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Mixing and segregation of granular materials in chute flows
D. V. Khakhar
Department of Chemical Engineering, Indian Institute of Technology—Bombay, Powai,
Mumbai 400076, India

J. J. McCarthy
Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

J. M. Ottinoa)

Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208

~Received 27 January 1999; accepted for publication 4 May 1999!

Mixing of granular solids is invariably accompanied by segregation, however, the fundamentals of
the process are not well understood. We analyze density and size segregation in a chute flow of
cohesionless spherical particles by means of computations and theory based on the transport
equations for a mixture of nearly elastic particles. Computations for elastic particles~Monte Carlo
simulations!, nearly elastic particles, and inelastic, frictional particles~particle dynamics
simulations! are carried out. General expressions for the segregation fluxes due to pressure gradients
and temperature gradients are derived. Simplified equations are obtained for the limiting cases of
low volume fractions~ideal gas limit! and equal sized particles. Theoretical predictions of
equilibrium number density profiles are in good agreement with computations for mixtures of equal
sized particles with different density for all solids volume fractions, and for mixtures of different
sized particles at low volume fractions (n,0.2), when the particles are elastic or nearly elastic. In
the case of inelastic, frictional particles the theory gives reasonable predictions if an appropriate
effective granular temperature is assumed. The relative importance of pressure diffusion and
temperature diffusion for the cases considered is discussed. ©1999 American Institute of Physics.
@S1054-1500~99!01603-1#
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An important industrial and fundamental problem is the
tendency for granular mixtures to demix or segregate.
Small differences in either size or density of the particles
lead to flow-induced segregation. The fundamentals of the
process are, in general, imperfectly understood. Constitu-
tive equations for the case of equal size/different density
particle systems have been proposed; the case of equ
density/different size particles is more complex. We ana-
lyze density and size segregation of cohesionless spheric
particles in the simplest possible flow—a chute flow—by
means of computations and theory based on the trans
port equations for a mixture of nearly elastic particles.
Simplified equations are possible for limiting cases; e.g
low volume fractions, equal sized particles. The results
are important in continuum modeling descriptions of
mixing and segregation of granular flows.

I. INTRODUCTION

Mixing of granular materials is invariably accompanie
by segregation-driven-processes resulting from difference
size, density, shape, roughness, etc., of the constituents o
mixture. While a qualitative understanding of the mech
nisms of segregation has existed for some time now,1–3 there
are remarkably few models—especially simple one—wh
give quantitative predictions of the extent of segregation

a!Electronic mail: ottino@chem-eng.nwu.edu
5941054-1500/99/9(3)/594/17/$15.00
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that can be used in conjunction with other modeling too
Such information is particularly important in the analysis a
design of industrial mixing operations in the pharmaceutic
chemical, food, ceramic, and construction industries. Curr
practices are empirical with limited possibilities of genera
zation. The design of mixers, for example, is based on h
ristics arrived at by prior experience. The lack of gene
constitutive equations to predict the extent of segregatio
clearly a hindrance to systematic approaches to the prob

Several previous studies of granular segregation have
cused on chute flows4–7—continuous flows of granular ma
terial in inclined channels. Besides the practical importan
of such flows in granular transportation, the simplicity of t
flows allows for detailed development and testing of theo
Further, the results from such studies can be applied to o
systems involving free surface flows~where much of the
segregation takes place! such as drum mixers, rotary kilns
and the formation of heaps of granular materials. We rev
studies of segregation both in chute flows and in other f
surface flows below.

Particle dynamics simulations~PDS!, in which proper-
ties of particles such as size, shape, and density can b
rectly specified, appear to be the most suitable tools for a
lyzing segregation.8 Details such as velocity and
concentration profiles for every component in a mixture c
be obtained. Physical insight does not necessarily follow;
results are only as useful as those resulting from w
designed experiments. Moreover, computational inten
typically limits such simulations to relatively small system
© 1999 American Institute of Physics
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~less than 104 particles! and to simple particle shape
~spheres, spheroids, and fused spheres!. Recent results9 also
indicate sensitivity of the results of PDS to particle prop
ties. In contrast, continuum theories do not have the lim
tions of scale-up to larger system sizes. These models
based on constitutive relations obtained by fitting pheno
enological equations to various data, such as PDS sim
tions, or analyses based on statistical mechanics for sim
geometries~spheres! and nearly elastic particles. Often, how
ever, physical insight is required in order to simplify th
equations to a tractable form.

Transport equations obtained using kinetic theory
slightly inelastic spheres in rapid flow~no sustained contact
between particles! are analogous to those for fluids.10 The
granular temperature, defined as a quantity proportional t
the average kinetic energy of a particle associated with fl
tuations~i.e., the mean kinetic energy per particle less
kinetic energy of a particle moving at the mean velocity
the averaging volume!, plays an important role. Since coll
sions dissipate energy, a constant source of work is requ
to sustain the fluidity of the granular material. Continuu
theories broadly based on this approach, in some case
cluding empirical corrections for interparticle friction, hav
been successful in predicting experimentally measu
stresses and flow profiles for beads in shear flows and c
flows.11,12Surprisingly, continuum models are found to wo
in many cases, even for flowing layers only a few diamet
thick.

Continuum theory presents a complementary tool for
analysis of segregation. Moreover, continuum theories
ideally suited to investigate the competition between mix
and segregation, a topic that should be of interest to
readers of this journal, given the rich interplay between c
otic advection on one hand, and segregation-induced de
ing on the other. Figure 1 shows a typical example of this
which steel balls and glass beads of equal size are rotate
a square mixer.13 The equilibrium pattern reflects the unde
lying Poincare´ section for the flow and a continuum mod
utilizing segregation flux expressions derived in this wo
predicts the pattern formed.

The main objective of the present work is to gain

FIG. 1. Segregated pattern formed by rotation of a mixture of different s
particles in a partially filled square mixer~Ref. 13!.
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understanding of the factors affecting the segregation of m
tures of cohesionless spherical particles in chute flows,
thus to develop simple continuum models for calculati
segregation fluxes. The effect of differences in size and d
sity are considered by means of computations involving
increasing level of detail. Monte Carlo simulations, in whi
the system is isothermal and the particles are elastic
frictionless, correspond to the simplest case. Particle dyn
ics simulations of inelastic frictionless particles represent
next level of detail, and particle dynamics simulations w
realistic frictional and collisional interactions between pa
ticles are the closest to the actual system. The results of
simulation are compared to the predictions of the kine
theory with the goal of testing the limits of applicability o
the theory with respect to size and density segregation.

