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Magnetic hysteresis in two model spin systems 

Madan Rao,* H. R. Krishnamurthy, and Rahul Pandit 
Department of Physics, Indian Institute of Science, Bangalore 560012, India 

A systematic study of hysteresis in model continuum and lattice spin systems is undertaken by 
constructing a statistical-mechanical theory wherein spatial fluctuations of the order parameter are 
incorporated. The theory is used to study the shapes and areas of the hysteresis loops as functions 
of the amplitude (Ho) and frequency (a) of the magnetic field. The response of the spin systems to a 
pulsed magnetic field is also studied. The continuum model that we study is a three-dimensional 
(CP2)’ model with 0 (M symmetry in the large4 limit. The dynamics of this model are specified by 
a Langevin equation. We find that the area A of the hysteresis loop scales as A - H:66f20,33 for low 
values of the amplitude and frequency of the magnetic field. The hysteretic response of a two- 
dimensional, nearest-neighbor, ferromagnetic Ising model is studied by a Monte Carlo simulation 
on 1OX 10, 20x20, and 50X 50 lattices. The framework that we develop is compared with other 
theories of hysteresis. The relevance of these results to hysteresis in real magnets is discussed. 

I. INTRODUCTION 

Nonequilibrium effects associated with first-order 
phase transitions have been the subject of a fair amount 
of experimental and theoretical study. Examples include 
the growth of domains following a quench from a one- 
phase region to a q-phase region ( q  ?2)-both early 
stages’ (nucleation and spinodal decomposition) and late 
stages’ of growth. However, hysteresis, the most com- 
monly observed nonequilibrium phenomenon at a first- 
order phase transition, has not received as much atten- 
tion. In this paper, we study hysteresis in a variety of 
spin systems (both continuous and lattice systems). 

There is both a formal and an experimental motivation 
for our study. We discuss both of these below before 
presenting the principal results of our study. 

Consider first the formal motivation. Figure 1 shows a 
schematic phase diagram of a ferromagnet in the magnet- 
ic field H and temperature T plane. With T fixed and 
below T,, let us start with a magnetic field +Ho and cy- 
cle the field to - H ,  and back across the first-order 
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FIG. 1. Schematic phase diagram of a ferromagnet in the H- 
T plane. The magnetic field is changed from + H ,  to -Ho 
across the H =0, T < T, first-order phase boundary. 

boundary H =0, T < T, .  A plot of the magnetization M 
(or magnetic induction B )  versus the field H yields the fa- 
miliar hysteresis loop (Fig. 2). We seek the response of a 
spin system (below its ordering temperature) to a time- 
varying magnetic field given by H = H ,  sin(Rt1, where 
H ,  is the amplitude and R the frequency. In the limit 
Ct-+O, we expect the magnetization M to exhibit a 
discontinuity at H=O given by M=M,,sgn(H)  [Fig. 
3(a)], where Me, is the equilibrium magnetization as 
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FIG. 2 .  Hysteresis loop of a single crystal of silicon iron. 
The B scale is only approximate. 
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FIG. 3. (a) When R=O, the magnetization jumps from its 
equilibrium value of M,,(H,,) to Meq( - H o ) ,  (b) when a =  00, 

the magnetization does not respond to the magnetic field and 
remains at  its initial value, Mln. 

H-+O+. In the limit R-+co, the spin system cannot 
respond to the oscillating field, so we expect M ( t ) = M , ,  
[Fig. 3(b)] for all times. Mi, is the initial value of the 
magnetization of the spin system. The question we seek 
to answer is the following: How does the discontinuity in 
M at H =O as 0-0  evolve into M ( t ) = M i ,  as R-tco 
(Fig. 3)? As fl increases slightly away from zero, the 
discontinuous jump opens out into a loop enclosing a 
nonzero area. Further, as 0 decreases slightly away from 
infinity, the M ( t ) = M , ,  line opens out into an ellipse. 
Does the area of the loop scale as a function of H ,  and fl 
for small and large R? We show that the answer to these 
questions require a systematic study of the dependence of 
the shape of the hysteresis loop on the frequency R and 
the amplitude H ,  of the magnetic field. 

We therefore undertake such an investigation of hys- 
teresis in a variety of model spin systems. This paper 
contains a detailed analysis of hysteresis in the N- 
component (a2 )’ model having O ( N )  symmetry in three 
dimensions. We study this model in the N +  rn limit. 
The dynamics of the order parameter of this model are 
given by a Langevin equation. We also study hysteresis 
in a two-dimensional Ising ferromagnet with nearest- 
neighbor interactions. We perform a Monte Carlo simu- 
lation using the Metropolis algorithm for flipping spins. 

Consider next the experimental motivation: Most ex- 
perimental studies of hysteresis in magnets concentrate 
on the dependence of hysteresis loops on anisotropies, im- 
purities, and magnetoelastic couplings, principally with a 
view to technological applications. However, there have 
been quite a few studies of the amplitude and frequency 
dependence of hysteresis some dating as far back 
as the end of the past centuryn5-’ We summarize the 
findings of these studies below. 

There has been a lot of work on the dependence of the 
hysteresis loop on the amplitude of the magnetic field. 
For small fields, the loop does not saturate and appears as 
an ellipse with sharp tips inclined at an angle to the H 
axis. An increase in the amplitude of the field H ,  makes 
the loop larger and increases its angle of inclination. 
With a further increase in the field amplitude, the curva- 
ture at  the tip changes sign showing the beginnings of 
saturation. For fields greater than or equal to the satura- 

tion field (which is material and frequency dependent), 
the loop saturates. This sequence of events is shown in 
Fig. 4 for a Permalloy magnet. 

The area of the hysteresis loop is a measure of the ener- 
gy dissipated into the system per cycle and is 

1 
47: 

WH = $BdH = - $ HdM 

W,  is expressed in erg/cm3 per cycle when M and H are 
in G and Oe, respectively. In Fig. 5 the hysteresis losses 
are plotted against the maximum induction B,,, for 
several specimens. For low values of B,, WH = BA (see 
Sec. IV). For values of B,, ranging from 500 to 15 000 G 
in iron, the area of the hysteresis loop is given quite accu- 
rately by the Steinmetz law7’5’3 

W, 2 B k 6  (1) 

represented by the dashed line in Fig. 5 .  I t  is seen that a 
wide variety of soft magnets satisfy the Steinmetz law. In  
some materials, the exponent of B ,  increases to 1.7 and 
then to 2 as the value of B ,  increases.j 

In contrast to the work done on the amplitude depen- 
dence of hysteresis loops, there has not been a systematic 
study of the frequency dependence of hysteresis loops. In 
fact, there exists no extensive experimental survey of the 
nature of hysteresis Imps as a function of both the ampli- 
tude and frequency of the applied field. However, careful 
studies of the frequency dependence of hysteresis loops in 
ferrites have been made.4 In the early works of Ewing 
and c o - ~ o r k e r s , ~ , ~  there are discussions of the frequency 
dependence of hysteresis loops in soft iron. These studies 
suggest that the frequency of the magnetic field affects 
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FIG. 4. Family of hysteresis loops for various field strengths 
in 4-79 Permalloy. The inner loops, which do not show signs of 
saturation are called minor loops (after Bozorth, 1956, Ref. 3). 
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FIG. 5 .  The energy dissipated per cycle as a function of the 
maximum induction for several magnets. For small inductions, 
the energy dissipation goes as l?: (Rayleigh law) as shown by 
the dotted line. For larger values of B , ,  the Steinmetz law 
holds for a wide variety of soft magnets (after Bozorth, 1956, 
Ref. 3) .  

FIG. 6. Hysteresis loops obtained on a magnetic-curve tracer 
for soft iron bars for various frequencies of the applied field: (a) 
cycle performed slowly, (b) period of the cycle = 3  sec, (c) 
period of the cycle =0.43 sec (after Ewing and Klassen, 1893, 
Ref. 5 ) .  

the hysteresis loops only for low fields. At high fields no 
effect of the frequency was noticed. Figure 6 shows the 
hysteresis loops of a soft iron bar when (a) the cycle was 
performed very slowly, (b) the period was 3 sec, and (cj 
the period was 0.43 sec. In these experiments the ampli- 
tude of the field was held fixed. It was also found that the 
area of the curve increased at first and finally decreased 
as the frequency was increased. 

As mentioned before, there have been fairly extensive 
studies of the frequency dependence of hysteresis loops in 
f e r r i t e ~ . ~  It is found that ferrites with a high initial per- 
meability (po > 400 ) have frequency-dependent magneti- 
zation curves for frequencies below the ferromagnetic- 
resonance (FMR) frequency. Figure 7 shows data for a 
manganese ferrous ferrite (p0=860, F M R  frequency = 5 
MHzj. 

The distortion of a core material is defined as the ratio 
of the amplitudes of the third harmonic V ,  and the fun- 
damental V ,  of the secondary voltage of an open trans- 
former completely filled with this core material, when a 
sinusoidally varying voltage is applied across the primary 

The distortion measures roughly the deviation of 
the hysteresis loop from ellipticity. Figure 8 gives, for 
the manganese ferrous ferrite of Fig. 7 ,  the results of the 
distortion measurements at  four frequencies. It is seen 
that this quantity depends very much on frequency, being 
almost absent at 700 kHz. Thus, the shape of the hys- 
teresis loop for this ferrite must likewise change with fre- 
quency: at low frequencies it is the well-known loop with 
sharp tips, whereas at high frequencies B is a linear func- 
tion of H ,  but phase shifted, giving rise to an elliptical 

Insulating magnets have a different frequency response 
from that of metallic magnets since there are eddy- 
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FIG. 7.  Magnetization curves of a manganese-ferrous ferrite 
with a spinel structure (43.5 mol '70 MnO balance Fe203+FeO) 
(after Smit and Wijn, 1966, Ref. 4). 
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FIG. 8. The distortion R = V 3  / V ,  vs the maximum value of 
the induction B,  caused by a sinusoidally varying field strength 
in a core of the ferrite of Fig. 7 (after Smit and Wijn, 1966, Ref. 
4). 

current losses in the latter; indeed eddy-current losses are 
separated from hysteretic losses by plotting the energy 
dissipation per second as a function of the frequency of 
the field. Hysteretic losses per cycle are assumed to be 
frequency independent (hence an extrapolation of the en- 
ergy dissipation curve to zero frequency gives the hys- 
teretic loss); however, eddy-current losses are proportion- 
al to w for low frequencies and wl'* for high frequencies.* 
One of the important predictions of our theory is that 
hysteretic losses are not frequency independent; this pre- 
diction is clearly of some experimental significance. 

So far we have looked at  the response of magnets to an  
oscillating field. We present some experimental data on 
the response of ferrites to a (rectangular) pulsed magnetic 
field. 

