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Chaotic mixing of granular materials in two-dimensional tumbling mixers
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We consider the mixing of similar, cohesionless granular materials in quasi-two-dimensional
rotating containers by means of theory and experiment. A mathematical model is presented for the
flow in containers of arbitrary shape but which are symmetric with respect to rotation by 180° and
half-filled with solids. The flow comprises a thin cascading layer at the flat free surface, and a fixed
bed which rotates as a solid body. The layer thickness and length change slowly with mixer rotation,
but the layer geometry remains similar at all orientations. Flow visualization experiments using
glass beads in an elliptical mixer show good agreement with model predictions. Studies of mixing
are presented for circular, elliptical, and square containers. The flow in circular containers is steady,
and computations involving advection alorieo particle diffusion generated by interparticle
collisions show poor mixing. In contrast, the flow in elliptical and square mixers is time periodic
and results in chaotic advection and rapid mixing. Computational evidence for chaos in noncircular
mixers is presented in terms of Poincactions and blob deformation. Poincaections show
regions of regular and chaotic motion, and blobs deform into homoclinic tendrils with an
exponential growth of the perimeter length with time. In contrast, in circular mixers, the motion is
regular everywhere and the perimeter length increases linearly with time. Including particle
diffusion obliterates the typical chaotic structures formed on mixing; predictions of the mixing
model including diffusion are in good qualitative and quantitatiire terms of the intensity of
segregation variation with timeagreement with experimental results for mixing of an initially
circular blob in elliptical and square mixers. Scaling analysis and computations show that mixing in
noncircular mixers is faster than that in circular mixers, and the difference in mixing times increases
with mixer size. © 1999 American Institute of Physid$1054-150009)02301-0

The fundamentals of granular mixing are not well under-  manufacture of cement. Mixing of grains is also important in

stood, particularly in comparison with fluid mixing. We some natural processes such as the formation of sedimentary

consider the mixing in two-dimensional tumbling mixers  Structures in marine basifs.

with a view to reveal the role of advection in the dynam- Granular mixing has been the subject of a number of

ics of mixing. Computations and experiments for noncir- ~ Studies beginning with the early work of Lacg signifi-

cular mixers show chaotic advection, which results in cant fraction of the works have been devoted to tumbling

mixers—rotating containers partially filled with solids,

which find wide application in industry for the blending of

freely flowing granular materials. The approach in most such

studies is to characterize the efficacy of mixers by determin-

ing the time evolution of a global mixing index, a statistical

measure, which reflects the extent of mixthghe index

(several have been proposed—Réfisttypically determined

by sampling the composition at differefisually random

I INTRODUCTION positions within the mixer. Significant advances have been
made in sampling procedures and analysis of fidtais ap-

n Proach, however, gives little insight into the dynamics of

faster convective mixing as compared to circular mixers.
Chaotic advection dominates in large mixers, the norm
for industrial processes, whereas particle diffusion is im-
portant for small—laboratory scale—mixers. The results
are important for the design and scale-up of industrial
mixers.

Mixing of granular materials is an important operation i

several industrial processes in the pharmaceutical, food‘,q'x'_?ﬁ' und als of the mixing of I erial
chemical, ceramic, metallurgical, and construction € fundamentals ot the mixing ot granular materiais are

industries: Examples range from blending active pharma—.poorly understood, particularly when compared to the mix-

. - o ing of fluids (see, e.g., Ref.)7 Consider first the case of
ceutical compounds in filler material in the manufacture of .~ . ) . .
. o similar cohesionless particles. Only a few studies on a pro-
tablets to heat transfer and reaction in rotary kilns in th

etotypical system(a partially filled horizontal rotating cylin-
den have focused on elucidating mechanisms—diffusion
JPermanent address: Department of Chemical Engineering, Indian Institutéarising from the random motions generated by interparticle
,2f Technology Bombay, Powal, Mumbai 400076, India. = __collision and advectiofi=*2 The behavior is different de-
Current address: Department of Chemical Engineering, University of Pitts- . . . . e -
burgh, Pittsburgh, PA 15260. pending on the operating regin@hich may be quantified in