The paper is organized as follows. Section II revie
theoretical studies related to segregation in granular flo
and Sec. III reviews the kinetic theory equations for a bina
mixture of spherical particles. Governing equations for d
fusion and segregation are obtained for two cases:~i! elastic
particles at a uniform temperature in a gravitational field a
~ii ! inelastic particles in a chute flow. Section IV gives th
details of the computational procedures whereas the com
tational results and comparison to theory are presente
Sec. V. Section VI gives the summary and conclusions.

II. SEGREGATION MODELS

Savage and Lun4 presented the first detailed model fo
segregation due to size differences in a chute flow based
percolation mechanism. The net percolation flux of th
smaller particles in the direction of the gravitational comp
nent normal to the flowing layer was obtained by statisti
analysis. The analysis was based on the assumption that
dense flowing layer small voids are more likely to be form
than larger ones. Thus, smaller particles drop into voids w
a greater frequency as compared to larger particles, resu
in a larger downward flux of the smaller particles. The r
verse flux, which results from the requirement of maintaini
a zero total flux of particles normal to the layer, is the sa
for both types of particles. The net result is a downward fl
of the smaller particles and an upward flux of the larg
particles resulting in segregation. The distribution of vo
sizes is obtained by considering simple arrangements of
ticles in a layer, and the frequency of dropping is obtain
from dimensional analysis. Comparisons of the distan
along the chute at which the material segregates comple
into two layers is found to be in agreement with experime
for chute flow of mixtures of polystyrene beads of differe
sizes.

Dolgunin and co-workers6,7 proposed simple phenom
enological equations for the segregation flux resulting fr
density or size differences. The flux is assumed to depend
the concentration of the particles and the granular temp
ture. The segregation flux is balanced by mixing due to p
ticle collisional diffusion resulting in an equilibrium distri
bution of particles across the flowing layer. The theo
predicts s-shaped concentration profiles at equilibrium t
are in agreement with experimentally obtained profiles. T
model, however, is not rigorous and thus does not clea
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specify the driving forces for the segregation or the dep
dence of the segregation flux on the particle properties.

In a previous work14 we obtained a constitutive equatio
for the segregation flux for a mixture of equal sized but d
ferent density spheres using an effective medium appro
The segregation flux is assumed to be proportional to
buoyant force acting on a particle immersed in an effect
medium of the density of the mixture surrounding it. T
denser particles thus sink to lower positions in the flow
layer, and the driving force for segregation in this case is
pressure gradient across the layer. This simple idea w
quite well. Predictions of the equilibrium number dens
profile for the particle mixture in a gravitational field are
good agreement with computational results obtained fr
Monte Carlo simulations~elastic, frictionless spheres! and
particle dynamics simulations for chute flow~inelastic, fric-
tional spheres!. The segregation flux when incorporated in
a model for flow and diffusion in a rotating cylinder, als
gave good agreement with the distribution of particles
tained fromradial segregationof a mixture of steel and glas
balls. In this case the denser particles sink to lower positi
of the flowing layer, and thus are incorporated into an in
radial core, whereas the lighter glass particles are at the
riphery. This is an example of the end use of constitut
models such as the one developed in this work. The cas
size segregation requires a more complex description
that for density segregation, as shown below.

The early work of Nityanandet al.15 experimentally il-
lustrates the behavior of size segregation. At low rotatio
speeds of the cylinder, percolation~the Savage and Lun4

mechanism discussed above! dominates and the smaller pa
ticles sink to lower levels in the flowing layer, which resu
in the formation of a core of the smaller particles. Howev
at higher rotational speeds the segregation pattern reve
with the smaller particles at the periphery instead of the co
These results have not been previously explained. Re
studies of radial segregation have focused primarily on
low rotational speed regime.16–20Baumannet al.19 suggested
a trapping mechanism for size segregation, and more
cently Prigozhin and Kalman20 have proposed a method fo
estimation of radial segregation based on measurem
taken in heap formation.

While the theories for segregation reviewed above p
vide some physical insight into the process, only a few
grounded on fundamentals. The statistical mechanical stu
of hard sphere mixtures provide a starting point for the
derstanding of granular segregation, and these results
the core of the current work. The most complete kine
theory for multicomponent mixtures of hard spheres is giv
by de Haroet al.21 Kincaid et al.22 computed thermal diffu-
sion factors (a i j ) defined as

a i j ¹ ln T5¹ ln~nj /ni ! ~1!

to characterize the segregation in the system due to temp
ture gradients. Hereni is the number density of speciesi and
T is the temperature, and the thermal diffusion factor giv
the magnitude and direction of the segregation relative to
temperature gradient. Jenkins and Mancini23 showed that the
equations derived by de Haroet al.21 are valid to the first
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order of approximation for slightly inelastic spheres. App
cation of these equations for analysis of granular segrega
is limited. Arnarson and Willits24 used the equations to com
pute the thermal diffusion factors defined above for bina
mixtures taking into account both granular temperature
pressure gradients in one spatial direction. Computationa
sults are presented to map out regions of the parameter s
~size ratio, density ratio, solids volume fraction, number fra
tion, and the ratio of the pressure gradient normalized by
number density to the temperature gradient! in which aAB is
positive or negative. The only previous study of segregat
in a granular flow based on the kinetic theory equations
pears to be that of Hsiau and Hunt,5 who considered the
shear flow of a mixture of different sized particles. The g
dient in temperature results in the particles migrating to
higher velocity and thus higher temperature regions. S
temperature-induced segregation in a chute flow would
doubtedly result in some of the smaller particles migrating
the top of the layer; this is the reverse of the predictions
Savage and Lun4 and experimental results.4,6,7 Gravitational
effects were not considered in the study. In contrast, the t
dimensional numerical study of Hirschfield and Rappapo25

for Lennard-Jones particles in a chute flow under grav
showed that large particles rise to the top of the layer. T
studies were carried out for a few large particles in a la
number of small particles.

The works reviewed above indicate that qualitative
different results for segregation may be obtained depend
on the driving forces and the regime of operation. We d
cuss a general theory that encompasses these different e
in Secs. III.

III. THEORY

Here we briefly review the transport equations for a
nary mixture of slightly inelastic spheres. The equations
given in Jenkins and Mancini,23 however, we reproduce them
below for completeness. The application to specific case
considered next.