The switching time T is defined as the time taken for a 
half-reversal of the magnetization. Figure 9 shows the 
switching time as a function of the amplitude of the ap- 
plied pulse. If the reversal takes place predominantly as 
a result of irreversible domain-wall displacements, one 
obtains the following empirical r e l a t i ~ n : ~  

(Ho-Hf)T'S , (2) 

where Hr and s (in msec Oe) are constants for a given fer- 
rite. The threshold strength Hf is usually slightly smaller 
than the coercive field of the ferrite. The rise in the curve 
of Fig. 9 for values of H ,  <Hf is attributed to the dom- 
inant mechanism for magnetization reversal being fast 
domain-rotation modes rather than irreversible domain- 
wall m ~ t i o n . ~  

We present our principal results based on studies of the 
three-dimensional, 0 ( N -  00 ) ( @ 2 ) 2  model and the two- 
dimensional Ising model. We study the response of the 
( @ 2 ) 2  model to a periodic magnetic field given by 
Hos in (n t ) ,  where H o  and are the amplitude and fre- 
quency of the magnetic field. The Ising model responds 
to a magnetic field which evolves periodically in a step- 
like linear fashion (Fig. 26). We shall now summarize our 
results for the (az )' model. 

shape of the (i) Evolution of the asymptotic ( t  -+. to 
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FIG. 9. The reciprocal of the decay time 7 as a function of 
the amplitude H o  (after Smit and Wijn, 1966, Ref. 4). 

hysteresis loop for fixed amplitude H ,  and increasing fre- 
quency n [Figs. 10(a)-lO(e)]. As a function of fl and 
fixed H,, the asymptotic M-H curve changes from the 
standard spindle-shaped hysteresis loop with saturation 
(type 1) to a roughly elliptical loop, rounded at the tips, 
where the major axis is inclined with respect to the H 
axis (type 2). A subsequent increase in R rotates the axis 
of this ellipse until it is parallel to the H axis (type 3). As 
R is increased further, the M-H curve forms an ellipse in 
the upper half of the M-H plane, which does not close but 
drifts slowly toward the H axis (type 4). For very large 
R, there is no drift-the loop is an ellipse in the upper 
half-plane (type 5). Finally as R- 03, the area of the el- 
lipse shrinks to zero and the ellipse collapses onto the 
straight line M = +Me,  (where Me, is the equilibrium 
magnetization when H+O+ 1. 

(ii) Asymptotic shape of the hysteresis loop in the en- 
tire H,-R plane (Fig. 11). When is held fixed and H ,  
decreased, the shape of the hysteresis loop undergoes the 
same changes as in (i). We can thus divide the entire 
H,-R plane into five regions corresponding to the five 
different types of hysteresis loops shown in Fig. 10. The 
boundaries between these regions are roughly given by 
power laws (see Sec. I1 F). 

(iii) Scaling of the area of the hysteresis loop as a func- 
tion of H,, for low H ,  (Fig. 16). Consider only the loops 
of types 1,  2, and 3. For low values of H ,  (to be made 
precise later) and fixed R, the area of the hysteresis loop 
goes as A 0: H :  with a =O.  66. This power law is in quali- 
tative agreement with the Steinmetz law where a = 1.6. 
The exponent a appears to be independent of frequency 
and temperature (we have checked this for two tempera- 
tures). 

(iv) Scaling of the area as a function of both H ,  and R 



(Fig. 18). For loops of types 1, 2, and 3 and for low For loops of type 5 ,  a simple analytic treatment yields the 
values of H ,  and R, the area of the hysteresis loop exhib- elliptical loop of Fig. 10(e) and the area scales as 
its the following simple scaling behavior: A cx H $ @ ,  A - H i R - ’  as R - t  CCI with H ,  fixed. 
where a=O.66i0.05 and fi=0.33$.0.03. The exponents (vi) Distortion of the hysteresis loop as a function of 
a and @ appear to be independent of temperature. H ,  for various R (Fig. 14). We find, in agreement with 

(v) Scaling of the area of the loop in the limit R - t  co. experiments, that f i i ( w ) ,  the Fourier transform of the 
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FIG. 10. Typical examples of the five qualitatively distinct hysteresis loops obtained in the large-N approximation. H o  is held 
fixed at 10. R has the following values: (a) R=0.01, (b) fL=0.05, (c) R=O. 1 ,  (d)  Q =  1.2,  and (e) Q =  10 ( r  = - 10, u = 1).  
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FIG. 11. The stability diagram in the H-f2  plane showing re- 
gions 1-5 in which hysteresis loops of types 1-5 (see Fig. 101, 
respectively, are obtained. Approximate equations for the 
boundaries between these regions are given in the text. Lines 
are drawn to guide the eye through calculated points on these 
boundaries: squares denote the boundary between regions 4 and 
5 ,  circles denote the boundary between regions 3 and 4, dia- 
monds denote the boundary between regions 2 and 3, and trian- 
gles denote the boundary between regions 1 and 2. r is again 
held at - 10. 

magnetization M (  t ) ,  has only the fundamental and odd 
harmonics (Fig. 13) in regions 1, 2, and 3 of the H,-R 
plane (Fig. 11). The ratio R of the third harmonic 
Iii2C3R)l to the fundamental I@(fl)i for fixed R is called 
the distortion. The distortion increases as a function of 
H ,  and then saturates for large H , .  An increase in fl 
produces a lower distortion. The qualitative behavior 
seen here is reproduced in experiments (see Fig. 8). 

(vii) Mean-field approximation. In a mean-field ap- 
proximation our model yields standard hysteresis loops 
only when H ,  is greater than the spinodal field. The 
mean-field hysteresis loop (for H > H , ,  1 shows a nontrivi- 
al frequency dependence; for H < H,, no hysteresis loop 
is obtained. 

(viii) Response to pulsed magnetic fields. The response 
of the magnetization to a pulsed magnetic field shows the 
existence of three time scales associated with three dis- 
tinct dynamical processes. These time scales have a 
power-law dependence on the magnitude of the pulsed 
field for small fields. We show that these time scales are 
related to the boundaries separating the regions of quali- 
tatively distinct hysteretic behavior. 

Our data for the Monte Carlo simulation of the hys- 
teretic response of the two-dimensional Ising model are 
not as extensive as those of the N-component (a2)’ mod- 
el. With our computing facilities, a detailed quantitative 
study of hysteresis in Ising systems is not feasible. Never- 
theless we obtain the following qualitative results. 

( i )  Variation with the frequency of the field. Keeping 
the amplitude of the field, the temperature, and the size 
of the lattice fixed, an increase in the frequency of the 
field changes the shape of the hysteresis loop from types 
1-2--+3-+4+5 (the classification of the loops is the 

same as above). We find in loops of type 1 that the coer- 
cive field (and hence the area) increases with increasing 
frequency. 

(ii) Variation with the amplitude of the field. Keeping 
the frequency of the magnetic field, the temperature, and 
the size of the lattice fixed, an increase in the amplitude 
of the field changes the shape of the hysteresis loops from 
types 5-4-+3-+2-+1. The type 1 loops are more 
squarish than those obtained in the (CP21* model. The 
coercive fields are of the order of the exchange coupling J 
for the frequency and amplitude ranges that we consider 

(iii) Variation with temperature. In loops of type 1, the 
coercive field (and hence the area) decreases with increas- 
ing temperature. For T >  T,, the hysteresis loop 
disappears-the magnetization simply follows the field. 
Keeping the amplitude and frequency of the field and the 
lattice size fixed, a decrease in temperature changes the 
loops from types 1-2-+3-+4-+5. 

(iv) Variation with lattice size. In loops of type 1, an 
increase in the lattice size decreases the coercivity (this 
size dependence of the coercivity is very weak). The rem- 
nant magnetization increases with increasing lattice size. 
Keeping the temperature, the amplitude, and the fre- 
quency of the field fixed, an increase in the lattice size 
changes the loops from types 5+4+3--+2--+ 1. 

The remaining part of this paper is organized as fol- 
lows: In Sec. I1 we present the calculations for the 0 ( N )  
symmetric ( C P 2 ) 2  model. In  Sec. I11 we describe our 
Monte Carlo simulations of the Ising model in two di- 
mensions. In Sec. IV we compare our study with earlier, 
phenomenological theories of hysteresis. In  Sec. V we ex- 
amine the experimental relevance of our study. 

( 0 . 2J  I H ,  I W). 

11. HYSTERESIS IN THE 0 (A’)-SYMMETRIC 
( O2 )* THEORY 

We begin our study of hysteresis by investigating the 
response of an N-component (a2)* model with O ( N )  
symmetry in three dimensions to an external, periodic 
magnetic field. The order parameter, namely the magne- 
tization, is not conserved and its evolution is described by 
model- A (nonconserved order parameter) dynamics. Our 
analysis is valid to first order in a 1/N expansion-it is 
thus exact in the N = 03 limit. 

In Sec. I1 A we describe our model. In Sec. I1 B we use 
it to study hysteresis loops in the N = co limit. Section 
I I E  contains a similar study using a mean-field theory. 
Section I1 F is a study of the response of this model to a 
pulsed magnetic field. 

A. Description of the model 

The order parameter CP obeys the following Langevin 
equation: 

(3) 

where va is a Gaussian white noise: 

( v , ( x , t ) ) = O  1 (4) 



(~],(~,t)~]~(~~,t'))=2r~5,ps(~-~~)6(t - ? ' I  , ( 5 )  

and PF is the free-energy functional 

(6) 

Since Q, is an N-component vector, @,@, (sum over re- 
peated indices) scales as N. The N dependence of the 
terms linear and quartic in a, thus ensures that the free 
energy scales as N. The coefficient r = T - TYF, where T 
is the temperature and T,"" is the mean-field critical tem- 
perature. In all our subsequent analysis we take J to be 
equal to 1. The magnetic field, constant and uniform, 
points along the a = l  direction in spin space, i.e., 

A sufficient condition for the attainment of equilibrium 
is r=rl.  The stochastic differential equation (3) is 
equivalent to an infinite hierarchy of differential equa- 
tions for the cumulants of @a. In the N = Q) limit, this 
infinite hierarchy of differential equations is truncated 
leading to the following coupled integrodifferential equa- 
t i o n ~ : ~ '  lo 

Ha =Ha,,  1. 

(7a) 

and 

M ( t )  is the magnetization and is given by ( @,(q, t )  ) 
while C,(q,  t )  is the transverse correlation function 
( @Jq, r I@,( - q, f ) ) with a# 1. Higher-order (order 
> 2) cumulants of the order-parameter distribution go to 
zero as N + UJ . The longitudinal correlation function 
(QI(q,r)Ql( -q,t)  } is dominated by the transverse corre- 
lation function by a factor of 1 / N .  It can be easily shown 
(see the Appendix) that if the initial magnetization is 
homogeneous then the dynamical equations (7a) - (7d) 
maintain the homogeneity of the magnetization. Since 
we are interested in the magnetic response of the spin sys- 
tem in its ferromagnetic phase, the initial conditions re- 
quired to solve the above dynamical equations are the 
values of the magnetization and the transverse correla- 
tion function in equilibrium at a temperature 
r < rc = - u /2p2 and magnetic field H a  +. (O+ )ti,, The 
equilibrium magnetization is 

while ( @Jq) } =O, for a# 1. The transverse correlation 
function 

C,(q)_(@,(q)@,( -q) )= l /q '  for aZ1 . (9 )  

The transverse correlation function diverges at q = O  be- 
cause of low-energy spin-wave excitations. The longitu- 
dinal correlation function" 

C,, ( q )  = ( @l(q)@,( - q) ) = 1 / q  tan- ' ( q  / 2 b )  , 
where b2=H,/2M, also diverges at q =O. 

