-scaling analysis enables us to obtain an accurate phase diagram
and theb function at the superfluid–Mott insulator transition and the Kosterlitz-Thouless essential
singularity in the pure case. We also obtain coupling constants used in effective field theories for this
system.
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There has been a renaissance in the study of quan
phase transitions in interacting disordered Bose system
recent years. In particular, experiments on4He adsorbed
in porous media [1] and disordered superconducting fil
[2] motivated the study of transitions between superflu
Bose glass, and (bosonic) Mott insulator phases. A
type-II superconductors with columnar defects may sh
analogs of these phases [3]. The disordered, boso
Hubbard model is the simplest model which has the
three phases, so it has been studied extensively [4
In particular, numerical simulations [5] of this mode
have been more successful than those of its fermio
analogs for reasons such as the absence of a M
Carlo sign problem for bosons. However, in dimensi
d ­ 1, the pure fermionic Hubbard model can be solv
exactly at temperatureT ­ 0 by the Bethe ansatz unlike
its bosonic analog [8]. It is interesting, therefore,
study thed ­ 1 disordered, bosonic Hubbard model
T ­ 0 by the best approximate method available f
such purposes, namely, the density-matrix renormaliza
group [9]. In this paper we present such a study. Perh
this is the most complex model to which the densit
matrix renormalization group has been applied so far.
apart from the intrinsic interest of the model, it provides
good testing ground for this technique.

Thed ­ 1 bosonic Hubbard Hamiltonian is
H
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where 2t is the hopping amplitude between neare
neighbor pairs of siteskijl, U the on-site repulsive energy
a

y
i said the boson creation (annihilation) operator at s

i, andn̂i ; a
y
i ai . The on-site chemical potentialmi is a

random number distributed uniformly between2D andD,
i.e., D ­ 0 for the pure case. We work in the canonic
ensemble with a fixed boson densityr and set the energy
scale by choosing2t ­ 1. Model (1) has qualitatively
different behaviors forinteger and nonintegerr; e.g.,
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the Mott insulator phase occurs only ifr is an integer
[4]. Thus for integerr we expect Bose glass–superfluid
superfluid–Mott insulator, and Mott insulator–Bose gla
transitions but only the first of these transitions f
nonintegerr. In this paper we concentrate on the integ
caser ­ 1 since this displays all these transitions.

Our density-matrix renormalization group for model (1
yields many interesting results. First in the pure case (D ­
0), the superfluid phase should exhibit only quasi-lon
range order ind ­ 1 andT ­ 0; and the superfluid–Mott
insulator transition should be of the Kosterlitz-Thoule
type [4,10]. We confirm this behavior via a direct calcul
tion by computing the gapGL (Fig. 1) for different system
sizesL and couplingsU. A plot of LGL versusU (Fig. 2)
shows that, forU , Uc . 1.7, curves for differentL co-
alesce, indicating the power-law nature of thed ­ 1 su-
perfluid phase. By using Roomany-Wyld approximan
[11] we obtain theb function which shows the Kosterlitz-
Thouless essential singularity (inset of Fig. 2). We al
obtain the universal jump in the superfluid densityrs at the
Kosterlitz-Thouless transition and the1ylnsLd corrections

FIG 1. Squares show the gapG` vs U in the Mott insulator
phase. The solid line isGsUd ­ 7.5 exps23.22y

p
U 2 1.7d.

Inset:GL vs 1yL for U ­ 1.5 and 3.0.
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FIG 2. LGL vs U showing the coalescence of the curv
for different L at the Kosterlitz-Thouless type Mott insulato
superfluid transition (see text). Inset: data forb function
(squares) and the fit (solid line)bsUd , 0.59sU 2 1.68d1.5.

to rssLd in the superfluid phase (Fig. 3) that are cons
tent with the presence of a marginal operator [12]. N
we identify parameters in an effective field theory for th
transition obtained via bosonization [13] and show that
asymptotic behavior of the correlation functionkay

i ajl is
consistent with the prediction of this field theory. In th
disordered case (D fi 0), we use analogs of Fig. 2 to ob
tain the Mott insulator–superfluid, Mott insulator–Bo
glass (Fig. 4), and the superfluid–Bose glass (Fig. 5) ph
boundaries. Our data are consistent with a gapless B
glass phase. From plots like Figs. 4 and 5, we obtain,
the first time, an accurate phase diagram (Fig. 6) of
d ­ 1 disordered bosonic Hubbard model atr ­ 1.

Our density-matrix renormalization group, done in t
standard way [9], starts with a superblockB2L of 2L sites
which consists of left (Bl

L) and right (Br
L) blocks with

L sites each. Bl
L and Br

L are not identical ifD fi 0.