Consider a binary mixture of spherical particles
massesm1 and m2 , and radiiR1 and R2 . The species bal-
ance equation is given by

]r i

]t
1¹•~r iui !50, i 51,2, ~2!

where r i5nimi is the mass density of speciesi , ni is the
number density ofi , andui is the average velocity ofi . The
linear momentum balance equation is given by

rS ]u

]t
1u•¹uD5¹•P1rg, ~3!

wherer5(r11r2) is the density of the mixture,u5(r1u1

1r2u2) is the mass averaged velocity,P is the stress, andg
the acceleration due to gravity. The stress is written aP
52pI2t, where the granular pressure (p) is the isotropic
part, and the deviatoric partt depends on the local velocit
gradient. Finally, the energy balance equation in terms of
granular temperature (T) is given by
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nS ]T

]t
1u–¹TD5T¹•Jt2¹•q1P:¹u

1~m11m2!Jt–gg. ~4!

In Eq. ~4!, the granular temperature is defined asT5(n1T1

1n2T2)/n, wheren5(n11n2) is the total number density
Ti5mi^Ci

2&/3 is the granular temperature of speciesi ,Ci

5uci2ui u is the magnitude of the fluctuation velocity of
particle of speciesi , ci is the velocity of a particle of specie
i , and the bracketŝ•••& denote a local volume average. Th
granular temperature is thus proportional to the average
netic energy per particle associated with the fluctuations.
first term on the right hand side of Eq.~4! is the energy
transferred by diffusion whereJt5(n1v11n2v2) is the total
diffusion flux on a number basis andvi5(ui2u) diffusion
velocity relative to the mass averaged velocity. The sec
term corresponds to energy transfer by conduction with c
duction flux q, the third term to viscous dissipation, th
fourth term to the rate of work done by gravity forces due
a net diffusion flux, and the final term,g, is the rate of
dissipation of energy due to inelastic collisions. Use of E
~2!–~4! requires constitutive equations for the stress, cond
tion energy flux, energy dissipation due to inelastic collisio
and diffusion velocities. Expressions for these for the gen
case are given in Ref. 23 and we use these results as ap
to the two special cases discussed below.

In the first case we consider elastic particles in a gra
tational field with no flow (u50)and with no external forc-
ing at the boundary. In this case, the equilibrium for inelas
particles is clearlyT50 ~inelastic collapse!. However, for
elastic particles, the particles assume a uniform granular t
perature~determined by the initial condition! at equilibrium,
and time-invariant number density profiles for the two sp
cies are obtained. This is perhaps the simplest problem
volving granular segregation and allows for analysis
pressure-gradient-driven segregation in isolation. The sys
is isothermal, hence there is no segregation due to temp
ture gradients. The second case analyzes the equilibrium
regation in steady unidirectional flow of a granular mixtu
of inelastic particles in a chute. The first problem cor
sponds to the Monte Carlo simulations and the second to
particle dynamics simulations, both of which are described
Sec. IV.

A. Elastic particles in a gravitational field

Consider a mixture of elastic spherical particles at te
peratureT in a container and subject to a gravitational fie
as shown in Fig. 2~a!. The container is large enough so th
all system boundaries except the lower one have no in
ence. The system is adiabatic so that at equilibrium, the t
perature is uniform and time invariant, and there is no fl
in the system. This system, which is conservative and co
sponds to the assumptions of the original theory of deH
et al.,21 is useful primarily for evaluating the theory. Th
profiles obtained in this case are expected to be simila
those for rapid flows in which the solids volume fractions a
relatively low.

The set of governing equations for the system reduce
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052
dp

dz
2rg, ~5!

where the granular pressure given by

p5nT1
2

3
pT(

i 51

2

(
k51

2

gikRik
3 nink , ~6!

Rik5(Ri1Rk) and gik(Ri ,Rk ,ni ,nk) is the radial distribu-
tion function for the pairik evaluated at the point of contac
of the spheres. The radial distribution function for mixtur
of hard spheres proposed by Mansooriet al.26 is used here,
following Jenkins and Mancini,23 and is given by

gik5
1

12n
1

3RiRk

Ri1Rk

j2

~12n!2
12S RiRk

Ri1Rk
D 2 j2

2

~12n!2
,

~7!

wherejp54p(n1R1
p1n2R2

p)/3, andn5j3 is the total vol-
ume fraction. All the other equations are identically satisfi
sinceu50, v15v250~thusu15u250),T5constant, andr1

andr2 are time invariant.
The diffusion velocities for the two species reduce to23

viz52S T

2mi
D 1/2

nti0

3H 2
r i

nrT

dp

dz
1 (

k51

2
ni

nT S ]m i

]nk
D dnk

dz J , i 51,2,

~8!

wherem i is the chemical potential for speciesi and t i0 is a
coefficient given in Ref. 24. The chemical potential corr
sponding to the radial distribution function of Mansoo
et al.26 was derived by Reed and Gubbins,27 and is used in
the current analysis. The expression for the chemical po
tial is

m i

T
5 ln ni2 ln~12n!1

4ppRi
3

3T
1

3j2Ri

12n
1

3j1Ri
2

12n

1
9j2

2Ri
2

2~12n!2
13S j2Ri

n D 2S ln~12n!1
n

12n

2
n2

2~12n!2D 2S j2Ri

n D 3S 2 ln~12n!1
n~22n!

12n D .

~9!

FIG. 2. Schematic view of the systems used for segregation of~a! elastic
and~b! inelastic particles. The coordinate system used is indicated. Gra
acts vertically downward.
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Setting

viz50, i 51,2, ~10!

which must be satisfied at equilibrium, gives four equatio
together with Eqs.~5! and~6! to obtain the pressure (p) and
the number density (n1 , n2) profiles. Only three of these
equations are independent since, by definition, the mass
eraged diffusion velocity is zero (r1v11r2v250), giving a
relation between the two diffusion velocities.

Substituting for the pressure gradient in Eq.~7!, and us-
ing Eq. ~10! we obtain upon simplification

mig1S ]m i

]n1
D dn1

dz
1S ]m i

]n2
D dn2

dz
50, i51,2. ~11!

Eq. ~11! together with the appropriate boundary conditio
are used to obtain the number density profiles for each of
species. The transport equations are not valid near the
boundary considered in the problem, and in the Monte Ca
simulations. This is because the transport equations are
rived for the bulk of the granular material, and a separ
analysis including collisions with the wall is required to o
tain the behavior near the boundary~see, e.g., Ref. 28!. For
comparison to the Monte Carlo and particle dynamics sim
lations we use the following boundary conditions:

ni5ni0 at z5z0 , i 51,2, ~12!

wherez0 is a distance sufficiently far from the lower boun
ary so that the boundary effect is negligible, andni0 are
obtained from the simulations. The complexity of the for
of the chemical potential for the general case necessit
numerical solution of the above equations. However, ana
cal solutions are possible for two special cases and we
cuss these below.