9Author to whom all correspondence should be addressed. terms of the Froude number, FwlL?/g, whereg is the ac-
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celeration due to gravity, is the length scale of the system, shown that time modulation of a two-dimensional flow, such
and w the rotational speed. At low spee@<., low Fp cor-  that superimposed streamlines at different times intersect, is
responding to the avalanching regime, the flow is intermit-sufficient to produce chaotic advection, which results in
tent and comprises discrete time-periodic avalanth@he  rapid mixing?® From a continuum viewpoint, the stretching
transverse mixing in this case is dominated by geomfetry:of material elements is exponential with time in chaotic
Each avalanche results in a wedge-shaped bed of particles f#faws as compared to linear in steady 2D flows.
the free surface, abruptly cascading to form a new wedge at Producing chaotic advection in granular systems is rela-
a lower position. To a first-order approximation the ava-tively difficult. In contrast to fluid flows, granular flows are
lanche produces uniform mixing with a wedge, howeverkinematically defined over most of the flow domain. Shear-
mixing at the scale of the cylinder results from wedge inter-ing of particles is confined to thin layers, while the rest of the
sections. Thus, a half-full cylinder results in no wedge inter-particles move as a fixed bed with no relative motion be-
sections and mixing is slow. tween particles. This constrains, to a significant extent, the
At higher mixer rotational speeds, the continuous flowvariations in flow that can be employed to improve mixing;
rolling regimé* is obtained, in which a thin layer of particles analysis, however, is considerably simplified. One simple
flows down the free surface while the remaining particlesnethod of generating a time varying flow in a 2D tumbling
rotate as a fixed bed. Particles continuously enter the layghixer is to use mixers with noncircular cross sections. In this
from the fixed bed in the upper-half of the layer, and exitcase the length and thickness of the cascading layer change
from the layer into the fixed bed in the lower half; the free with time resulting in the streamline modulation required for
surface in this regime remains flat. Transverse mixing in thighaotic advection.
case depends on dynamics and results from shearing and We analyze in this paper the flow and mixing of nonco-
collisional diffusion within the laye?:*° Consider a blob of hesive granular materials in 2D tumbling mixers operating in
tracer particles which enters the layer. While passing througkhe continuous flow rolling regime. The goal is to understand
the layer the blob is sheared and becomes blurred due i§€ role of mixer geometry in producing widespread chaotic
collisional diffusion, it then enters the bed, and after a solig@dvection, and the implications of chaotic mixing for prac-
body rotation, it reenters the layer; and the process repeatice. The role of advection is highlighted by means of model
Mixing also has a geometric component: Particles at differ£omputations in which particle collisional diffusion is omit-
ent radial positions may have different residence times in théed (this is standard practice in the analysis of chaotic advec-
bed and thus enter the layer at different times resulting ifion in fluids’). The effects of collisional diffusion, however,
mixing. The differences in rotation times are the smallest formay be significant in many cases, and thus systems with
half-full mixers: In this case all the particles spend nearly theSimultaneous chaotic advection and collisional diffusion are
same time in the bed. Axial mixing occurs due to diffusion considered as well. The paper is structured as follows. Trans-
alone, since there is no axial flow:3 verse flow in 2D tumbling mixers is discussed in Sec. Il, and
Differences in particle propertiege.g., size, density, the analysis of mixing in the system is given in Sec. lll. The
shape, surface roughness, ptcan result in spontaneous sgale-up of_tumbling mixers based on th_e model developed is
separation of the different particles during mixifg® Such d!scus_sed in Sec. IV, and the conclusions of the work are
granular segregation can occur by various mechanisms, arffdven in Sec. V.
different segregated patterfs.g., radial cores, axial bands,
etc., in rotating cylindejsmay be formed depending on the || TRANSVERSE FLOW IN 2D TUMBLING MIXERS
geometry of the flow®2! The local rate of segregation in a
mixture depends on the shearing and granular packing in th@: General problem
region, in addition to the differences in particle properties.  Consider the flow in a 2D tumbler of arbitrary, but ev-
Consequently, the flow plays a critical role in determiningerywhere convexany two points in the mixer can be joined
the final segregated state. Shear-induced phase separatiorbipn a straight line without crossing the mixer boundary
polymer blends is perhaps the closest analog of the segregeross-sectional shape as shown in Fig. 1. Rotation of the
tion process in fluid mixing, although the physical processesnixer about pointO, at an angular speed in the rolling
are quite different. While the mechanisms of segregation areegime range, produces a thin layer of particles flowing
well understood in qualitative terms, only a few theoreticaldown the free surface, which is nearly flat. The remaining
models are available to describe the procés& particles rotate as a fixed bed. The angle of the free surface
The objective of the present work is to study the role of(8) remains constant in this reginiEig. 1). Assume that the
advection in granular mixing; we thus focus on mixtures ofmotion of the material interface normal to itself is small with
similar particles so that segregation does not occur. The imrespect to a coordinate system fixedCGatContinuity of the
plications of simultaneousmixing and segregation are dis- velocity field at the bed layer interface then allows the cal-
cussed at the end of the paper. culation of the velocities of the particles entering and leaving
The flow of similar particles in a rotating cylinder oper- the layer, since the velocity in the bed is purely rotational
ating in the rolling regime is two dimension&D) and  and given by
steady. Fluid mixing theory states that mixing in the system
due to advection alonéno diffusion is poor, since the
streamlines are time invariant and closed, and act as impein cylindrical coordinates, with the origin at poi@. The
etrable barrieré® Several studies on fluid mixing have geometrical construction shown in Fig. 1 shows that the