These are the only nonzero cumulants in the N = UJ 

theory. The off-diagonal components of the two-point 
correlation function 

Cu8(q)r(@,(q)@& - q ) >  

are zero by rotational invariance about the a = l  axis. 
Higher-order cumulants are smaller by factors of N - '  
and therefore can be ignored when N = cc) . 

The equilibrium quantities displayed here will be used 
as initial data for the dynamical equations (7). 

Equations 7(a)- 7(d) tell us that the magnetic field H ( t  1 
drives the a=  1 component of ( @Jq, t )  ) (the magnetiza- 
tion). (@, (q , t ) )  is coupled to other components of 
( @Jq, t )  ) through the transverse correlation function, 
i.e., it dissipates into the transverse modes. When 
M ( t ) =0, C ,  is a maximum and vice versa. When H o  =0, 
the asymptotic solutions of the above equations reduce to 
Eqs. (8) and (9). As t -+w (stationary solutions), the 
magnetization and correlation function attain their equi- 
librium values. In the above equations we have redefined 
time to incorporate the r term. We measure time in 
units of (2r )- '  (the spin-lattice relaxation time, typically 
of the order of lo-' sec). 

B. Results for the N = co limit 

Equations (7) are a set of nonlinear integrodifferential 
equations. These equations cannot be solved analytically 
for all H o  and Q. Therefore, we solve these equations 
numerically- we use 20- or 24-point Gauss quadrature 
routines for evaluating the integrals, and a finite- 
difference Euler and an adaptive-size Runge-Kutta 
scheme to solve the differential equations. At high fre- 
quencies, the time step for the differential equation 
should be small. Such small time steps make the CPU 
time required for solving the differential equations up to a 
time t very large. We thus use the Gear method,I2 espe- 
cially suited for tackling such stiff differential equations, 
for solving the differential equations (7) at high frequen- 
cies a. These equations are solved to obtain M as a func- 
tion of t .  We can thus plot M ( t )  versus H ( t )  for various 
r, u,  H,, and R and study the evolution of the shapes of 
hysteresis loops as these parameters are varied. 

The numerical solution of Eqs. (7) gives the time evolu- 
tion of the magnetization for various values of the param- 
eters R, Ho, r, and u.  The magnetization settles onto a 
periodic orbit only after a time T~ larger than the time 
taken for all the transients to die down; rt depends on the 
frequency and amplitude of the magnetic field-it in- 
creases as R increases and decreases as H ,  increases. 
This is true for all R and H o  except those that lie in re- 
gion 5 of Fig. 11. All our results are for this asymptotic 
loop. 



I .  Variation of the shupe o f the  loop with frequency has a value greater than (less than) 0.01, where the ratio 

In  the Introduction we discussed the behavior of the 
hysteresis loop when i l = O  and 03. Here we show how 
the shape of the hysteresis loop evolves from its i l = O  to 
its il= 03 shape for our ( Q2 l2  model. 

For fixed H ,  and varying il, the hysteresis loops have 
five qualitatively different asymptotic shapes [Figs. 
10(a)- 10(e)], which interpolate naturally between the 
il-0 and il- 00 behaviors discussed above. If we fix 
H , ,  then, at  low il, we obtain the commonly observed 
squarish loop of Fig. 10(a) (type 11, which shows M sa- 
turating at  high f i e l d ~ . ' ~  As il increases, this loop does 
not show a saturation of M and is rounded at  its corners 
[Fig. 10(b), type 21. A further increase in il makes this 
loop turn until the semimajor axis is M=O [Fig. lO(c), 
type 31. At even higher values of R, the loop lies in the 
upper part of the M-H plane since we use the initial con- 
dition M(t=O)=+M,,;  this loop does not close but 
drifts downwards very slowly [Fig. 10(d), type 41. As far 
as we can tell, the loops do not converge geometrically 
onto an asymptotic loop that is closed. At very large 
values of SZ, this drift ceases to be visible on the scale of 
Fig. 10(e) (type 5); the loop becomes more and more ellip- 
tical and narrower as il increases and, as SZ-m, the 
loop collapses onto the straight line M ( t ) =  + M e ,  as ex- 
pected. 

2. Stability diagrum 

We now keep the frequency R constant and analyze 
the change in the shapes of the hysteresis loops as a func- 
tion of H,. We start with a large enough value of H ,  to 
saturate the magnetization. The hysteresis loop obtained 
is of type 1. For a lower value of H ,  the loop does not 
display saturation-the corresponding hysteresis loop is 
of type 2. A further decrease in H ,  rotates the major axis 
of the roughly elliptical loop towards the H axis (type 3). 
As H ,  decreases, the loop changes to a type-4 and then to 
a type-5 hysteresis loop. 

We therefore see that the frequency ranges in which 
these five shapes obtain depend on H,: in the H,-SZ plane 
we plot a stability diagram (Fig. 11) which shows the re- 
gions 1-5 where these five shapes are obtained asymptot- 
ically. 

The boundaries separating the different regions of Fig. 
11 should not be thought of as sharp boundaries; the 
changes in the shapes of the loops occur gradually. We 
have chosen the following criteria to determine the boun- 
daries between the five regions given above: (a) Regions 1 
and 2. As we traverse the loop in the first quadrant of the 
M-H plane, d 2 M / d H Z  changes sign (does not change 
sign) if the point ( n , H , )  lies in region 1 (region 2) of Fig. 
11. (b) Regions 2 and 3. In region 2 (region 31, M does 
not change sign (changes sign) as H ( t )  passes through its 
maximum value H,. (c) Regions 3 and 4. In region 3 (re- 
gion 4), the lower value of M at H =O is negative (posi- 
tive), after the field H has gone through 100 cycles. (d) 
Regions 4 and 5. In region 4 (region 5), the ratio 

is evaluatedat H = O  and T is the time'required for 100 
cycles of the field H.  The boundaries between the regions 
obey approximate power laws with exponents that de- 
pend on the range of H,. The boundary between regions 
1 and 2 is given by i l=Hg .95  for lOlH, I 100. The 
boundary between regions 2 and 3 is R=Hh.3s for 
1 0 5  H ,  I 100 and R=HA.5 for 0.1 I H ,  5 10. Regions 3 
and 4 are divided by the boundary whose equation is 
il=H;.'* for 0.1 I H ,  I 100. The region 4-region 5 
boundary is given by i l = H g . 9 7  for 1 I H ,  5 100 and 
R=H;.l3 for 0.1 I H ,  < 1. 

To  compare our results with those obtained experimen- 
tally for real magnets, we must specify the scales of H ,  
and t. The scale of H ,  can be set by the molecular field, 
which is typically lo7 Oe. The scale o f t  is set by ( 2 r ) - ' ,  
which is related to a microscopic relaxation time such as 
the spin-lattice relaxation time. As we discuss in Sec. V, 
the simplest estimate for 2 r  can be obtained from the 
width of a typical ferromagnetic-resonance line; this 
yields 2r= 10' Hz.  Thus, the loops of region 3 of Fig. 11 
should be obtained at  easily accessible frequencies only if 
H ,  is very small (an extrapolation of the stability boun- 
daries of Fig. 11 yields, for R=100  Hz, the following 
bounds for region 3: I H  0 -  < 103.6s Oe). We are not 
aware of any experimental stability diagram such as the 
one we portray in Fig. 1 1. 

3. Time evolution of the mugnetizution 

Since the asymptotic hysteresis loops obtained are 
closed (except those of type 4), the magnetization must be 
a periodic function of time, with the same period as the 
magnetic field 2?r/R. To obtain a hysteresis loop, the 
magnetization should be phase shifted with respect to the 
magnetic field. Figures 12(a)- 12(e) show the time evolu- 
tion of the magnetization and the magnetic field in each 
of the five regions of Fig. 11. Note the shift in phase of 
the magnetization with respect to the magnetic field. The 
evolution of the magnetization shown in Figs. 12(a)- 12(c) 
has two parts-one is the slow variation of the magneti- 
zation near the extrema and the other is the fast jump of 
the magnetization in the region of the curve where the 
magnetization changes sign. As we will argue in Sec. 
I1 E, these slow and fast variations of the magnetization 
can be understood roughly by using the mechanical 
analogue of the Q4 theory: The slow variation is an indi- 
cation of the time taken for the magnetization to decay 
from the metastable minimum. The fast variation is a 
reflection of the fast relaxation towards the stable 
minimum. The amplitude of the magnetization curve in- 
creases with H ,  while the phase difference between the 
magnetization and the magnetic field increases with R 
(for values of R in regions 1-3). The magnetization 
curve of Fig. 12(d) (belonging to type-4 hysteresis) is not 
periodic. The difference between the successive maxima, 
namely M ( t,, 1-M ( t,, ) [where M ( t ,  1 is the magnetiza- 
tion at the nth maximum] decreases arithmetically. The 
oscillations do not cross the M=O axis. In Fig. 12(e), 
M ( t )  is periodic. It resembles a sinusoidal curve which is 



symmetric not about the origin but about M =Mi, (ini- 
tial magnetization). 

In  Figs. 13(a)-13(e) we show Fourier transforms &(a) 
of M (  t )  shown in Figs. 12(a)-12(e), respectively. Figures 
12(a)- 12(c) resemble periodic square waves. The Fourier 
transform of a square wave of frequency is nonzero 
only for the fundamental frequency n and its odd har- 
monics. We see that the Fourier transform of M ( t )  in re- 
gions 1 - 3 is also appreciable only for the fundamental 
and its odd harmonics. The amplitudes of the higher 
Fourier components (3C2, 50, etc.) decrease exponential- 
ly. The appearance of only odd harmonics can be under- 

0 t 16000 

0 t 16000 

0 t 16000 

stood from Eq. (13) which is the integral equation corre- 
sponding to the differential equation (7). This equation 
contains a driving term 6 ( w - n )  and a convolution of 
three Fourier components of the magnetization. A n  
iterative solution of Eq. (13) reveals that only m(n) and 
its odd Fourier components pick up nonzero values. The 
Fourier transform of Fig. 12(d) has all Fourier com- 
ponents (including the even ones) and a large A ( w = O )  
component [Fig. 13(d)]. The reason for the appearance of 
all Fourier components is that M ( t )  is not periodic. 
&( w = O ) f O  since the magnetization is not symmetric 
about the H axis. Figure 13(e) is the Fourier transform of 

0 t 16000 

0 t 12000 

FIG. 12. Time evolution of the magnetization (dotted line) and the magnetic field (solid line) in the five regions of Fig. 11. The fre- 
quency is varied from region l(a) to region 5(ei keeping the amplitude fixed (If,, = 10, r = - 10, and u = 1 ). 



the loop of type 5 .  It possesses large f i ( w = O )  and a( w = R ) Fourier amplitudes. The higher harmonics go 
to zero as R increases. This indicates that the hysteresis 
loop is an ellipse about M =Mi, [ = f i ( w = O ) ] .  