1. Ideal gas

In the limit of very low solids volume fractions (n!1)
the mixture behaves as an ideal gas and the chemical po
tial is obtained from Eq.~9! as

m i5T ln ni , i 51,2. ~13!

The governing equations@Eq. ~11!# in this case reduce to

mig1
T

ni

dni

dz
, i 51,2. ~14!

On integrating Eq.~14! and applying the boundary cond
tions we get

ni5ni0 expS 2
mig~z2z0!

T D , i 51,2. ~15!

The profile for each component, as might be expected
independent of the number density of the other compone

The segregation in the system is most clearly appa
when Eq. ~15! is cast in terms of the number fraction o
component 1,f 5n1 /n, as

lnS f

12 f D5 lnS f 0

12 f 0
D2

~m12m2!g~z2z0!

T
, ~16!

where f 05n10/n. If we choosem1.m2 , then Eq. ~16!
shows thatf /(12 f )5n1 /n2 decreases with height. Thus
s

v-

e
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e-
e

-
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i-
is-

n-
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t.
nt

low volume fractions, the heavier particles migrate to low
levels in the layer, regardless of particle size. In a mixture
equal density particles this implies that the smaller partic
rise to the top while the larger particles sink to the botto
This is the reverse of the effect modeled by Savage
Lun,4 but is not in conflict with the theory since the sievin
percolation mechanism of their model is not expected to
relevant at the low volume fractions considered here. T
effect, however, is in agreement with the results of Ni
anandet al.15 for a segregation in a rotating cylinder at hig
rotational speed. This is discussed in more detail in Sec.

2. Equal sized particles of different density

In this caseR15R25R, and the main simplification tha
arises is in the form of the chemical potential which reduc
to

m i5T~ ln ni1F~n!!1
4ppR3

3T
, ~17!

where

F~n!5
7n23n22n3

~12n!2
~18!

and the radial distribution function isgik5(22n)/@2(1
2n)3#. Substituting into Eq.~11! we get

m1g1TH dn1

dz S 1

n1
1F8

]n

]n1
D1

dn2

dz S F8
]n

]n2
D J 50,

~19a!

m2g1TH dn1

dz S F8
]n

]n1
D1

dn2

dz S 1

n2
1F8

]n

]n2
D J 50,

~19b!

where the prime denotes differentiation with respect ton.
Since the radii of the two components are the same we ob
]n/]n15]n/]n254pR3/3. Subtracting Eq.~19b! from Eq.
~19a! we obtain

1

n1

dn1

dz
2

1

n2

dn2

dz
52

~m12m2!g

T
, ~20!

which upon integration gives

lnS n1

n2
D5 lnS n10

n20
D2

~m12m2!g~z2z0!

T
. ~21!

Equation ~21! is identical to Eq.~16!, so that the number
fraction profile @ f (z)# for equal sized particles of differen
density is the same as that for an ideal gas, and is inde
dent of the chemical potential. This result is obtained b
cause the local environment experienced by both types
particles ~as determined by the pair distribution functio
gik) is the same. Thus the relative motion, which determin
the number fraction profile, is independent of the local g
ometry, and consequently the chemical potential. The nu
ber density profile for each component@ni(z)#, however,
depends on the chemical potential, and must be obta
numerically from Eq.~19!.
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Casting Eq.~21! in dimensionless form and in terms o
the number fraction of component 1, we get

lnS f

12 f D5 lnS f 0

12 f 0
D2bs~12m̄!~z2̄ z̄0!, ~22!

wherebs51/T̄, m̄5m2 /m1 , z̄5z/R1 , and the dimension-
less temperature is defined asT̄5T/(m1gR1). In this case
the mass ratio is equal to the density ratio (m̄5 r̄, wherer̄
5r2 /r1). A similar result was obtained by Khakharet al.14

using effective medium arguments, withbs50.99T̄20.97 ob-
tained from Monte Carlo simulations.

B. Inelastic particles in chute flow

Consider the chute flow of inelastic spheres shown sc
matically in Fig. 2~b!. Assuming that the flow is unidirec
tional, fully developed, and steady, and neglecting any va
tions in they direction, the governing equations reduce to

052
dp

dz
2rg cosb, ~23a!

052
dtzx

dz
1rg sinb, ~23b!

05
dq

dz
2tzx

dux

dz
2g. ~23c!

The continuity equation is identically satisfied and the dif
sion velocities are given by23

nzi52S T

2mi
D 1/2S nti0dzi1ai0

d ln T

dz D50, i51,2, ~24!

with the z component of the diffusion force given by

dzi52
r i

nrT

dp

dz
1

ni

nT (
k51

2
]m i

]nk

dnk

dz
1Ai

d ln T

dz
, ~25!

where ai0 and Ai are coefficients given in Eq.~24!. The
above simplifications result from the assumptionsvi50, uy

5uz50, and assuming that there are no gradients ofux , p,
andT in the x andy directions.

Here we are primarily interested in the segregation pr
lem, and hence do not solve for the velocity and tempera
profiles. Instead, we calculate the equilibrium segrega
profiles using the temperature profile as an input. In this w
any errors resulting from the calculation of velocity and te
perature profiles are not propagated in the calculation of
number density profiles. The temperature profiles are
tained from particle dynamics simulations.

Combining Eqs.~23a!, ~24!, and~25! we obtain

nti0S r i cosb

nrT
1

ni

nT (
k51

2
]m i

]nk

dnk

dz D
1~nti0Ai1ai0!

d ln T

dz
50, i 51,2. ~26!

Upon simplification we get
e-

-

-

-
re
n
y,
-
e

b-

05mig cosb1Bi

dT

dz
1S ]m i

]n1
D dn1

dz

1S ]m i

]n2
D dn2

dz
50, i51,2, ~27!

whereBi5(nAi /ni1ai0 /(nit i0)) and

Ai5
ni

n S 11
4p

3
nk~Ri1Rk!

3gik

mi

mi1mk

1
16p

3
niRi

3gii D , i ,k51,2, iÞk. ~28!

Thus, the equations obtained are similar to those derived
elastic particles above, but with an additional flux term d
to the temperature gradient. The complexity of the form
Bi does not allow for simple analytical results as derived
Sec. III A for the limiting cases. The expressions for t
coefficientsai0 ,t i0 given in Ref. 24 are used in our compu
tations.