v,=0, vy=or 1)
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FIG. 2. Schematic view of flow in a rotating mixer of arbitrary convex
shape which is symmetric with respect to half rotations and is half-filled.
FIG. 1. Schematic view of continuous flow in a rotating mixer of arbitrary The layer in this case is symmetric about the péinand material entering
convex shape. The flowing layer is the shaded region, and the dashed lin@§e layer k<0) is equal to the material leaving the layer0).

show arcs of circles centered at podt Velocity vectors for particles en-

tering and leaving the bed are also shown. The mixer is rotated with angular

velocity, w, about pointO and the velocity profile within the layer is nearly

simple shear. ics of the flow, the flow in the layer is quasisteady and simi-
lar to that for a circular mixer with the same layer geometry.

. h . | he axis of on d Several previous experiment&i®® and computationd~32
point P on the surface closest to the axis of rotation eMarsiudies have considered the flow in a rotating cylinder. A

cates the layer into two parts: Uphill of this point particles continuum model for the flow has recently been propd€ed,
enter the layer from the bed whereas particles leave the layglyic is consistent with previous experimental results, and
and reenter the bed at downhill positions. For thin layers th‘?he predictions of the model are in good agreement with
velocity of the particles entering or leaving the layer is theexperimental data. We review this model below.
component of the bed velocity normal to the bed—layer in- The velocity field in the layer obtained from the con-

terface, and is given by tinuum model for a circular cylinder is

vy=—wX 2 y
(Fig. 1. The particles then cascade down the layer, and the Yx= 24| 1+ 5/, )
local downflow velocity determines the rate of change of the )
layer thickness. = — wx X) @
The above analysis shows that the mass of the particles Y S’

entering the layer at any time is, in general, different fror’nwhereu is the mean downflow velocity in the layer which, in
that leaving the layer, and thus the local layer thickness anaeneral varies with distance along the layex Computa,-
cascading velocity should vary in a pompllcated way. Thetions and experimental results indicate that the layer thick-
ge_zom_etry gene_raftes as WeII_ a varlapon of the layer Iengtrﬁess may be approximated s 34 1— (x/L)2], where 5,
with time. Prediction of the time-varying flow in the system is the midlayer thicknes®. Using this expression for the

would require the(nume_rica] solution of th_e mass and_ mo- layer thickness profile, together with the volume flux in the
mentum balance equations for the flow in the laifewith layer Q= Qq[ 1— (x/L)2], obtained from the integration of

the possible additional compllcaupn of momentum belng,[he linear variation of the flux into the layEEq. (4)], gives
generated by the up and down motion of the layer. The probl—J:QmE constant(a slightly more detailed model is given
lem simplifies considerably for the case of half-filled CONVeX; Ref. 33.