FIG 3. The universal jump inrs at the superfluid–Mott
insulator transition. Top inset: data (squares) forz 21sUd (see
text) and the fitz 21sUd ­ 2.5 exps23.22y

p
U 2 1.68d (solid

line). Bottom inset:rs vs 1yln sLd for U ­ 1.5.
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FIG 4. LGL vs D showing the coalescence of the curves f
different L at the Mott insulator–Bose glass transition.

We obtain the desired target state of the Hamiltonian
B2L and use that to construct the reduced block dens
matrices forBl

L andBr
L [9,14]. The target state is chose

to be the ground (first-excited) state ofB2L if we want the
ground (first-excited) state of model (1). We diagonali
the block density matrices, retain as basis statesM
eigenvectors (usuallyM ­ 64, often checked agains
M ­ 96) corresponding to theM largest eigenvalues
and obtain matrix representations of operators (e.g.,H )
for the sub-blocksBl

L and Br
L in this basis. We now

add two sites toB2L and repeat the above procedure b
replacing the sub-blocks byBl

L11 ; Bl
L≤ and Br

L11 ;
Br

L≤, where≤ represents the added site. This procedu
is repeated until the energy per site converges to
desired accuracy [15]. For periodic (p) and twisted (u)
boundary conditions we use the superblock configurat
Bl

L ≤ Br
L≤, whereas we useBl

L ≤ ≤Br
L for open (o)

boundary condition [9]. Foru boundary conditions we
multiply t by eiuy2 on the two bonds that connect the le
and right sub-blocks;u ­ 0 and u ­ p yields periodic
and antiperiodic (a) boundary conditions, respectively
We diagonalizen2M2 3 n2M2 Hamiltonian matrices at

FIG 5. Lyj2L (see text) vsD showing the coalescence of th
curves for differentL at the Bose glass–superfluid transition.
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FIG 6. The r ­ 1 phase diagram for model (1) showin
superfluid (SF), Bose glass (BG), and Mott insulator (M
phases. The phase boundaries have been drawn through
computed points (squares with error bars) to guide the eye.
transitions are continuous.

each density-matrix renormalization group step, wheren
is the number of states per site. For bosonsn ­ `, but
in a practical calculation we must use a truncated ba
Clearly n ­ 2 suffices in the hard-core limitU ­ `.
For U . 1.5 we find n ­ 4; i.e., a truncated occupation
number basis with 0, 1, 2, or 3 bosons per site, wo
well. Our results are hardly modified when we usen ­ 5
or 6 [14].

We denote the ground (first-excited) state energy
a chain of lengthL by Ea

0 sLd [Ea
1 sLd], with bound-

ary conditiona s­ o, p, a, ud. The gapGL is obtained
most accurately [9] asEo

1 sLd 2 Eo
0 sLd. To extractrs

we use [16] rssLd ­
2L
p2 fEa

0 sLd 2 E
p
0 sLdg or rssLd ­

limu!0L
≠2Eu

0 sLd
≠u2 ; these are equivalent in the thermod

namic limit L ! `, but we find that the second expre
sion converges better. We also compute the correla
function GLsrd ­ kco

0Lja
y
i ai1r jc

o
0Ll and its second mo-

ment j
2
2L ;

P
r r2GLsrdy

P
r GLsrd, where jc

o
0Ll is the

ground-state wave function for sizeL with open bound-
ary conditions.

We have tested our density-matrix renormalizati
group forU ­ `, r ­ 1y2, andD ­ 0 when model (1)
becomes the exactly solvable, spin-1

2 XY model [17]. Our
results (withM ­ 64 and a finalL ­ 50) agree well with
the exact ones:Eo

0 yL and E
p
0 yL are accurate to 8 and

4 figures, respectively (both must be equal in the lim
L ! `d; andrssLd ø 1

p 1 OsL22d [17].
Figure 1 showsGL for various values ofU with D ­

0. As L ! `, GL ! G` . 0 for U . 1.7, yielding
the Mott insulator phase. A gapless superfluid pha
appears forU # 1.7. The gapGL , j

21
2L . If a Kosterlitz-

Thouless transition occurs atUc then [10], for L ­
`, j2` , exps a

p
U2Uc

d. Our data are consistent wit
this (Fig. 1) and yieldUc . 1.7; this estimate can be
improved [11]: A plot ofLGL vs U should show curves
)
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for different L crossing at the critical point. Our data
(Fig. 2) show that not only do these curves come togeth
at Uc . 1.7, but they coalesce after that; i.e., the low-U
phase is itself critical [11]. These data can be used w
a phenomenological renormalization group [11] to extra
theb function limb!1≠sUdy≠sbd ­ ≠ lnsGdy≠sUd, where
b ­ 1 1 db is the scale factor. It is convenient to us
the Roomany-Wyld approximants [11]

bRW
LL0 sUd ­

1 1 lnsGLyGL0 dylnsLyL0d
sG0

LG0
L0 yGLGL0 d1y2

, (2)

where G0
L ; ≠GsLdy≠U. As L, L0 ! `, b

RW
LL0 sUd !