We define the distortion R as 

R 3 Ifi(3R)~/ifi(R)i 

(see the Introduction). This quantity is a measure of the 
distortion of the hysteresis loop from ellipticity or the de- 

( C )  

0 

W 

viation of the extrema of M ( t )  from those of a pure sine 
curve. R is therefore small in region 5 and increases 
monotonically as we go from region 5 to region 1 of Fig. 
11. This increase shows clearly in Fig. 14 where, at fixed 
SZ, we go from region 5 to region 1 by increasing H , .  The 
saturation of R at large values of H ,  is in qualitative 
agreement with experiments on real magnets (see Fig. 8). 
Keeping H ,  fixed, an increase in R makes the hysteresis 
loop more elliptical. Therefore, for fixed H,, R decreases 
as fl increases [compare Figs. 14(a) and 14(b)]. 
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FIG.  13. Fourier transforms of the time evolution of the magnetization shown in Figs. 12(a)- 12(e). 



4 .  Variation of transverse correlation function 

The dynamical equations (7) reveal that the magnetiza- 
tion is driven by the external magnetic field and constant- 
ly dissipates by coupling to the transverse fluctuations of 
the order parameter. Thus, a decrease in the magnetiza- 
tion is accompanied by an increase in the transverse 
correlation function. From Eq. (7b) we see that the max- 
imum value of CI at all times is at q =O. 

From Eq. (7) we would expect C, to attain its max- 
imum value (for a fixed q )  whenever M goes through 
zero. Moreover, C, should be independent of the sign of 
M ( t ) .  From these arguments, C, should be periodic with 
frequency 2R (C, is, of course, always positive). This is 
seen in Fig. 15 for regions 1-3. I t  is also seen that, for 
smaller q, C, has a larger amplitude. When the frequen- 
cy of the external magnetic field is large (region 51, the 
variation in the transverse correlation function takes 
place over a much slower time scale compared to the 
high-frequency oscillations of the magnetic field. Thus, 

0 2 5 -  
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j /  
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FIG. 14. The ratio R = I ~ @ ( ~ R ) I / I & ? ( R ) I ,  called the distor- 
tion, as a function of H,, for two values of R:  (a) n=O.OOl and 
ib) n = O .  1 .  

C, does not deviate very much from its equilibrium value 
of l / q2  for large R. As R - m ,  C, (q , t )=cF(q )  [the ini- 
tial value of C,(q) ] .  S ( t ) ,  which is J C , ( q , t ) d 3 q ,  is a 
measure of the “volume” under the C ,  surface. S ( t )  is 
also periodic with half the period of M ( t )  and reaches a 
maximum whenever M ( t  1 = O  (in regions 1-31, 

5. Variation of the area of the loop 

Given a hysteresis loop, we can easily determine its 
area. The area of the hysteresis loop is a measure of the 
energy dissipated in going through a whole cycle of the 
magnetic field. Let us fix the temperature r and the fre- 
quency a. The areas of loops of types 1-3 should in- 
crease as a function of H,. We shall restrict ourselves to 
small H,, i.e., H ,  <<Hsp ,  where H,, is the mean-field spi- 
nodal magnetic field. We find that the area of the asymp- 
totic hysteresis loops scales with H ,  as 

where a=0.66+0.05.  This dependence is true for a wide 
range of values of R (over three decades of frequency, 
Fig. 16). It also seems to be independent of temperature 
(we have checked it for r = - 10 and - 2 ) .  This power- 
law dependence on H ,  is in qualitative though not quan- 
titative agreement with the Steinmetz law (see the Intro- 
duction) where a= 1.6 for a wide variety of soft magnets. 

Let us now fix H ,  and r and compute the area of the 
loop as a function of the frequency R. As we have seen, 
an increase in R changes the hysteresis loops from those 
of type 1 to those of types 2- 4 and eventually 5 .  The 
area of the hysteresis loop for R +  cc and 0-0 is zero. 
As R increases from zero the area of the hysteresis loop 
increases. The area thus goes through a maximum and 
then decreases as a function of H ,  (Fig. 17). 

We now concentrate our attention on low H ,  ( <<If,,) 
and low R (we are thus in regions 1, 2 ,  or  3). The depen- 
dence of the area on H o  and R is interesting: We find 
that the area has a power-law dependence on the ampli- 
tude of the field and the frequency; the best fit to numeri- 
cal data is given by the following scaling form: 

A a H ; R B ,  (1 1) 

where a=O. 663Z0.05 and /3=0.33+0.03. (The square of 
the correlation coefficient for this fit is equal to 0.9967.) 
Figure 18(a) exhibits this scaling form plotted for a wide 
range of frequencies: l o p 4  5 R 5  lo-’. The plot is for a 
temperature r = - 10. The same power-law dependence 
is found for a higher temperature r = - 2 [Fig. 18(b)]. 
We thus conclude that the exponents a and /3 are temper- 
ature independent. The temperature dependence of the 
area A is contained in the amplitude 

X ( r )  is a monotonically decreasing function of r .  This 
scaling form is valid for low H ,  and R, i.e., in the regions 
1-3 of Fig. 11. 
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FIG. 15. The transverse correlation function vs time for three different values of the wave vector q in (a) region 1, (b) region 2, and 
(c) region 3 of Fig. 11 ( H o  = 10, r = - 10, and u = 1 ). 
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FIG. 16. Scaling of the area of the hysteresis loop with H o ,  keeping 0 constant: (a) n=O.Ol, (b) R=0.001. The area scales as 
H ~ . " ( r = - l O a n d u = l ) .  



C. High-frequency results tegral equation. Define 

1 . :  J, M ( t )e i ~ t d t  fi(w)=- 
g277 

Equations (7)  can be solved analytically in the high- 

be seen by Fourier transforming Eqs. (7) with respect to t .  
This converts the differential equation into a nonlinear in- 

frequency limit, i.e., for type-5 hysteresis loops. This can 

and similarly c l ( q , w ) .  Then Eqs. (7) give 

The integral equation for c l ( q , w )  can be written in the 
same way. These integral equations can be solved itera- 
tively. The first iterates of f i ( w )  and c L ( q , w )  are given 
by (ignoring the w=O component) 

( 14a) f i i  (w ) = ( H o  / 4 w  )[ 8( w -t a) - 6( w - a) ]  , 
and 

C,,(q,o)=O . (14b) 

This is equivalent to a high-frequency approximation. 
This can be seen by equating the high-frequency terms on 
either side of Eq. (13). Therefore, in the first iteration 
i@(o) is nonzero only for w = n ;  higher-order iterates are 
smaller than a l ( w )  in the sZ+ 00 limit. Therefore, in the 
large-fi limit, M ( t )  has the same frequency as H ( t )  but is 
phase shifted. This gives an  elliptic hysteresis loop in the 
upper half of the M-H plane. The area of the hysteresis 
loop is given by 

0 I 2 3 4 a 
FIG. 17. Area of the hysteresis loop as a function of 0. H o  is 

10, r = - 0, and u = 1 .  The area of the hysteresis loop goes 
through a maximum as 0 increases. The initial rise follows 
A - 0 0  33 

=-aHi/8R . (15) 

The negative sign denotes energy dissipation. A numeri- 
cal evaluation of the area of the loop, for type-5 hys- 
teresis )loops, from Eqs. (7) show an Hi /R dependence 
(see Fig. 19). 

D. Temperature dependence of the hysteresis loop 

The hysteresis loops of our model show a very strong 
dependence on the temperature. As the temperature de- 
creases, the spatial fluctuations of the order parameter 
decrease. This makes the coercive field H, (and thus the 
area) larger. We restrict ourselves to type-1 and type-2 
loops. Figure 20 shows the dependence of the area and 
the coercivity on the temperature, with H,, R, and u 
fixed. We find the following fit to the data: 

Let us now keep H ,  fixed. As we increase R,  we go from 
region 1 to 2 and so on. For higher temperatures, transi- 
tions from one type of loop to the next happen at  higher 
values of 0. The loops get thinner (area decreases) as the 
temperature increases. Even when the temperature is 
larger than the critical temperature ( r  > r c )  (so that the 
system is paramagnetic), hysteresis persists and the loops 
enclose a nonzero area. This is perhaps an artifact of the 
N +  co limit. In a model with comparable fluctuations of 
the longitudinal and transverse components of the order 
parameter, we expect hysteresis loops to be absent for 
r > r , .  Our Monte Carlo results for the Ising model (Sec. 
111) support this view. 

As we have seen earlier, the area of the hysteresis loop 
scales with H, and R for small H ,  and R in regions 1-3 
of the stability diagram Fig. 11. The exponents a and f i  
that characterize this scaling are independent of tempera- 
ture. We have checked this for r = - 10 and - 2. 

E. Mean-field theory 

In the mean-field approximation, all fluctuations of the 
order parameter are neglected. Therefore, any n-point 
correlation function can be written as a product of n 
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Data are given for the 
six values of fl shown; the values of Ha are such that all points in this figure lie in regions 1, 2, or 3 of Fig. 11. The exponents are in- 
dependent of temperature. This is displayed in (a) r = - 10 and (b) r = - 2. 

one-point averages (the averages are taken over the prob- 
ability distribution of the noise 7). Under this approxi- 
mation, the equation for the first moment ( @, ) is 

+ u ( @JX, t )  ) 3  

-H,sin( Rt  )ti,, ] . (18) 

At t =0, the system is taken to be in equilibrium at 

H,=(O+ )8,,1 and T < T,“” (ferromagnetic phase), i.e., 
r < 0. We therefore define ( @,( x) ) as the magnetization 
M which is equal to ( - - r / u ) ” * .  Moreover, (@,(x))=O 
for all a# 1. Since there are no spatial fluctuations of the 
order parameter and since the initial magnetization is 
homogeneous, the magnetization at subsequent times will 
also be homogeneous. Moreover, ( @Jx, t ) =O for all 
times when aZ1. We measure time in units of (2rI-l. 
Therefore, the equation to be solved is 

I I 
0 0.8 

FIG. 19. Scaling of the area of the hysteresis loop for high 
frequencies as A -H;R-’ obtained from numerical integration 
of Eqs. (7) in agreement with Eq. (15). 
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FIG. 20. Area and coercivity as a function of temperature 
keeping H o  and fl fixed (we restrict ourselves to regions 1, 2, 
and 3 of Fig. 11, here f l = O . O l ,  H a  = 1 ), 



This nonlinear equation cannot be solved analytically for 
arbitrary H ,  and R. We have to solve this equation for 
M ( t )  using numerical methods. Accordingly we use an 
Euler finite-difference method to solve the differential 
equation. We also use a Runge-Kutta method to cross 
check the numerical results obtained by the Euler 
method. We plot the magnetization against the magnetic 
field for various H ,  and f2 to obtain hysteresis loops. 

The main result of this section is the following: In the 
mean-field approximation there is no symmetric hys- 
teresisI4 when the magnetic field amplitude is smaller 
than the spinodal field H,. Hysteretic behavior is seen 
only when the field amplitude H ,  reaches a value HM 
which is larger than Hsp;  HM is a monotonically increas- 
ing function of the frequency a. 