containers, which are symmetric with respect to 180° rota- There is an easier way to arrive at some of the above
tions about their centroid, and an approximate analytical "€fesults. When the bed is half full. the entire bed passes

sult is obtained. We confine most of the following d'scuss'onthrough the layer in half a revolution of the mixer, so that the

to this class. volumetric flow rate per unit cylinder length calculated at the
midpoint of the layer x=0) is
B. Specific case: Convex, rotationally symmetric, 2 2
half-filled mixers Qo mL” 1wl 5)
O 2 -

o . . . (7 w) 2

Two simplifications are apparent. First, since the mixer
is half full, the pointP, which demarcates the inflow and The average velocity is thus
outflow regions, coincides with the centroid of the mixar wl2
for all mixer orientations; and there is no up and down mo- u= CYN (6)
tion of the layer. Second, the layer is symmetric about the 0
point P. SpecificallyL,=L, (Fig. 1) and the total flux of and is inversely related to the midlayer thicknesg)( If we
particles entering the layer from the uphill surface is exactlyassume that the, flow is linear iny we arrive at(3), and if
equal to that leaving from the downhill surface at any time.a shape fot, 6= 6(x), is assumed, by continuity we obtain
This is illustrated for a half-filled symmetric mixer of arbi- »,. The result given by4) corresponds to a parabol&x).
trary shape shown in Fig. 2. If we now assume that the layer The governing equations for the flow in noncircular mix-
geometry changes slowly with time compared to the dynamers in the quasisteady state are identical to the above, but
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with the layer length(L), the midlayer thickness&), and
the mean velocity(u), all varying slowly with time. The
variation of the layer length with time is uniquely determined
by the mixer geometry. Assuming geometrical similarity of
the layer at different times, we haveéy(t)/L(t)=k
=constant(as we shall see experiments indicate that this is
indeed trug This gives the variation of the mean velocity
with time as

L(t
u(t)= w2—|(<) @)

Rotation of the mixer results in a periodic increase and de-
crease of the layer size, maintaining geometrical similarity;
the mean velocity increases and decreases proportionately t
the layer length. The flow becomes time invariant if all dis-
tances are scaled with(t), and velocities withwL (t).

Consider next the variation of layer length for specific
mixer geometries. For an ellipse we obtain

ab
[b? cog(wt+ a) +aZ sirf( wt+ a) ]2’ (8)

L(t)=

Where aandb _are the mz_ijor an_d_ _minor semiaxes of the g 3, Comparison of streaklines obtained experimentally for an ellipse
elllpse, reSpeCt'Vely! an.d IS t_he initial angle b?t\’\_’een the with b=0.5 (uppe) with theoretically computed streamling®wer). The
free surface and the major axis of the ellipse. Similarly, for adashed line demarcates the flowing layer in the upper photograph.
rectangular mixer we have

L(t) _
L(t)

Tcosd| if 0<64 or |m—0|<6y or 6>(2mw— by) )

_ cos 9 m if 6<64 or |7T— 0|<0d or 0>(2m—0y)
b = _

Sinal otherwise

|siné| sl otherwise
where 6= (wt+ @)mod(27), 2a is the long side andI2is (13

the short side of the rectangle, amg=tan *(b/a). In the ) = i i
case of an ellipse, arbitrarily slow variation in geometry with With da=tan "b. The dimensionless parameters of the flow
rotation can be achieved in the linita— 1; this, however, are then the aspect ratib € b/a), and the maximum mid-
is not possible for a rectangular mixer. The flows definedayer thicknessdy max=k, sincel .=1). The value of the
above are clearly time periodic with periatlo which cor-  parametek may be directly obtained from experimental re-
responds to half a revolution of the mixer. sults.