Computations. The number density profiles are obtaine
by simultaneously integrating the two governing equatio
@Eq. ~27!#. Simplifying and casting into a dimensionles
form we get

dn̄1

dz̄
5

m̄12H̄2m̄22H̄1

m̄11m̄22m̄12m̄21

, ~29!

dn̄2

dz̄
5

m̄21H̄1m̄11H̄2

m̄11m̄22m̄12m̄21

, ~30!

where

m̄ ik5
]m̄ i

]n̄k

, i ,k51,2 ~31!

and

H̄ i5m̄i cosb1Bi

dT̄

dz̄
. ~32!

The dimensionless initial condition is

n̄i5n̄i0 , i 51,2 at z̄5 z̄0 .

The overbars denote dimensionless variables; the defin
of the dimensionless temperature and distance is the sam
given above@following Eq. ~22!#. The other dimensionles
quantities are defined as :n̄i5niR1

3, m̄ i5m i /m1gR1 , m̄i

5mi /m1 , andR̄i5Ri /R1 for i 51,2.
The dimensionless parameters of the system are then

density ratio (r̄), the size ratio (R̄), and the inclination angle
of the chute surface (b). In addition, the temperature profil

@ T̄( z̄)# and the number densities at positionz̄0 (n̄i0) are in-
puts to the problem as formulated here.

The dimensionless equations for elastic particles in
isothermal layer are essentially the same as above but
H̄ i5m̄i . The dimensionless parameters for this system
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the density ratio (r̄), the size ratio (R̄), and the temperature
(T̄). The number densities at positionz̄0 (n̄i0) are inputs for
the computations.

C. Expressions for diffusion fluxes

While the expressions given in the previous section
convenient to use for computing the number density profi
they are valid only in the equilibrium state when the diff
sion velocities are zero. Expressions of the diffusion flux
are required for the analysis of the dynamics of simultane
mixing and segregation. We obtain these from the equat
for the diffusion velocities given in Jenkins and Mancini.23

The equations in Jenkins and Mancini,23 as in the previ-
ous sections, are written in terms of the number densi
(n1 ,n2), the pressure (p), and the temperature (T). How-
ever, only three of these variables can be independe
specified, hence it is convenient from the point of view
physical clarity to recast these equations in terms of th
independent variables:p, T, and f , the number fraction.
Diffusion fluxes arise from gradients in each of these va
ables, and the total diffusion flux is written as the sum
three independent fluxes as is common in standard molec
kinetic theory:29,30 pressure diffusion~due to gradients in
pressure!, temperature diffusion~due to temperature grad
ents, the Soret effect!, and ordinary diffusion~due to gradi-
ents in number fraction!. Since diffusivities scale as the pa
ticle diameter squared, temperature and pressure fluxes
significant in granular systems but small in molecular s
tems. We obtain separate expressions for these fluxes be

1. Pressure diffusion

Consider first pressure diffusion in isolation, i.e., a s
tem which is isothermal (¹ ln T50) and which has no con
centration gradients (¹ f 50). The diffusion velocity in this
case becomes

vi52S T

2mi
D 1/2

nti0H 2
r i

nrT
¹p

1
ni

nT S f
]m i

]n1
¹n1~12 f !

]m i

]n2
¹nD J ~33!

using n15n f and n25n(12 f ). The number density is re
lated to the pressure by the equation of state, and for
isothermal system with uniform number fraction (f ) we have

¹n5¹pS ]n

]pD
f ,T

. ~34!

Upon substituting in Eq.~33! for ¹n andt i0 and simplifying
we have

vi5
Diknmk

r2T
H mi2rS ]n

]pD S f
]m i

]n1
1~12 f !

]m i

]n2
D J ¹p,

i 51,2, kÞ i , ~35!

where

Dik5
3

8Rikgikn S Tmik

2pmimk
D 1/2

~36!
e
s,

s
s

ns

s

tly
f
e

-
f
lar

are
-
w.

-

n

is the binary diffusion coefficient. From Eqs.~35! we get the
difference in the diffusion velocities as

v12v252
D12n

rT S ]n

]pD H m2S f
]m1

]n1
1~12 f !

]m1

]n2
D

2m1S f
]m2

]n1
1~12 f !

]m2

]n2
D J ¹p. ~37!

By definition r1v11r2v250, hence

v15~v12v2!
r2

r
. ~38!

The segregation flux due to a pressure gradient is thus

j1
p52

D12r1r2n

r2T
S ]n

]pD H m2S f
]m1

]n1
1~12 f !

]m1

]n2
D

2m1S f
]m2

]n1
1~12 f !

]m2

]n2
D J ¹p ~39!

and j2
p52 j1

p .

2. Temperature diffusion

Consider a system which has only temperature gradie
In this case the diffusion velocity is given by

vi52S T

2mi
D 1/2

nti0H S Ai1
ai0

nti0
D¹ ln T

1
ni

nT S f
]m i

]n1
1~12 f !

]m i

]n2
D¹nJ , i 51,2. ~40!

Upon finding the difference in the diffusion velocities an
simplifying as for the case for pressure diffusion above,
diffusion flux due to a temperature gradient is given by

j1
T52

D12r1r2n2

r2 S m2A1

n1
2

m1A2

n2
D¹ ln T

1
D12r1r2n

r2 S m2a10

n1t10
2

m1a20

n2t20
D¹ ln T

D12r1r2

r2 S ]n

]TD
3H m2S f

]m1

]n1
1~12 f !

]m1

]n2
D

2m1S f
]m2

]n1
1~12 f !

]m2

]n2
D J ¹ ln T ~41!

and j2
T52 j1

T . The first term in Eq.~41! simplifies to

j1,1
T 5

D12r1r2n

r2
¹ ln TH ~m22m1!

1
16p

3 S m2n1g11R1
3m1n2g22R2

3

1
R12

3 g12

4

m1m2

m11m2
~n22n1! D J . ~42!

The second term becomes
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j1,2
T 5

D12r1r2n2

r2
KT~m22m1!¹ ln T, ~43!

where the thermal diffusion ratio is

KT5
4p1/2R12

2 g12n1n2

3n
~M21

3/2a112M12
3/2a21!. ~44!

The third term in the equation is very similar to the press
diffusion flux, and does not simplify further.

3. Ordinary diffusion

The equation for the flux for ordinary diffusion is ob
tained by considering the diffusion velocity with no pressu
and temperature gradients, which reduces to

vi52S T

2mi
D 1/2

nti0H ni

nT S n
]m i

]n1
¹ f 1n

]m i

]n2
¹~12 f ! D J .