The evolution of hysteresis loops in the mean-field ap- 
proximation is illustrated in Fig. 21. Here the frequency 
a, the temperature r ,  and the coupling constant u are 
kept fixed while the amplitude H ,  is increased. We see 
that for H ,  < 12.2=HM, the M-H curve does not open 

1 

- 10 0 10 
H 

out into a loop [Fig. 21(a)]. As soon as H , >  12.2, sym- 
metric hysteresis loops are obtained [Fig. 21(b)]. These 
loops are squarish and the magnetization does not satu- 
rate. On a further increase of the amplitude, we observe 
that the loop saturates. If the amplitude is increased fur- 
ther, the area of the loop increases; however, no qualita- 
tively new behavior is o b ~ e r v e d . ’ ~  

As mentioned above, in the mean-field approximation 
symmetric hysteresis is obtained for H,>H,; H ,  de- 
pends on the frequency of the applied field. For R=O.Ol, 
H ,  is found to be equal to 12.2. When the frequency 
R=O, 

H M = H , p = ( - 4 r 3 / 2 7 u ) 1 ’ 2 = 1 2 .  17 

for r = - 10 and u = 1. The molecular field in this model 
can be calculated as follows: 

where we have assumed a cubic lattice in three dimen- 
sions (the coordination number is 6). For J = 1, r = - 10, 
and u = I ,  we find that Hm,=18.954. We thus see that 
H,, the amplitude of the field required for magnetization 
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FIG. 21. Mean-field hysteresis loops obtained in the ( Q 2 ) 2  theory. The amplitude of the field is different in each of these loops 
while the frequency is held constant at n=O.Ol: (a) H o =  12, (b) Ho=12.25, (c) Ho=13, and (d) Ho=20 .  For H a  < 12.2, there is no 
symmetric hysteresis loop within the mean-field theory ( r  = - 10, u = 1 ) .  



reversal is of the order of the molecular field. In real 
magnets this corresponds to a very large field (Hmf= lo7 
Oe). Therefore, we see that in a mean-field theory, sym- 
metric hysteresis is observed only when H ,  is of the order 
of Hmf. Such large fields are not attainable in laboratory 
experiments. Therefore, we conclude that a mean-field 
theory is an incorrect description of the hysteresis ob- 
served in laboratory magnets. 

We can understand this mean-field behavior by a 
mechanical analogy. Consider a particle moving in a po- 
tential of the form 

V ( x ) = a x 2 + b x 4 ,  

where a < 0 and b > 0. This potential has two symmetric 
minima at  x z  =k( - c z / ~ ) ” ~ .  At t =O, let the particle be 
at  x = x : .  This corresponds to a positive magnetization 
M = + M , ,  in the ferromagnet. Let us now apply a 
homogeneous periodic field which couples linearly to x :  

V ( X ,  t = a x  + bx -xH,sin( at) . 
For small H ,  ( < H,, ), the particle will remain in the x :  
minimum. This corresponds to an absence of hysteresis. 
When H ,  I Hsp, the x minimum disappears. The parti- 
cle rolls down the potential well into the x r  minimum. 
This corresponds to symmetric hysteresis. However, the 
particle takes a time TR to roll down the potential well. 
If the frequency of the field is larger than the inverse 
roll-down time l / rR,  then, by the time the particle has 
reached the bottom ( x i  minimum), the x z  minimum 
reappears and the particle remains at x = x o f .  T R  de- 
creases as H ,  increases and, therefore, for larger frequen- 
cies, a larger amplitude is required to obtain symmetric 
hysteresis. 

In our mean-field theory, the shapes of hysteresis loops 
have a nontrivial frequency dependence for H ,  > H,w(R).  
Keeping H ,  fixed and greater than H,(R), we monitor 
the shape of the loops as a function of R. For small R, 
the loops are symmetric and spindle-shaped with the 
magnetization having attained saturation (Fig. 22). As R 
increases, the loop does not saturate, but is still sym- 
metric (the particle reaches the x 0  minimum but does 

not settle down in it). Further increase in R rotates the 
symmetric loop until its major axis is along the H axis. 
For very large 0, the loop is entirely in the upper half of 
the M-H plane. It is no longer symmetric (the particle 
does not have enough time to reach the x i  minimum). 
The loop in the upper half plane drifts slowly downwards 
for high 0 and for very high 0, the loop forms a closed 
curve with very little enclosed area. 

F. Response to pulsed magnetic fields 

To understand the dynamical processes involved in the 
hysteresis problem, we study the response of the spin sys- 
tem to a pulsed magnetic field of the form 

H,( t )  = H o e (  t)6,, , , 
where 8( t )  = 1 for t < 0 and - 1 for t > 0. The order pa- 
rameter @,(x,t) evolves in time as specified by the 
Langevin equation (3) .  The final dynamical equations for 
the magnetization and the transverse correlation function 
in the N - +  = limit’ are obtained by replacing H,sin(Rt) 
in Eq. (7)  by H,WtJ.  At t =O,  the system is in equilibri- 
um at H =H,. Therefore, the initial conditions to be 
used in Eq. (7) are the equilibrium values of M and C ,  at  
H = H ,  and temperature r ( < rc ). 

The differential equations have to be solved numerical- 
ly to obtain M ( t )  versus t for various values of H ,  (keep- 
ing r and u fixed). The equations describe the decay of 
magnetization towards its equilibrium value for 
H = -Ho.  A typical magnetization decay curve is plot- 
ted in Fig. 23 for Ho=l.O. The time evolution of S ( t ) ,  
the momentum integral of the transverse correlation 
function, for the same values of parameters is also shown 
in Fig. 23. Note that S ( t )  has a maximum when the 
magnetization is zero. The magnetization curve has 
three distinct portions: (i) the initial exponential decay 
from M ( t  = O )  to some intermediate value, (ii) the plateau 
region, where M ( t )  is nearly a constant, and (iii) the final 
exponential decay towards the equilibrium magnetization 
at H = - H , ,  which is - M ( t = O ) .  There are thus three 
distinct time scales T, ,  r2, and T~ which can be extracted 
from the magnetization decay curve (see Fig. 23). These 4D jj 4m 
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FIG. 22. Mean-field hysteresis loops. H ,  ( > H w  is fixed at 20. The loops are plotted for various values of R:  (a) R=O.Ol, (b) 
R=O. 1, and ( c )  R= 1 ( r  = - 10, u = 11. 
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FIG. 23. Magnetization reversal in response to a pulsed mag- 
netic field. Note the existence of three time scales: the initial ex- 
ponential decay, the intermediate magnetization plateau, and 
the final exponential decay. The integrated transverse correla- 
tion function S is drawn in the same graph. 

are related to three distinct dynamical processes of the 
spin system in response to a time-varying magnetic field. 
We will use the mechanical analogy discussed in Sec. I1 E 
with a slight extension to illustrate this relation. The ex- 
tension consists in subjecting the particle to a fluctuating 
force which allows it to escape over the barrier in be- 
tween the two minima of the free-energy functions (Fig. 
24). This mechanical picture resembles the single- 
component (D4 theory. This is not strictly true since there 
exist spatial fluctuations of the order parameter in the (D4 

theory which are absent in the mechanical analogue. At 
t < 0, the situation is as shown in Fig. 24(a)-the field H ,  
is positive and the particle is in the x :  minimum. At 
t =0, the field is suddenly flipped to -H,. The particle 
does not respond at once, only the potential changes ( x i  
is now the stable minimum and the x :  metastable 
minimum has shifted towards the origin). The particle 
initially. relaxes towards the x 0' metastable minimum. 
This relaxation time is 7 , .  The particle has to decay to 
the x 0  global minimum eventually. It does so under the 
action of the fluctuating force which kicks the particle 
over the barrier Fig. 24(b). The time scale associated 
with this hopping over the barrier is T ~ .  The particle now 
relaxes towards the x 0  minimum (after having hopped 
over the barrier), Fig. 24(c). This relaxation time is T ~ .  
These are the dynamical processes associated with the de- 
cay of the particle from the metastable minimum to the 
stable minimum. The process described above is for a 
single-component order parameter with no spatial fluc- 
tuations. Let us, in the same spirit, extend the mechani- 
cal analogy to the N-component order-parameter theory 
( N  = cc) ). Here, the particle does not hop over the bar- 
rier. The potential in this case has an infinite set of de- 
generate minima when Ho=O. When the field is flipped 
from + H ,  to --El,, the particle moves from the metasta- 
ble minimum to the stable minimum along the interven- 
ing minima (transverse modes of decay). This roll-down 
time is r2 (transverse motion along the intervening mini- 
ma). Since the radius of the trajectory in coordinate 

space, xa x: [corresponding to xc,"= in the order- 
parameter space] is infinite (in the N-+ 03 limit), the pro- 
jection of the position along the a= 1 direction remains 
essentially constant for some time (analogous to the mag- 
netization plateau in Fig. 23). 

We now describe how we operationally define these 
three time scales T, ,  72, and T ~ .  Consider point A in Fig. 
23. This point is defined as the point ( t , , M ( t ,  ) )  at  which 
d 2 M / d t 2 = 0  [ O < t ,  < t o ,  where to is such that 
M ( t , ) = O ] .  In the interval ( O , t ,  1, we fit the 
magnetization-decay curve to an exponential e . We 
thus determine the time scale r,. r2 is merely given by 
t O - t , .  In the interval ( t 0 , t 2 ) ,  where t 2  is such that 
M ( t 2 ) = - M ( t  = O )  (to an accuracy of we fit the 
magnetization curve to another exponential e . This 
determines the time scale r3. The magnetization decay 
obviously depends on the value of H,-the larger the 
magnitude of the magnetic-field flip, the faster is the de- 
cay. We thus ask for the dependence of the time scales 
T , ,  r2, and T~ on H o  (for a fixed r and u ). This is shown in 
Fig. 25 for r = - 10 and u = 1. The magnetic field H ,  

- I / T ,  

- I  /T, 

tc 0 

t > O  

t > O  

coord inate  -P 

FIG. 24. Mechanical analogy to describe the three time 
scales associated with magnetization reversal. (a) t < 0, particle 
is in the x,; minimum; (b) t >0,  particle decays to the x $  
minimum of the potential in a time 'T, and then attempts to hop 
over the barrier; and (c) after a time T* i t  crosses the barrier and 
then decays to the x( minimum in a time 7,. 
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FIG. 25 .  The power-law dependence of the three time scales 
on the magnetic field H,. The solid line denotes T , ,  the dotted 
line denotes r2, and the dashed line denotes T )  (here r = - 10, 
u = l ) .  

ranges between 10 and 0.01. From the figure we conclude 
that T , ( H , )  cHo1.4z0.1 , T ~ ( H o  ) a H i  I ’  ’”’ , and 

The mechanical analogy, generalized to N components, 
gives us a way of understanding the variation of r2 on H,. 
When the field is flipped, the particle rolls down the in- 
tervening minima with a velocity u. The kinetic energy 
+U should balance the potential-energy difference, 
2xJH0.  For small H,, x 0 a H o  (linear r e~ponse ) . ’~  
Therefore, u aHO, i.e., the velocity of the particle is pro- 
portional to the potential H,. Since u ar- l ,  the inverse 
of a time scale in the mechanical problem, we see that 
T ~ H ; ’ .  The time scale T in this N-component mechani- 
cal picture is analogous to r2 in the ( @ 2 ) 2  theory. The 
H,’ dependence is consistent with the observations in 
ferrites (though the mode of magnetization decay is quite 
different). 

Let us try to relate then time scales T ~ ,  T ~ ,  and T~ to the 
hysteresis window of Shenoy and Agarwal.16 The 
Shenoy-Agarwal bounds for the hysteresis window entail 
two time scales: the local relaxation time in the metasta- 
ble minimum and the first-pass,age time to go from the 
metastable minimum to the stable minimum. In our no- 
tations, 

T ~ ( H o  a H,l’O’O OO4. 