Rescaling all lengths with, time with » %, and veloci-
ties with wa, the equations for flow in dimensionless form

are C. Experiments
— Flow visualization experiments are carried out in
— :E 1+ y (10) quasi-2D mixers of different shapes and sizes using spherical
ok ' glass beads of diameter 0.8 mi@uackenbush Each mix-

er's front plate is glass and the rear plate is aluminum and
o y grounded to prevent buildup of static electric charge. The
vy=—X| = (1D thickness of all the mixers is 6 mf-8 particle diameteys
6 The mixers are rotated at a fixed angular speed in the rolling
regime using a computer controlled stepper mg@ompu-
motor). Digital photographs are taken of the rotating mixers,
which are half filled with the glass beads, using a computer
— controlled charge-coupled device caméfadak Megaplus
L(t)=— b (12) Relatively low shutter speeds are used to generate streaklines
(b% cog 9+ sir? 9)12 resulting from the particle motion. The digital images are
o analyzed for the layer thickness profiles and the midlayer
with 6= (t+ a)mod 27, and for a rectangle by thickness.

5
2

with 6= 8o[1— (X/L)?]. The variation of the dimensionless
layer length with time for an ellipse is given by
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T T T T T T ber. The data for each value of the acceleration fall on a
= —4 . . . . . .

il AT 1 straight line, which validates the assumption of geometrical

m, Fr=6.2x10-* 1

m, Fr=6.2x10-*

similarity of the layer k= &y/L=constant).

Computed streamlines for an ellipse and a square at dif-
ferent orientations are shown in Fig. 5. The regions in which
] transverse intersection between streamlines occurs are
1 shaded. The condition of intersection of streamlines, required
i 1 for chaotic advection in 2D time-periodic flows is clearly
O T T T e 500 satisfied in both cases.

FIG. 4. Variation of the dimensionless midlayer thicknes/d, with the
dimensionless length of the free surfatéd, for different bead sizesl, and . TRANSVERSE MIXING
accelerations given in terms of the Froude numbes &fL/g.

We consider the transverse mixing in noncircular con-
tainers by means of computations based on the flow model
discussed in Sec. Il. The dimensionless governing equations

Figure 3 shows a typical streakline photograph for anfor the calculation of a trajectory in the layer are
ellipse with a ratio of the minor to major axis given ly
=0.5. The layer, comprising the faster moving particles is §27(777) (16)
clearly visible. Particles in the bed move along circular arcs, §¢
and the interface between the bed and the l&ifer dashed
line in Fig. 3 is obtained by joining the points at which an dy o
abrupt change in the direction of motion occurs. Streamlines  —=vy(X,y,t) +w(t), (17
predicted by the model for the corresponding layer thickness ~ dt
are shown alongsidé-ig. 3). The streamlines are computed
by numerically integrating the following equations:

D. Results and discussion

where {v,,vy) is the velocity field given in Eqgs(10) and
(11), andw(t) is a white noise term that simulates particle

dx _ diffusion. The above equations are the Lagrangian represen-
ds (XY, 1), (14 tation of the convective diffusion equation, neglecting diffu-
sion relative to the convection in the flow directiax) ( The
dy _ _ — time integral of the white noise term at different times,
d_S_Vy(X’ ) )i (15)
o — t+At s ter
keepingt fixed, where §,,7y) is the velocity in the bed and S(At)= f? w(t’)dt, (18)

the layer, ands is a dummy variable. There is good agree-
ment between theory and experiment. Photographs taken €ltves a set of Gaussian random numb¢8s, which are re-
different mixer orientations show that the angle of the freglated to the dimensionless particle collisional diffusivity by
surface is independent of the rotation of the mixer. This vali{ S?)=2D,At, where the pointed brackets denote an aver-
dates our assumption that the surface position is constamige over the set. The collisional diffusivity is made dimen-
with time. sionless withwa?. The motion of the particles in the bed is
Figure 4 shows the variation of the midlayer thicknesssimply obtained as a map corresponding to the rotation about
(8p) with length of the layer(L) obtained experimentally point P. The above formulation allows for detailed analysis
using different mixers, and for two different accelerationsof the mixing in containers of different geometry. We note
expressed in dimensionless form in terms of the Froude nunthat segregation can be incorporated in the above framework,

FIG. 5. Computed streamlines for a square and an elliptical mixer at different orientations. The shaded region in each case shows the region in which
transverse intersections between the streamlines at the different orientations occur.
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as shown in Ref. 24 for a mixture of different density par-
ticles in a rotating cylinder. The inclusion of these effects is
however, beyond the scope of this paper.