~45!
Simplifying Eq.~45! and substituting for the binary diffusiv
ity we get

j 1
f 52

D12m1m2n2

rT
n1S ]m1

]n1
2

]m1

]n2
D¹ f ~46!

and againj 2
f 52 j 1

f .

4. Discussion

The above equations for the diffusive fluxes are co
plex, and do not reveal much of the underlying physi
However, some simplifications and insight is possible in t
limiting cases which we consider next. For an ideal gas
have

]m1

]n1
5

T

n1
,

]m2

]n2
5

T

n2
,

]m1

]n2
5

]m2

]n1
50,

]n

]p
5

1

T
,

]n

]T
52

n

T

so that the pressure diffusion flux reduces to

j1
p5

D12r1r2

r2T
~m12m2!¹p, ~47!

the temperature diffusion flux to

j1
T52

D12r1r2n2

r2
KT~m12m2!¹ ln T, ~48!

and the ordinary diffusion flux to

j 1
f 52

D12m1m2n2

r
¹ f . ~49!

Eqs. ~47!–~49! correspond to those given in Hirschfeld
et al.29 for an ideal gas. The flux equations show that diffe
ences in the particle masses result in segregation if a pres
or a temperature gradient exists, however, gradients in c
centration result in mixing since the ordinary diffusion flu
acts to reduce concentration gradients. Furthermore, if
assumem1.m2 , the equations show that the heavier p
ticles move to regions of higher pressure~due to pressure
e

-
.

o
e

-
ure
n-

e
-

diffusion! and into regions of lower temperature~due to tem-
perature diffusion!. Segregation is independent of the siz
of the particles in this case.

For a mixture of equal sized but different density pa
ticles we have

]m1

]n1
5

T

n1
1G,

]m2

]n2
5

T

n2
1G,

]m1

]n2
5

]m2

]n1
5G,

whereG5F84pR3/3 @Eq. ~18!#. Upon simplification we ob-
tain the pressure flux as

j1
p5

D12r1r2

r2T
~m12m2!S T

n
1GD ]n

]p
¹p. ~50!

Further, it can be shown that

S T

n
1GD ]n

]p
51, ~51!

so that

j1
p5

D12r1r2

r2T
~m12m2!¹p. ~52!

Equation~52! is similar in form to that proposed by Khakha
et al.14 based on effective medium arguments. In a simi
manner the ordinary diffusion flux simplifies to

j 1
f 52

D12m1m2n2

r
¹ f . ~53!

Eqs. ~52! and ~53! for the pressure and ordinary diffusio
fluxes are identical to the corresponding equations for
ideal gas; the form of the binary diffusivity, however, is di
ferent. The temperature diffusion flux does not simplify to
significant extent in this case.

IV. COMPUTATIONS:

A. Monte Carlo simulations

Monte Carlo simulations are used here to obtain
equilibrium number fraction profiles for a mixture of elast
hard spheres in a gravitational field as shown in Fig. 2~a!.
The system is isothermal. Starting from an initially rando
configuration the system is driven to equilibrium by mea
of perturbations which on average either reduce or keep
changed~at equilibrium! the potential energy of the system
The procedure used is briefly described below.

Particles, randomly distributed in the domain initiall
are sequentially given random displacements. A displa
ment is accepted with probability min(1,Pran) if it does not
result in overlap with other particles, where

Pran5expS 2
migDz

T D , i 51 or 2 ~54!

and Dz is the upward vertical component of the displac
ment. Positions of pairs of particles are also interchange
random and the interchange is accepted with probab
min(1,Pint) if there is no overlap of particles, where

Pint5expS 2
~zi2zk!~mi2mk!g

T D ~55!
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and i andk denoted the indices of the particles being int
changed. In physical terms, the above formulation result
acceptance of all moves which produce a decrease of
potential energy of the system, whereas moves which p
duce an increase in the potential energy are accepted w
probability which depends on the granular temperature
cording to Eqs.~54!–~55! given above. The interchang
moves are used since they result in a faster convergenc
equilibrium when particle sizes are nearly equal and wh
the solids volume fractions are low.

Using the dimensionless variables defined in Sec. III,
equations for the probability reduce to

Pran5expS 2
m̄iD z̄

T̄
D , i 51 or 2, ~56a!

Pint5expS 2
~ z̄i2 z̄k!~m̄i2m̄k!

T̄
D , ~56b!

wherem̄151 andm̄25m̄.
Simulations are carried out using 600 particles in a

main with a square cross section~25 particle diameters wide!
and the height of the domain is taken to be large enough
that the particles are always far from the upper surface.
upper and lower surfaces are taken to be reflecting and p
odic boundary conditions are applied at the side bounda

B. Particle dynamics

Particle dynamics simulations are analogous to mole
lar dynamics simulations for the study of gases and liqu
The trajectories of particles in a flowing granular medium
obtained from the equations for the conservation of lin
and angular momentum, or explicit integration of out-o
balance forces on the particles. Forces taken into accou
particle dynamics include the forces due to gravity, interp
ticle collisions ~or contacts!. We simulate chute flow of a
mixture of spherical particles for two cases: inelastic frictio
less particles and inelastic frictional particles. The compu
tional procedures used are briefly given below.

1. Inelastic frictionless particles

In this case the particles do not experience torque
hence do not rotate. This results in simplification of t
analysis since the conservation of angular momentum e
tion is satisfied, and the trajectories can be calculated f
the conservation of linear momentum alone. Collisions
tween particles are assumed to be instantaneous and
collision results in a fractional decrease in the relative vel
ity (12e), wheree is the restitution coefficient, in the com
ponent along the line joining the centers of the collidi
spheres at contact. The components normal to this direc
are conserved. In the computations the time for the first c
lision is determined and all particles moved for this tim
interval. The velocities of the colliding pair of particles a
updated, the time for the next collision determined, and
procedure is repeated. Starting with a random configura
of particles, the flow is continued until steady state veloc
and composition profiles are obtained.
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A total of 600 particles are used in a domain of squa
cross section~15 particle diameters wide! and the lower sur-
face of the domain comprises a layer of fixed beads inclin
at an angleb @Fig. 2~b!#. The upper surface of the domain
taken to be high enough so as not to be far from the partic
and periodic boundary conditions are used on the s
boundaries. The radius of the particle forming the lower s
face is taken to be 0.5R1 and the coefficient of restitution to
be e50.9.