bsUd. At a Kosterlitz-Thouless transitionbsUd ø
2
a sU 2 Ucd1.5. Our b function [obtained withL ­ 20
and L0 ­ 22 in Eq. (2)] is consistent with this be-
havior (Fig. 2 inset) with Uc ­ 1.68 6 0.01 and
a ­ 0.59 6 0.05. We also expect a universal jump
in rs across the superfluid–Mott insulator transition
This behavior (Fig. 3) is not easy to extract numerical
but follows thus: In the Mott insulator phase we fin
rssLd , expf2Lz 21sUdg, with z sUd , j2LsUd. By
computing rssLd for U . Uc ­ 1.68, we have ob-
tained (top inset of Fig. 3)z 21 , exps 2a

p
U2Uc

d, whence
rss`d ­ 0 for U . Uc [18]. In the superfluid phase we
find (bottom inset of Fig. 3)rssLd ø rss`d 1 Cyln L,
whereC depends onU; we extractrssL ­ `d from such
a fit. Thesln Ld21 term is consistent with the presence o
a marginal operator [12] in the superfluid phase. We fi

Gsrd , r2KsUdy2 (3)

for U , Uc with K an exponent that depends onU
(Table I) as expected for a Kosterlitz-Thouless transiti
[10]. For U . Uc, Gsrd decays exponentially.

In d ­ 1 interacting boson problems like model (1) ar
often studied [13] via an effective HamiltonianHeff for
long-wavelength and low-energy properties. For integ
filling (say, r ­ 1)

Heff ­
1

2p

Z
dx

µ
u
K

spPd2 1 uK≠xff2sxdg

1 cosf2fsxdg
∂

,

whereP andf are canonically conjugate bosonic fields
u the phase velocity of sound waves, andK is given
by Eq. (3). A renormalization group study [13] ofHeff

TABLE I. The field theory coupling constantsu and K (see
text) for U ­ 1.5, 1.6, andU ­ Uc ­ 1.68.

U u K ­ uyprs K from Eq. (3)

1.5 0.789 0.459 6 0.003 0.464 6 0.003
1.6 0.756 0.493 6 0.003 0.482 6 0.005
1.68 0.723 0.525 6 0.004 0.521 6 0.007



y

]

on

on

ite

id–

e

u
a
e

he
at
ow
s
b

nd
rt
n
it

is

,

.

in,

S.

i,

atis,
M.

V.
.
nd

d

.

-
ic,
d

n,

se-

. A

o

ry

s

,
sion
-

rs
iza-
e

predicts a superfluid–Mott insulator transition atKsUcd ­
1y2. Our density-matrix renormalization group stud
allows us to computeu andK as functions ofU in model
(1) (Table I) via the conformal-invariance result [19
E

p
0 sLd ­ LE0sL ­ `d 2

p

6
uc
L 1 · · · , and rs ­ uypK ,

where the central chargec ­ 1. Table I indicates that
theK ’s determined fromrs (column 3) andGsrd (column
4) agree more or less given our error bars [20].

In the disordered case, for smallD (# 0.4), the Mott
insulator-superfluid transition survives, but with aUc that
increases withD. This is obtained by acareful finite-
size scaling analysis ofGL andrssLd. For larger values
of D, we obtain the Mott insulator–Bose glass transiti
by studying theL and D dependence ofGL (Fig. 4, for
U ­ 3.0). These data are consistent with a transiti
to a gapless Bose glass phase: Plots ofLGL vs D for
different values ofL come together at a pointDc (.1.1
for U ­ 3.0) and coalesce after that. However, in sp
of averaging (over10 25 realizations ofmi), these data
are not good enough to obtain theb function and critical
exponents at this transition. We obtain the superflu
Bose glass boundary by studying theL andD dependence
of j2L (Fig. 5, for U ­ 1.5). The coalescence of thes
curves belowDc shows thatGsrd decays exponentially in
the Bose glass phase but algebraically in the superfl
phase. Data extracted from plots like Figs. 4 and 5 le
to our phase diagram (Fig. 6) for model (1) at the integ
filling r ­ 1. Some workers [4] have suggested that t
Bose glass phase might always separate the Mott insul
and superfluid phases. Our phase diagram (Fig. 6) sh
that if this is the case, then the region of Bose gla
separating superfluid and Mott insulator phases must
very narrow indeed.
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