A. Computational details

Computations allow the study of advection in isolation
(no diffusion, whereas it is difficult, as we shall see, to

devise laboratory experiments in which particle diffusion ef-
fects are negligibly small. We study advection in the mixers

in two ways: (i) by computation ofPoincaresections stro-
boscopic maps ofcontinuum particle trajectories, andii)
blob deformation. The Poincarsections are obtained from

computing the particle trajectories by integration of the ve-

locity field with respect to timgEqgs. (16) and (17) with

w(t)=0], and noting the position after each half revolution
of the mixer. Several different initial conditions are used in
generating the Poincargections so as to map out the flow
behavior over the entire flow domain. Blob deformation

computations are carried out by mapping a large humber of

particles, initially uniformly distributed in a circular region,
by integration of the velocity field for the specified time
duration, for each of the particles.

Computational results and experiments show that par-

ticle collisional diffusion has a significant effect on mixing.

Computational studies of blob deformation involving advec-

tion and diffusion in the 2D noncircular mixers are carried

Khakhar et al.

out to understand their relative importance in the presentiG. 6. Poincaresections for elliptical mixers of varying aspect ratio) (
case. The computational procedure used is similar to thathe dimensionless midlayer thickness used in the computatioss g,

used for blob deformation in the limit of pure advection. In
addition, particles flowing in the layer are given random

Gaussian displacements with variande gAt to simulate

diffusion; At is the integration time step. The particle colli-
sional diffusivity is estimated from the following scaling re-
lation obtained by Savadefrom particle dynamics compu-
tations for shear flow

dv,
dy’

Dcollzf(v)d2 (19

whered is the particle diameter ang is the solids volume
fraction. Forv=0.55 and a coefficient of restitution about

=0.1.

B. Experiments

Experimental studies of blob deformation are also car-
ried out to get an insight into the mixing process. A circular
blob of colored beads is carefully positioned at the desired
location in the bed. The mixer is rotated at a constant angular
speed by means of the stepper motor, and digital photo-
graphs are taken at different times to record the progress of
mixing.

Quantitative comparisons between theory and experi-
ment are made in terms of the intensity of segregation, which

0.9, which correspond roughly to the parameters for the syss essentially the normalized standard deviation of the con-

tem under consideration, the prefactor in E§9) is f(v)
~0.025%* On substitution of the dimensionless velocity us-
ing Eq.(10), after casting Eq(19) in dimensionless form, we
get

D o= 0.025, (20)

xljﬂo.|
N

whered=d/a. In obtaining Eq(20), we use the relationship

centration of tracer particles from the value for perfect
mixing.® The intensity of segregation is obtained from the
experimental photographs by thresholding the digital photo-
graph and determining the fraction of the area occupied by
the colored particles in each of a grid of squares placed over
the mixer. The fraction is taken to be the local concentration,
and the intensity of segregation is calculated as the standard
deviation of the concentration from the mean vailtie.

8o=KkL, and evaluate the velocity gradient at the midpoint ofc Results and discussion

the layer k=0). In general, the collisional diffusivity varies
with granular temperaturémean kinetic energy associated
with the velocity fluctuationsand solids volume fraction in
the layer. Here, for simplicity, we take the diffusivity to be a
constant as given by E@20). Previous studies have shown

that Eq.(20) gives reasonable predictions of mixing in the
system%:24

Consider the case of pure advection first. Figure 6 shows
Poincaresections for ellipses of different aspect ratios. For a
circular mixer p=1) the Poincareection shows only regu-
lar motion, and the invariant curves obtaingtKAM
curves®) coincide with the streamlines. However, for lower
values of the aspect ratidb 1), regions of chaotic motion
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FIG. 7. Poincaresections for elliptical mixers of varying layer thickness.
The aspect ratio of the ellipse used in the computations=§.7.

are interspersed with regions of regular motidlemarcated

by KAM curves; the size of the chaotic regions increases
with decreasing aspect ratib). Figure 7 shows the effect of
layer thickness for a fixed value of the aspect ratio. Thicker
layers produce more widespread chaos; this is because the
area in which transverse intersections between streamlines at
different mixer orientations occuthe shaded area in Fig) 5
increases with layer thickness.