2. Inelastic frictional particles

Several force models for particle–particle interactio
have been proposed previously, and a review is given
Refs. 8 and 31. In the present work the normal force is c
sen to be

Fn5k1a ~57a!

for loading, and

Fn5H k2~a2a0! for a.a0

0 for a<a0
~57b!

for unloading. The deformation is assumed to be prop
tional to the overlap between particlesa5(Ri1Rj2Di j )
whereDi j is the distance between the centers of the collid
spheres, anda0 is the permanent deformation. The abo
model simulates an elastic-plastic solid with a velocity ind
pendent coefficient of restitutione5Ak1 /k2. The tangential
force between particles in contact is taken to be

Ft5H kts for kts<mFn

mFn for kts<mF
, ~58!

wheres is the relative displacement of the surfaces in co
tact, andm is the coefficient of static friction. The model is
simplified version of that proposed by Mindlin.32

The boundary conditions used are the same as for
inelastic frictionless particles given above. For all simu
tions, the cross section of the domain is 10~large! particles
wide and 14 particles long and the~dimensionless! param-
eters used in the model are:k1513104, e50.7, kt

50.8k1 , andm50.5. For the density simulations, 1000 pa
ticles are used, resulting in a flowing layer about 9 partic
deep—the total number of particles increases for the s
segregation case as the size ratio decreases. The bou
particles are the same size as the bulk particles for the cas
density segregation and are one-quarter of the size of
large particles for the case of size segregation, so that
perceived ‘‘roughness’’ is approximately the same for
size ratios.

V. RESULTS AND DISCUSSION

We present results below for two types of systems:~i!
equal sized particles with different density and~ii ! equal den-
sity particles but with different sizes. In both cases the role
pressure and temperature diffusion are discussed. All the
sults presented below are in terms of the dimensionless v
ables; the overbars are omitted for convenience.
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A. Equal sized particles with different density

Figure 3 shows the number fraction profiles for elas
particles in a gravitational field obtained from Monte Ca
simulations. The higher density particles are concentrate
lower levels in the layer. This segregation results entir
from pressure diffusion, since the temperature is const
The predicted number density profiles obtained from E
~11! are also shown. There is very good agreement betw
theory and computations even at high volume fractions. F
ure 4 shows the variation of ln(n1 /n2) with dimensionless
height (z) together with predictions of the theory. Straig
lines with slopeM52(12r)/T are obtained in accordanc
with theory. This is valid even at high volume fraction
where there are deviations from theory for the computed v

FIG. 3. Equilibrium dimensionless number density profiles for equal si
elastic particles with different density under isothermal conditions. The
mensionless granular temperature isT51, and the density ratio isr50.5.
Points are results of Monte Carlo simulations and the error bars show
standard deviation; solid lines are predictions of the kinetic theory.

FIG. 4. Equilibrium number ratio profiles for equal sized elastic partic
with different density under isothermal conditions. Results for different d
sity ratios and temperatures are shown. Points are results of Monte C
simulations and solid lines are predictions of the kinetic theory.
at
y
t.
.

en
-

l-

ume fraction profiles. The cause for the deviation betwe
theory and experiment at the bottom of the layer is m
likely due to the boundary effects. There are no adjusta
parameters in the theory.

Chute flow of inelastic frictionless particles results
number fraction profiles which are qualitatively differe
from those obtained above~Fig. 5!. Since the particles are o
equal size, they arrange themselves into layers near the lo
surface as is apparent from the large fluctuations in the n
ber density. As in the previous case, the denser particles
to the lower portions of the flowing layer, however, comple
exclusion of the lighter particles from the lowest layers do
not occur, as above. Prediction of the number density p
files, by integration of Eq.~27!, requires the temperature pro
file in this case. The dimensionless temperature varia
with height is given in Fig. 6, and is nearly linear for the ca
considered. A second-order polynomial is fitted to the d
and is used to calculate the temperature gradient and
perature at any position for the integration. A comparison
theory and predictions are shown in Fig. 5. The predictio
are reasonably good away from the boundary region, h
ever, there are significant deviations close to the bound
Boundary effects are large in this case most likely due to
layering of the particles. Another source of error is the
netic theory estimation of the coefficientsai0 ,t i0 , and Ai ,
which determine the temperature diffusion flux; the valid
of these expressions remains to be checked. Variation of
number ratio with height is shown in Fig. 7. Again agre
ment between theory and computations in the region aw
from the boundary is very good. There are no adjusta
parameters in the theory.

Consider next the relative importance of the temperat
gradient and the pressure gradient on the equilibrium pro
Figure 8 shows a comparison of the profiles obtained us
the full theory, profiles obtained omitting the terms conta
ing the temperature gradient from Eq.~27!, and profiles ob-

d
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he
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-
rlo

FIG. 5. Equilibrium dimensionless number density profiles for equal si
inelastic, frictionless particles with different density in chute flow. The de
sity ratio is r50.5 and the inclination of the chute isb525°. Points are
results of particle dynamics simulations and the error bars show the stan
deviation; thick solid lines are predictions of the kinetic theory using
temperature profile shown in Fig. 6.
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tained omitting the terms containing the temperature grad
from Eq. ~27!. The profiles for the full theory and thos
without temperature diffusion are very similar, indicatin
that temperature diffusion does not play an important role

FIG. 6. Temperature profile obtained from particle dynamics simulations
equal sized inelastic, frictionless particles with different density in ch
flow. The density ratio isr50.5 and the inclination of the chute isb
525°. Points are results of particle dynamics simulations and the error
show the standard deviation; the solid line is a second-order polyno
fitted to the data.

FIG. 7. Equilibrium dimensionless number ratio profiles for equal siz
inelastic, frictionless particles with different density in chute flow. The
clination of the chute isb525° and different density ratios are used. Poin
are results of particle dynamics simulations and the thick lines are pre
tions of the kinetic theory for the conditions indicated in the legend. The
for the case of no temperature diffusion coincides with that for the
theory forr50.5.
nt

n

the process. The number ratio profile without temperat
diffusion for one density ratio is also plotted in Fig. 7 and
coincides with the curve obtained from the full theory. Th
for equal sized particles, temperature diffusion has no ef
on the segregation. This is most clearly brought out by co
putations including temperature diffusion but omitting pre
sure diffusion. The number density of each component va
with height in this case~Fig. 6!, however, there is no segre
gation since the number ratio is independent of height~Fig.
7!. The number ratio profile omitting the temperature gra
ent term is curved~Fig. 7!, as compared to the straight line
obtained for the isothermal system~Fig. 4!, because the
variation of the pressure diffusion due to the varying te
perature is taken into account.