‘T1<O-’<T,$.T~. 

According to Shenoy and Agarwal, for frequencies out- 
side this window, “good” hysteresis (conventional squar- 
ish loops) is not observed. We see from our analysis that 
hysteresis is observed even for frequencies outside the 
window. Note, however, that the magnetic field in our 
analysis is sinusoidal ( 1 dH / d t  1 is therefore not constant ), 
while in the Shenoy-Agarwal treatment it is a periodic 

ramp function (where ldH/dti  is a constant almost every- 
where). 

and 
compare the resulting power-law dependences with the 
boundaries which separate the five qualitatively different 
hysteretic behavior. Such a comparison is not without 
ambiguity since these boundaries (especially those be- 
tween regions 4 and 5 and regions 4 and 3) are computed 
using arbitrary criteria. Nevertheless, we note that the T~ 

curve approximately follows the boundary between re- 
gions 2 and 3, the T~ curve approximately follows the 
boundary between regions 3 and 4, and the r3 curve is 
nearly coincident with the boundary between regions 1 
and 2. 

We compute ln(T17’) versus H ,  (for i = 1,2,3 

111. HYSTERESIS IN THE ISING MODEL 

The last section dealt with magnetic hysteresis in a 
continuous spin system. In this section, we discuss mag- 
netic hysteresis in a lattice model of a discrete spin sys- 
tem. In particular, we study the response of the two- 
dimensional Ising model with nearest-neighbor ferromag- 
netic interactions to a time-varying magnetic field. This 
response is studied by a Monte Carlo simulation using the 
algorithm of Metropolis et al.  I’ We obtain hysteresis 
loops for a wide range of amplitudes and frequencies of 
the applied field and temperature on a square lattice. 

The Hamiltonian of the two-dimensional Ising model 
we study is 

(20) 

where the spins Si ( =i 1 ) occupy the sites i of a square 
lattice and (ij ) are nearest-neighbor pairs of sites. We 
set the scale of the energy by choosing the exchange cou- 
pling J = 1. The magnetic field H ( t )  varies periodically 
in time. We use periodic boundary conditions for the 
spins. We have done simulations on lattices of size 
10 X 10,20 X 20, and 50 X 50. 

We use the standard Metropolis Monte Carlo algo- 
rithm’7’18 which does not conserve the order parameter. 
We update the spin variables Si by stepping sequentially 
through the lattice. 

At time t =0, the spin system is assumed to be in equi- 
librium at a temperature T below the ordering tempera- 
ture T, and magnetic field H,. T, is obtained from the 
exact Onsager result l 9  for the two-dimensional k ing  
model on a square lattice 

Tc=-2/1n(1-\ /Z) . (21) 

The spin system is allowed to equilibrate at a temperature 
T ( < T, i and magnetic field H,. We start with all spins 
S, =sgn(H, ). We visit each site on the lattice sequential- 
ly and update the spins using the algorithm mentioned 
before. We thus “sweep” across the entire lattice. We go 
through several such “sweeps” and evaluate the magneti- 
zation and energy every fifth sweep. We go through the 
lattice 2000 times and check whether the magnetization 
and energy have equilibrated. 



A. Monte Carlo simulation in the study of hysteresis 

Once the initial equilibrium configuration is estab- 
lished, we study the response of the Ising system to a 
time-varying magnetic field. For numerical convenience, 
the magnetic field evolves periodically in a steplike linear 
fashion (Fig. 26). From the figure we see that there are 
two time scales [measured in Monte Carlo steps (MCS)] 
associated with the magnetic field: one is T , ,  the interval 
of time over which the field is a constant, and the other is 
T ~ ,  the period of the magnetic field. The magnetization is 
evaluated at  every r3th pass over the lattice (where T~ < T ,  

and T , / T ~  is an integer). The magnetization evolves 
periodically under the influence of the periodic magnetic 
field. We allow the magnetization to evolve for 20 cycles 
of the magnetic field without collecting any data. This is 
to allow for enough time for the transients to settle down. 
We then collect data for the magnetization and plot the 
magnetization versus the magnetic field. Since the period 
T~ is much smaller than the recurrence time of the ran- 
dom number generator (which for the VAX 11/730 is 
Z3 ' -  1 ), the magnetization at  time t and t +T* are 
affected by different random numbers. Therefore, the 
hysteresis loops generated after each cycle are not identi- 
cal to each other. We thus average over several periods 
(we have taken averages over up to 1000 periods). This 
produces an average hysteresis loop (Fig. 27). We ask for 
the deviation of the loop from its average. This is ob- 
tained by computing the standard deviation of the mag- 
netization from its average value (taken over 1000 
periods, say). To make these statements more explicit let 
us define Ma(H(t)) to be the magnetization as a function 
of the field H (  t )  during the a th  cycle ( a  is the loop index). 
Then the average magnetization and the standard devia- 
tion are given by 

(22a) 

l L  

L a = ]  
u L ( H ( t ) ) = -  [Ma(H(t))-ML(H(t))I2 , (22b) 

where L is the total number of loops over which we have 
averaged and t is measured modulo T ~ .  ML and ( T ~  are 
computed iteratively as the loops are traversed. 

The standard deviations of the magnetization at  
different points on the average hysteresis loop are 
represented by error bars (Fig. 27). We see that the error 
bars are large (in some cases, they are of the order of the 
maximum value that the magnetization takes for a given 
frequency and amplitude of the field) in the regions where 
the magnetization jumps from a negative (positive) value 
to a positive (negative) value. The error bars do not seem 
to decrease with an increase in the number of loops over 
which we perform the average. We have checked this by 
computing the standard deviations when the number of 
loops over which we average range from 80 to 1000. 
There is, however, a strong dependence on the size of the 
system -the errors decrease with increasing lattice size. 
For example, when the temperature is 1.8, the amplitude 
H , = 2  and the frequency such that the loop is of type 1 ,  
the standard deviation in the region of the loop where the 
magnetization changes sign is 0.025 for a 50 X 50 lattice 
and 0.48069 for a 1OX 10 lattice. Since the errors in- 
volved are so large, any quantitative measurement like 
the area of the hysteresis loop becomes meaningless for 
small lattice sizes. We now present the qualitative results 
obtained from our simulation studies in detail. 

B. Results of the Monte Carlo simulation 

1. Variation with the frequency of thefield 

We study the changes in the shape of the hysteresis 
loop as we vary the two time scales T ,  and r 2  (see Fig. 26), 
keeping the temperature T, the lattice size N ,  and the am- 

of MCS) 

- 0.8 - 0.4 0 0.4 0.8 
H 

'2 I 
FIG. 26. Periodic applied magnetic field. Note the existence 

of the two time scales T, and r2. H o  is the amplitude of the mag- 
netic field. 

FIG. 27. Typical average hysteresis loop obtained on a 
2 0 x 2 0  lattice. The average has been taken over 880 cycles of 
the magnetic field. The temperature is 1.8, T , =  15, r2= 1500, 
and H ,  =O.  8. The error bars are large in region A ( (T =O. 571 3 ) 
and extremely small in region B (a  =O. 2 X 



plitude of the field H ,  constant. When T~ and r2 are 
small, the magnetic field changes rapidly. We call such a 
variation a high-frequency ( R )  variation. When T~ and rz  
are large, the changes in the field are slow and we refer to 
low-frequency variations. For high frequencies (the pre- 
cise values depend on N ,  T, and H , ) ,  the M-H curve is 
entirely in the upper half-plane2' [type 5 ,  Fig. 28(a)]. The 
drift of the ellipse towards the H axis (type 4) cannot be 
resolved in our Monte Carlo simulation because of the 
large errors involved. For lower frequencies, the loops 
are roughly elliptical with their major axes along the 
M =O line [type 3, Fig. 28(b)]. A decrease in the frequen- 
cy of the field rotates the major axis so that it is inclined 
to the H axis [type 2, Fig. 28(c)]. For lower frequencies, 
the hysteresis loop is squarish with a change in the sign of 
the curvature at the tips indicating saturation. A further 
decrease produces squarish hysteresis loops [type 1, Fig. 
28(d)] with the magnetization saturating at M = 1. When 
R is very large ( T ] ,  r2=2) ,  the hysteresis loop collapses 
onto a straight line (Fig. 29) parallel to the H axis (this 

corresponds to the R + 00 M - H  curve discussed in the In- 
troduction). We compute the coercive field H ,  by a naive 
interpolation routine, In loops of type 1, an increase in 
R increases the coercivity [Figs. 30(a) and 30(b)] and 
hence the area. This is because the phase lag of the mag- 
netization with respect to the magnetic field increases as 
a function of R. Therefore, a larger field is required for 
magnetization reversal. The same behavior is observed in 
the (Q2)* model and in the experimental studies of Ewing 
and co-workers.5 

Consider loops of type 1, with fixed H ,  and T. From 
the Monte Carlo data we notice that the same coercive 
field H ,  (and hence the area) is obtained with a higher 
frequency R and larger lattice N as with a lower frequen- 
cy and smaller lattice [Figs. 31(a) and 3(b)], i.e., to get the 
same H,, one requires a smaller frequency for a smaller 
lattice size. This implies that H ,  !and the area) does not 
depend on R or N separately but on some ratio of the 
two.*' 
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FIG. 28. The average hysteresis loop as a function of R ( N = 1 0  and T = l ) :  (a) Ho=0.2,  . r , = l ,  r2=100; (b) Ho'2, . r I= l l ,  
~ ~ ~ 1 0 ;  ( c )  Ho=2, ~ , = 6 ,  r2=60; (d) Ho=2, r I = 6 ,  ~*=600 .  
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FIG. 29. M-H curve for r=  1 ,  r=2, and H = 0 . 2 ,  T = l ,  and 
N = 10. This corresponds to the fl-+ QI limit of the hysteresis 
loop [see Fig. 3(b)]. 
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FIG. 30. Increase in the coercive field H ,  as increases for 
type-1 hysteresis loops ( Ho = 2, T = 1 . 8 ,  and N =20): (a) rI = 1, 
T2=5@ (b) T I = l ,  7 2 = 1 0 0 .  

2. Variation with the amplitude of the jield 

We study the amplitude ( H , )  variation of the hys- 
teresis loop keeping the temperature T and the lattice size 
N fixed. Moreover, we hold r ,  and T~ constant. As H ,  
decreases, the loop evolves in a sequence opposite to that 
mentioned in Sec. I11 B, i.e., the loops change from types 
1+2+3+5 (type 4 is again difficult to resolve). 

We find that for hysteresis loops of type 1, H, is of the 
order of the exchange coupling J. This is because the am- 
plitude of the applied field is also of order J.  If we apply 
a very small field, then the values of r1 and T~ required to 
obtain a type-1 loop are extremely large. The coercive 
fields in this case will be small. 

From an analysis of the Monte Carlo data we see that 
the coercive field (and the area) do not depend on the fre- 
quency and the amplitude of the magnetic field separately 
but on some ratio of the two.2' 
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FIG. 31. The coercive field H ,  is the same (=0 .25 )  for 
(T=1 .8  and Ho=0.8):  (a) rl=15, r2=1500, N = 2 0  and (b) 
~ 1 ~ 2 5 ,  r2=500, N = 5 0 .  