A comparison of blob deformation in three different ge-
ometries(square, ellipse, and cirglés shown in Fig. 8. The
initial positions of the blobs and the Poincactions for the
mixers are included as insets in Fig. 8. In the circular mixer,
each blob is deformed into a filament; the length of the fila-
ments increases slowly with time. In contrast, markedly dif-
ferent behavior is seen for elliptical and square mixers. The
initially circular blobs in the chaotic regions are deformed
into filaments, which fold back upon themselves repeatedly.
This indicates the presence of an underlying homoclinic
structure which is characteristic of chaotic advection. The
blobs in the regular regions of these mixers remain largely
undeformedthe other signatures of chaos are a positive Li-
apunov exponent—exponential stretching—and the presence
of horseshoe maps; the rate of stretching is considered in FigiG. 8. Comparison of the mixing of tracer particles in a circular, elliptical,
9). and square mixer simulated using the model with no particle diffusion. The

The major qualitative difference between mixing by Inset figure on the upper left-hand side shows the Poinsacton, and the

. . .. . . initial condition is shown in the upper right-hand inset.
regular and chaotic advection is illustrated in Fig. 9. The
change in the computed perimeter length of the blob in-
creases linearly with time in the circular mixer, whereas an  Comparison between the mixing in the square and ellip-
exponential increase of length with time is obtained for thetical mixers shows that the square has more widespread
blobs in the chaotic regions of the square and elliptical mix-chaos and the rate of stretching is also higher.
ers. The latter is a signature of a chaotic flow. Diffusion acts to blur the structures formed by advection
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FIG. 9. Variation of the relative perimeter length of a blob with time in the
mixers corresponding to the computation in Fig. 8. Note that while the
perimeter length in the circular mixer grows linearly, the length in the non-
circular mixers grows exponentially.

of a blob, and thus enhances mixing. Figure 10 shows the
effect of increasing diffusivity on the deformation of a blob
in an elliptical mixer. While the shape of the blob is consid-
erably altered by diffusion, the stretching of the blob, as may
be expected, is along the unstable maniféidfer to the
Poincaresection in Fig. 1Das in the case with no diffusion.
The experimentally mixed state is also shown in Fig. 10.
There is good agreement between theory and experiment for
the case corresponding to the diffusivity calculated from Eq.
(20). Note also that chaos does not imply that stretching
takes place immediately; after three revolutions the stretch-
ing of the circular blob is relatively small.

A more detailed comparison between theory and experi-
ment is shown in Fig. 11 for blob deformation in a square
mixer. There is good qualitative agreement between the two
in terms of the structures produced by mixing. Comparison
to the Poincaresection obtained excluding collisional diffu-
sion(Fig. 8, inset shows that several features of the structure
are apparent even when diffusion is included: blobs are
stretched along manifolds, and the density of particles in the
regular islands 'S_Sma”'_A quam't_atlve_ comparison t_)etwee_rlllG. 10. Effect of diffusion on blob deformation is shown by means of
theory and experiment is shown in Fig. 12. Th_ere IS _aga"]:omputations for various values of the dimensionless diffusividy for
good agreement between the two for the variation of intenthree mixer revolutions. The initial condition is shown as an inset on the

sity of segregation with time. We note that there is no ad{eft-hand side and the Poincasection as an inset on the right-hand side.
justable parameter in the model. Deformation of a blob_after thr_e_e re_vol_utlo_ns obtained e_xperl_mentally is
shown at the bottom with the initial distribution of the particles inset.