3. Variation with temperature 

An increase in the temperature increases thermal fluc- 
tuations of the order parameter which hasten the decay 
of a metastable state. We thus see that an increase in 
temperature decreases the coercive field [Figs. 32(a) and 
32(b)]. If we fix H,, T ~ ,  T ~ ,  and N ,  a decrease in the tem- 
perature changes the shape of the loops from types 
1 -+2-+3-+4-+5  (type 4 is difficult to resolve). 

If we fix H ,  and N ,  we find from our Monte Carlo data 
that, to get the same H ,  (and hence the same area), the 
applied field must have a lower frequency at a lower tem- 
perature [Figs. 33(a) and 33(b)].21 

We see that the area of the hysteresis loop shrinks as 
the temperature increases until, for temperatures larger 
than the ordering temperature T,, the area of the loop 
shrinks to zero and the magnetization follows the mag- 
netic field. This is in contrast with the high-temperature 
behavior of the hysteresis loops in the N-component 
(a2)* model with N = M . 

I t I  I I 

M 

- 0.4 

H 

H 

FIG. 32. Decrease in H ,  as a function of temperature 
( N  =20, Ho=2,  r ,  and r2 are held fixed): (a) T =  1.8 and (b) 
T = l .  

4. Variation with lattice size 

We perform the Monte Carlo simulations on 1OX 10, 
20 X 20, and 50 X 50 square lattices. We can therefore 
look for the size dependence of the hysteresis loops. We 
find that if T, H,, and T ,  and r2 are fixed, an increase in 
the lattice size changes the shape of the loops from types 
5-4 (difficult to resolve)+3--+2-+1 [Figs. 34(a) and 
34(b)]. Keeping T , ,  r2, H,, and T a constant, a larger lat- 
tice gives a larger remnant magnetization (since there are 
more spins in a larger lattice) and a smaller coercivity. 
The dependence of H ,  on the lattice size N is very weak. 
The qualitative dependence of H ,  on N agrees with exper- 
iments on MnBi grainse3 

5. Spin configurations 

It is interesting to study the behavior of the spins and 
the domains in a lattice as a function of the changing 
magnetic field. We have observed the spin configurations 
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FIG. 33. The coercive field H ,  is the same (=0.8) for 
( T =  1.8, H,=2, and N = 5 0 ) :  (a) T = 1.8, r I  = 1, r2=50 and (b) 
T=1,r l=lS,~2=15OO. 



 

as a function of the magnetic field for the lattices under 
study. The spin configurations are such that the domains 
of up (down) spins in a matrix of down (up) spins are not 
circular and compact, but are ramified, especially in the 
segment of the M-H curve where the magnetization 
changes sign. A time sequence of these configurations 
[Figs. 35(a)-35(e)] show coalescence and coarsening of 
these domains. Thus, theories of hysteresis that concen- 
trate on the nucleation of a droplet and not on its subse- 
quent coarsening cannot be completely valid. 

This ends our analysis of hysteresis in the two- 
dimensional k ing  model. The results we obtain are main- 
ly qualitative but they corroborate the results obtained in 
Sec. 11. A more detailed quantitative study of the two- 
and three-dimensional models, especially of the hy- 
pothesized scaling relations (see Ref. 21) is required. 
These questions will be tackled in the future. 

H 

H 

FIG. 34. Decrease in H ,  as a function of the lattice size ( T, 
H,, T,, and r2 are fixed): (a) N =50 and (b) N =20. 

IV. COMPARISON WITH OTHER THEORIES 
OF HYSTERESIS 

In this section we compare the theory just presented 
with other theories of hysteresis. Other theories that 
have been constructed so far fall into three categories: (a) 
purely phenomenological theories such as those of Ray- 
leigh,3g22 P r e i ~ a c h , ~ ~  and Hodgdon and C ~ l e m a n , ’ ~  (b) 
theories that rely on the limit of metastability to precipi- 
tate hysteresis, such as the Stoner-Wohlfarth 
and the theory described by Landau and Lifshitz,’ and (c) 
theories that use first-passage time techniques, such as 
the theory of Shenoy-Agarwal.16 Some of the purely phe- 
nomenological theories obtain reasonable agreement with 
experimentally determined hysteresis loops at  very low 
frequencies; however, these theories rely on various ad 
hoc assumptions and require several phenomenological 
parameters. 

The Rayleigh theory3822 recognizes that hysteresis can- 
not occur in linear-response theory and therefore allows 
the permeability to have the simplest nonlinear depen- 
dence on the field. The magnetic induction is assumed to 
depend quadratically on the magnetic field. This relation 
clearly violates time-reversal invariance and therefore its 
exact status is uncertain. 

Hodgdon and Coleman24 have proposed a constitutive 
relation between the magnetic induction B and the mag- 
netic field H to describe rate-independent ferromagnetic 
hysteresis. Rate independent implies that the hysteresis 
loop and the area are independent of the frequency of the 
oscillating magnetic field. The theory assumes that there 
is no phase lag between B and H a n d  further that there is 
no frequency dependence of the hysteresis loops. The 
nonanalyticity of various terms in the constitutive equa- 
tion makes its derivation from a microscopic Langevin 
equation seem unlikely. 

A popular phenomenological model is the Preisach 
which assumes that a bulk magnetic material is a 

composite of small, single-domain, magnetic grains in- 
teracting with each other. Each particle is characterized 
by a magnetic moment and the coercive fields (positive 
and negative switching fields). Knowing the response of 
these individual grains, the response of the bulk sample is 
determined with the help of an experimentally measured 
(difficult to measure) or (most often) assumed distribution 
function (which is a function of the magnetic moments 
and the coercive fields). Consequently the Preisach mod- 
el lacks predictive power. 

All these theories are empirical fits to experimental 
data. In particular, the Hodgdon and Coleman theory 
and the Preisach model have too many free parameters 
and functions which have to be specified before a quanti- 
tative comparison with experimental observations can be 
made. The theory that we have constructed is a theory 
valid over length scales larger than the phonon-magnon 
mean free path and over time scales larger than the 
phonon-magnon relaxation time. This theory is to be 
contrasted with the phenomenological theories which are 
macroscopic theories and deal with macroscopic vari- 
ables. 

The Stoner-Wohlfarth theory25326 investigates the hys- 



teretic behavior of a single-domain magnetic particle. 
The Landau-Lifshitz theory,* on the other hand, provides 
a conceptual framework for analyzing hysteresis in a wid- 
er class of systems. The Stoner-Wohlfarth theory and the 

Landau theory predict that hysteresis occurs whenever 
the metastable minimum of the free energy disappears. 
Both these theories picture the magnetization reversal in 
hysteresis as an equilibrium, mean-field process. These 

a )  

FIG. 35. Time sequence of spin configurations on a 50 X 50 lattice as a type- 1 hysteresis loop is traversed from H = - H o  = - 2 to 
H =Ho=2.  Solid squares denote S, = - 1. Note that even when H >0, the spins are predominantly “down.” (a) H = -0.08, (b) 
H = -0.02, (c) H =0.02, (d)  H =0.04, (e) H =0.08, and (0 H =O. 16. The cluster, marked by an arrow in (dj  and (el, shows coarsen- 
ing and coalescence. 
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FIG. 35. 

theories thus predict a large value for H ,  equal to the spi- 
nodal field. 

The theory of Shenoy and AgarwalI6 contains enough 
dynamical features to be able to address the dependence 
of the shapes of hysteresis loops on the frequency of the 
applied field. They do not analyze this frequency depen- 
dence in the way we do (Sec. 11); instead, they determine 
the range of frequencies, which they call a hysteresis win- 
dow, in which conventional loops are obtained, as op- 
posed to simple jumps in the order parameter or no jump 
at all. These calculations neglect spatial fluctuations of 
the order parameter which are present in many-body sys- 
tems like magnets. Moreover, as the field changes, the 
free-energy curve changes and hence the extrema, the 
curvatures at  the extrema, and the barrier height vary as 
functions of time; these effects are not incorporated in the 
calculation of the hysteresis window. 

All theories mentioned above (with the exception of 
the Shenoy-Agarwal theory) treat hysteresis using equi- 
librium notions. Since, in a typical hysteresis experiment, 
the magnetic field is varied with a frequency of (say) 50 
Hz, any equilibrium (static) description of hysteresis is 
strictly invalid. In this paper we have attempted to con- 
struct a nonequilibrium statistical-mechanical theory of 
hysteresis wherein thermal fluctuations (which are spa- 
tially modulated) of the order parameter are incorporat- 
ed. To the best of our knowledge, this has not been at- 
tempted so far, nor has there been an attempt to under- 
stand the power-law behavior of the area of the hysteresis 
loop (e.g., the Steinmetz law) from a microscopic or a sta- 
tistical mechanical point of view and to elucidate, if pos- 
sible, any potential universality (in the renormalization- 
group sense) of this powerlaw. In this paper, we have at- 
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tempted to systematize the study of some of the issues 
mentioned above for the two model spin systems con- 
sidered in the text. 

V. EXPERIMENTAL RELEVANCE 

The two models we have studied in this paper are very 
simplified versions of models for real magnets. Thus, 
these models can clearly not describe all the phenomena 
that accompany the hysteretic behavior of magnets. Be- 
fore discussing which phenomena our models might de- 
scribe, we would like to emphasize that certain qualita- 
tive features of our results apply to real magnets: In par- 
ticular, all magnets must show the regions 1-3 of Fig. 11; 
if the formation of domains makes Meq=O in a magnet, 
then such a magnet will not show regions 4 and 5 (see 
below); in all magnets, a plot of the ratio 
R = Ifi(3n)l/li@(n)l versus H ,  is qualitatively similar 
to Fig. 14; and hysteretic losses in a magnet must have a 
frequency dependence shown in Fig. 17 (this prediction of 
our theory has obvious and important implications for 
high-frequency magnetics). 

The continuum model [Eq. (6)]  that we study does not 
include the effects of magnetic anisotropy, dipolar forces, 
magnetoelastic couplings, and defects. All these can 
affect the hysteretic behavior of a magnet. For example, 
magnetic anisotropies and dipolar forces lead to the for- 
mation of domains in real magnets. On the application of 
a magnetic field, the walls between these domains move 
or  the domains rotate; clearly, the effects of these phe- 
nomena on hysteresis loops cannot be accounted for in 
our model.*’ Furthermore, in polydomain magnetic sam- 
ples, the net zero-field equilibrium magnetization is zero. 



Thus, these samples should not exhibit loops of types 4 
and 5 [Figs. 10(d) and 10(e)]. However, as increases at 
fixed H,, these samples should exhibit narrower and nar- 
rower loops of type 3 [Fig. lO(c)] since Mi, = M e ,  =O. Fi- 
nally, our model can clearly not account for eddy-current 
losses in conducting magnets. Thus, the results that we 
obtain for our continuum model [Eq. (6)] should be of 
direct relevance to small, insulating, defect-free, single- 
domain particles with a very small magnetic anisotropy, 
and a low magnetoelastic coupling. 