IV. SCALE UP OF TUMBLING MIXERS

Experimental results for the elliptical and square mixersUsing do=kL, and Eq.(19) for the collisional diffusivity,
discussed above indicate that diffusion is sufficiently fast sgve obtain
as to obliterate the folded structures seen in Fig. 8. This L\2
could be taken to seem to indicate that chaotic advection is Pe= 20k3(—) . (22
of little utility in the presence of relatively fast particle dif-
fusion. However, diffusional effects are scale dependent, an@ihus the Pelet number increases, and therefore the effec-
their relative importance with respect to advection can bdiveness of the diffusion decreases with increasing system
estimated in terms of the'Blet number for the system under size. The Pelet number for the experimental systems dis-
consideration. For the tumbling mixers discussed above, theussed in Sec. |ll is Pe100.
Peclet number is defined as the ratio of the characteristic ~ We illustrate the above results by means of computations
diffusion time, 53/D, to the characteristic advection time, comparing the mixing in square and circular mixers, for

L/u, and is given by large and small sized containers. Figure 13 shows the varia-
2 tion of the intensity of segregation with time for four differ-
Pe= o4 (21) ent mixers and two different initial conditions. In one case,

LD o’ 13(b), the initial distribution corresponds to the left-half of
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FIG. 13. Variation of the intensity of segregation vs mixer rotation obtained

for mixers of different shapes and sizes by computations. The large systems

correspond to a Rtet number Pe=10%, and the small systems to Pe
Computations Experiments =10%, which indicates a mixer size ratio of 10. Two initial conditions,

shown as insets, are considered.

FIG. 11. Mixing of tracer particles in a container with a square cross sec-

tion. Shown is a comparison of an experiment using colored glass kibads

right-hand sidgand a simulation using the model. The number of rotations

for each image is listed in the corner.

which mixing is primarily by diffusion across streamlines,
increase in the mixer size results in a significant reduction in
the rate of mixing. In contrast, for the square mixer, in which
the bed containing colored particles and the right-half of thechaotic advection aids diffusion, there is a smaller reduction
bed white particles; the othésomewhat more practidato in mixing rate with mi,xer size. Furthermore, comparing at
one material layered on top of the otfi¢B(a)]. The intensity ~ equal sizesi.e., equal Pelet numberswe see that the square
of segregation for all cases is initially equal to 0.5, whichcontainer mixes faster than the circular one,for both the sizes
corresponds to the theoretical value for a completely segreconsidered here. Thus, in addition to theclee number,
gated mixture containing 50% of the colored particles. Themixer shape significantly affects the rate of mixing.

decay in intensity of segregation with time for the different ~ The results presented above indicate that chaotic advec-
mixers is, however, very different. One of the initial condi- tion becomes more important with increasing mixer size. Se-
tions favors the circular geometry. A good mixer however,lection of an appropriaténoncirculay geometry may thus be
should mix well regardless of the initial condition and the Useful for fast transverse mixing in large mixers, given the
horizontally layered case makes it clear that the circle is &lecreasing importance of diffusion with size.

poor mixer. Moreover, in the case of the circular mixer, in

V. CONCLUSIONS

02 e The flow model for noncircular two-dimensional mixers
; o experiment] presented here forms the basis of the analysis of mixing of
015 o simulation granular materials by chaotic advection and diffusion. As

developed, the model is appropriate for the flows in mixers

]
01| @ ; 8y i with arbitrary shape, but which are symmetric with respect to
_ i i half rotations. Computational studies of mixing by advection
0.05 [ alone (no diffusion show chaotic mixing for noncircular

intensity of segregation

_ mixers as evidenced by Poincasections and exponential
P AT T P N T length stretch. Thicker flowing layers and greater deviation
0 05 1 15 2 25 of the mixer cross-sectional shape from circular increase the

rotations .
G. 12, Variation of the i i of _ _ onis sh area of the regions of chaos.
FIG. 12. Variation of the intensity of segregation vs mixer rotation is shown : ; : . i }
for the experimental and theoretical results in Fig. 11. The filled circles Diffusion plays an important role in the mixing of granu

represent experimental values and the open circles denote values obtainkd materialsf eXperim?ntS and CompUtationS fo_r the labora-
from the model. tory scale mixers studied here show that diffusion blurs the
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better mixing. Granular mixtures of dissimilar materials of-
ten segregate when tumblé&tin the case of the circular
mixer time-independent isoconcentration regions of segre-
gated materials coincide with the streamlines. The chaotic
scenario outlined here suggests a wealth of unexplored pos-
sibilities: a dynamic balance between chaotic advection try-
ing to destroy large scale inhomogeneities and the de-mixing
caused by segregation.
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