Insulating ferromagnets are often adequately described 
by the Heisenberg Our model is a continuum 
version of the Heisenberg model and allows the order pa- 
rameter @ to have N components. In many magnets 
N = 3, but, for calculational convenience, we study the 
limit N = w in which the transverse correlation functions 
dominate the longitudinal ones. (We expect that the re- 
sults we obtain in this limit are qualitatively similar to 
those that we should obtain with N =3.) The resulting 
free-energy functional [Eq. (6)] is O ( N )  symmetric and 
can be expanded in a polynomial in Q2. For simplicity 
we restrict ourselves to the study of a model in which this 
polynomial is truncated beyond the (a2)* term [we con- 
sider a ( @ , I 3  theory in a subsequent paper]. Equilibrium 
thermodynamic functions and correlation functions can 
be calculated via a systematic 1/N expansion in any di- 
mension d .  29 

The components of @ evolve in time because of the 
time-varying magnetic field and thermal fluctuations. We 
have mimicked the effects of thermal fluctuations by a 
noise term in a Langevin equation [Eq. (311. This noise 
term represents the effect of a heat bath which, in insulat- 
ing ferromagnets, is the lattice. Thus, the relaxation of 
the order parameters to equilibrium is accomplished by 
the excitation of phonons. We restrict ourselves to tem- 
poral variations of @ that are much slower than phonon- 
relaxation times3' Thus, the components of @ evolve 
purely rela~ationally;~'  the relaxation is accounted for by 
a phenomenological parameter, the kinetic coefficient r, 
which can be taken to be the spin-lattice relaxation time. 
The spin-lattice relaxation time can be obtained from fer- 
romagnetic resonance linewidth  measurement^^^ and is 
approximately sec. 

Equation (3) for the order parameters @a can be made 
plausible if Q n  relaxes slowly on the scale of r- '  and if 
the phonons can actually be represented by a heat bath 
(i.e,, the relaxation time of the phonons is much less than 
r-'). The effects of the heat bath enter Eq. (3) in two 
ways-via, the kinetic coefficient and via the white noise 
77*. 

In general, r is a function of the parameters in the 
theory, namely the temperature r,  the coupling constant 
u ,  the strength of the magnetic field H,, the frequency of 
the magnetic field a, and the wave vector q. Since we 
consider a model in which no order parameters are con- 
served, IYq =O)#O.  In our analysis we assumed r to be 
independent of H ,  and R and therefore, for given r and 
u ,  the kinetic coefficient is a constant. 

In our continuum model [Eq. (6 ) ]  @a is taken to be a 
nonconserved order parameter even when H,=O. For a 

ferromagnet that is described by a Hamiltonian that is 
isotropic in spin space [like our model, Eq. (611, the mag- 
nitude of the homogeneous magnetization vector is con- 
served. AS soon as H ,  is nonzero, spin isotropy is broken 
and therefore will be a nonconserved order parameter. 
It might seem, therefore, that when H ,  is zero, the kinet- 
ic coefficient r should be taken to be proportional to q 2 .  
We argue, however, that the order parameter should be 
nonconserved even when H ,  =O. The kinetic coefficient 
r can be expanded in powers of q 2 ,  i.e., 
r( q = I-,+ q - . . . . When spin-lattice couplings are 
present To is nonzero even for H,=0. This implies that 
the magnetization is not conserved. We therefore take r 
to be the inverse spin-lattice relaxation time. This is ob- 
tained experimentally from measurements of ferromag- 
netic resonance linewidths, A H .  The spin-lattice relaxa- 
tion times can be extracted from the linewidths (which 
are typically = 100G. This gives a spin-lattice relaxation 
time of around lo-* sec. r depends on H,, 0, and r .  
For insulating magnets with a low magnetoelastic cou- 
pling, has a very weak dependence on H , ,  a, and r .  In 
our analysis the temperature is held fixed while the mag- 
netic field is changed, so the only serious assumption is 
the weak dependence of r on the magnetic field. 

evolves purely relaxationally 
via the Langevin equation (3). A more general dynamical 
equation would involve a kinetic term given by the Pois- 
son bracket Such a term does not have a natu- 
ral microscopic representation when N > 3. In the study 
of critical dynamics this term corresponds to a relevant 
parameter,33 it would therefore be important to study the 
effect of this term on the hysteretic behavior of the N =3, 
(a2 )2 model. 

In spite of the limitations noted above, the qualitative 
results of our study (see above) must be valid for a wide 
variety of materials. Our results make it clear that there 
is a lot of interesting physics in the phenomenon of hys- 
teresis that is worthy of experimental and theoretical 
study. In particular, it would be of great interest to study 
the scaling behavior (with respect to H ,  and C l )  of the 
area of the hysteresis loop and the universality classes 
that may govern this. 

We expect our results for Ising ferromagnets to be of 
relevance to hysteresis in strongly uniaxial ferromagnetic 
thin films or layered compounds (e.g., FeCl,). The mag- 
netic structure of FeC1, consists of ferromagnetic lay- 
e r ~ , ~ ~  with an intralayer exchange coupling J and a much 
weaker antiferromagnetic interlayer coupling J ' .  Such 
ferromagnets show sharper, squarish hysteresis loops in 
contrast to the spindle-shaped hysteresis loops of isotro- 
pic magnets. However, we add a word of caution: 
Monte Carlo dynamics can only roughly mimic the dy- 
namics of real magnets, since we neglect several features 
present in laboratory magnets. In particular, we neglect 
dipolar forces (demagnetization fields) which are especial- 
ly important for finite-size systems.35 Moreover, we 
neglect the coupling of the constituent magnetic mo- 
ments to the lattice. Spin-wave fluctuations are the dom- 
inant mechanism for the decay of the magnetization from 
a metastable state to a stable one in our continuum model 

The order parameter 



[Eq. (6 )] .  By contrast, an activated process is required for 
such a decay in the Ising model.36 However, it is worth 
noting that the systematics of the evolution of the shapes 
of hysteresis loops (with the amplitude and frequency of 
the field) are similar in our continuum model [Eq. ( 6 ) ]  and 
the Ising model. As we have stated above with certain 
provisos, such evolution should also obtain in real mag- 
nets. 

We have attempted to construct a nonequilibrium 
statistical-mechanical theory of hysteresis in two model 
spin systems. We have included the effect of thermally 
generated spatial fluctuations of the order parameter on 
hysteretic behavior. In this paper we have analyzed the 
dependence of shapes and areas of the hysteresis loops on 
the frequency and amplitude of the applied field and on 
temperature. 
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APPENDIX: FORMAL RESULT DERIVED dt 

FROM A LANGEVIN EQUATION + u @ J  q - q’ )@.,(q”, t ) 

(A31 
In this appendix we show that under certain condi- 

tions, a homogeneous initial magnetization remains x @&q’ -q”, t ) ]  + vJq, t) * 

homogeneous at all times when the spin system is subject 
to a time-varying magnetic field. We define a local free- 
energy functional to be a free-energy functional which 

its derivatives. The model free-energy functional Ea. (6) 

Repeated indices are summed (integrated) over. The 
equations for the moments lead to an infinite hierarchy of 

correlation function ( n i Q a i ( q i , t )  >. We note that 
contains only local terms in the order parameter @ a  and coupled equations. Consider the equation for the n-point 

1 ) 
d is of this form. A dynamical modei-in which the 0-rder 

local free-energy functional will be called a local 
Langevin model. The local Langevin model (&,F ,  [ @ I  ) 
thus consists of a Langevin equation, k, a local free- 
energy functional, F, and an N-component order parame- 

parameter follows a Langevin equation (3) where PF is a ”( n @a,(qi,r))= 2 (Z@a, (q i , t )  n @aj(qj,t) . 
j # i  dt 

(A4) 

Therefore, 

The differential equation can be treated as an iterative 
map which transforms the n-point correlation function at 
time t to t + 1. Thus, if at time t =O, each term on the 
right-hand side of Eq. (A5) is proportional to S (  zjq, ), 

then the n-point correlation function at subsequent times 
will also be proportional to S (  x jq j  ) (since the indepen- 
dent variable of the differential equation is t).  Therefore, 
all we are required to show is that each term on the 



right-hand side of Eq. (A5) is proportional t o  6( x j q j  ). 
I t  is obvious tha t  the  first two terms are proportional 

t o  6(zjqj . ) .  T h e  fourth term is an ( n  - 1 )-point correla- 
tion function. A t  t =O. 

where 2' indicates that  the  i th  t e rm is dropped from the  
sum. Thus, a t  f =0, 

~ a ~ ( f ) a q ~ o (  n @ a , ( q j ) ) - S  x q j  . (A6) 

The third term u ( Q a j  . . @a QPQP 3 * - Q a J  ) is an 
( n  +2)-point correlation function, which a t  t =O is pro- 
portional to 

j# i  I j  1 

This  is equal t o  6(x. ,q ,  ). The last term 

( @a, ( 91 ). . * Val  (4, ). * . @an (4, ) ) 

is also proportional t o  6 ( x J q 1  ). This  can  be  seen by ap- 
pealing to Novikov's t h e ~ r e m , ~ '  which states tha t  for  a 
Gaussian random noise ria 

( ~ a f (  [ Cg J 1 ) = 2 I ( v,( q1 )v& q' 1 ) ( Sf / S @ o  )q=qdq'  
P 

=z 2 r J s a , 8 c q ,  +q')(tif /m,),=, ,dq' . 
P 

(A7) 

W e  are  interested in  an f given by 

f( { @ I  ) =  n %,(q,) . 
J f l  

After some algebra and  an integration over q' we get,  

A t  f =O 

This, together with the  6(qi +qk 1 term in Eq. (A8), im- 
plies that  

(7]a,(qi)f((Cg)))-6 

Thus,  all terms on  the  right-hand side of Eq. (A5) a t  t = O  
are  proportional t o  S ( x , q J  ). Let us analyze this result in  
some detail. T h e  moments  a t  t ime t =O are  assumed t o  
be  given by their equilibrium values at  H = O .  Since there 
a r e  n o  dipolar forces, this implies that  the  initial magneti- 
zation is homogeneous. As t h e  field changes one might  
expect the  magnetization t o  become inhomogeneous. 
O n e  would then have t o  deal with a magnetization which 
is q dependent. T h e  above result, however, states that  
given an initial homogeneous spin configuration, inhomo- 
geneities d o  not develop a t  later times. It  can be seen 
that  the  inclusion of nonlocal interactions in t h e  free- 
energy functional would produce inhomogeneous spin 
configurations, even though the  initial spin configuration 
is homogeneous. In  particular,  the  inclusion of dipolar 
interactions produces inhomogeneities in the magnetiza- 
tion. W e  thus  we see that ,  within our  model, magnetiza- 
tion reversals occur  via spatially homogeneous spin 
configurations only. Strictly speaking, t h e  above deriva- 
tion assumes that  translational invariance is not spon- 
taneously broken and tha t  the  correlation functions d o  
not acquire anomalous q-dependent expectation values.'* 
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I 
FIG. 35. Time sequence of spin configurations on a 50X 50 lattice as a type-I hysteresis loop is traversed from H = - H o =  - 2 to 

H = H o = 2 .  Solid squares denote Sj= - 1 .  Note that even when H >0, the spins are predominantly "down." (a) H=-O.08 ,  (b) 
H = -0.02, (c) H =0.02, (d) H =0.04, (e) H =0.08, and (0 H =O. 16. The cluster, marked by an arrow in (d) and (e), shows coarsen- 
ing and coalescence. 
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