Typical number density profiles obtained from partic
dynamics simulations for inelastic, frictional particles
equal size but different density are shown in Fig. 9. As in
previous cases, the denser particles sink to the bottom o
layer, and nearly complete segregation is achieved. The
tent of segregation is apparent from the number ratio profi
which are shown for three different density ratios in Fig. 1
Straight lines are obtained in all three cases, in appa
agreement with theory. Predictions of the theory in this c
give straight lines, however, the slopes of the theoretica
predicted lines are more than an order of magnitude lar
than those obtained from particle dynamics. The high slo
result from the very low granular temperatures in the flo
~Fig. 11!. Recall that the slope is inversely proportional
the temperature@M52(12r)/T#. In hindsight, it is not
surprising that the theory does not work for this case. Dis
pation is large in this system, and this causes the system
deviate significantly from the assumption built into th
theory—that the system is nearly conservative. Dissipat
directly affects the temperature, and one possible way
comparing the theory to the computations is to find so
effectivetemperature for the flow. This was done by fittin
straight lines to the computational data in Fig. 10, and c

r
e

rs
al

d

c-
e
l

FIG. 8. Theoretically predicted number density profiles for inelastic frictio
less particles in chute flow for the conditions indicated in the legend.
density ratio isr50.5, the inclination of the chute isb525°, and the
temperature profile shown in Fig. 6 is used.
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culating the corresponding temperature from the expres
for the slope (M ) given above. Computed number dens
profiles using this constant effective temperature are in
sonable agreement with particle dynamics results~Fig. 9!.
This indicates that the functional form for the pressure fl
obtained from theory is valid even for the case of high
dissipative systems, however, the magnitude of the flux m
be estimated empirically.

B. Equal density particles with different sizes

Figures 12 and 13 show the results of Monte Carlo sim
lations for elastic particles with equal density but differe
sizes. The system is isothermal hence segregation is only

FIG. 9. Equilibrium dimensionless number density profiles for equal si
inelastic, frictional particles with different density in chute flow. The dens
ratio isr50.5 and the inclination of the chute isb524°. Points are results
of particle dynamics simulations and the error bars show the standard
viation; thick solid lines are predictions of the kinetic theory using an eff
tive temperature obtained from the slope of the line in Fig. 10.

FIG. 10. Equilibrium dimensionless number ratio profiles for equal si
inelastic, frictional particles with different density in chute flow. The inc
nation of the chute isb524° and different density ratios are used. Points
results of particle dynamics simulations and the thick lines are least squ
to the data.
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to pressure diffusion. The number density profiles~Fig. 12!
show that the smaller particles by and large concentrat
the upper region of the layer. The number ratio profiles a
decrease monotonically with distance over most of the la
indicating that pressure diffusion flux of the larger particl
is in the downward direction. In regions of higher volum
fraction ~Fig. 14!, however, there is a reversal of this tren
implying also a reversal in the direction of the pressure d
fusion flux. Though the magnitude of the effect is small
indicates that different mechanisms are operative in the
regions. In the low volume fraction region the pressure d
fusion flux direction is independent of the particle size a
the heavier~in this case larger! particles sink into the regions
of higher pressure@Eq. ~52!# as found above. In the highe

d

e-
-

d

res

FIG. 11. Computed temperature profile for equal sized inelastic, frictio
particles with different density in chute flow. The density ratio isr50.5 and
the inclination of the chute isb524°. Points are results of particle dynam
ics simulations and the error bars show the standard deviation; the solid
is a second-order polynomial fitted to the data.

FIG. 12. Equilibrium dimensionless number density profiles for equal d
sity elastic particles with different sizes under isothermal conditions. T
dimensionless granular temperature isT51, and the size ratio isR50.7.
Points are results of Monte Carlo simulations and the error bars show
standard deviation; solid lines are predictions of the kinetic theory.
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volume fraction region gaps between particles are small, t
percolation of the smaller particles becomes predominan
that the flux of the larger particles is upward and thus i
the lower pressure region.

Predictions of the theory are in very good agreem
with computed results in the low volume fraction regio
(n,0.2). At higher concentrations there are deviations, a
a qualitative difference is that the theory does not show
reversal of the pressure diffusion flux. This is due to t
inadequacy of the expression for the chemical potential at
high volume fractions near the bottom of the layer; there
no temperature diffusion flux in this case. Consider next
conditions for the flux reversal to occur.

Expressing the chemical potential asm i5m i
01m i

E ,
wherem i

0 is the ideal gas chemical potential andm i
E is the

excess chemical potential, and assuming for simplicity

FIG. 13. Equilibrium number ratio profiles for equal density elastic partic
with different sizes under isothermal conditions. Results for different s
ratios and temperatureT51 are shown. Points are results of Monte Ca
simulations and solid lines are predictions of the kinetic theory.

FIG. 14. Equilibrium volume fraction profiles for equal density elastic p
ticles with different sizes under isothermal conditions obtained from Mo
Carlo simulations. Results for different size ratios and temperatureT51 are
shown.
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infinitesimally small number density of the smaller particl
(n2'0), the pressure diffusion flux reduces to

j1
p5

D12r1r2

r2 S ]n

]pD
3H m1m21

m1n1

T

]m2
E

]n1
2

m2n1

T

]m1
E

]n1
J ¹p. ~59!

For low volume fractions,m i
E50 so that the term in the

brackets$•••% is positive (m1.m2 since subscript ‘‘1’’ refers
to the larger particles!. The term must change sign to effe
flux reversal. The following alternate definition of the exce
chemical potential allows physical interpretation of Eq.~59!
in the context of flux reversal33

m i
E52T ln Pi

ins. ~60!

Here, Pi
ins is the probability of insertion of particlei at a

randomly chosen position in the granular mixture. For ve
low solids volume fractionsPi

ins51 so that the exces
chemical potential vanishes as required. For high volu
fractions the probability of inserting a large particle is mu
smaller than that for inserting a small particle, thus in th
limit we have m1

E@m2
E . The condition for flux reversal in

terms of the insertion probability is

2
]

] ln n1
~R3 ln P1

ins2 ln P2
ins!.~12R3!, ~61!

whereR35m2 /m1 since the densities are equal. The con
tion given by Eq.~61! shows that it is not the difference i
the insertion probabilities but how these probabilities va
with number density that determines the direction of t
pressure flux. Further the condition is independent of te
perature. For small size ratios (R!1), the change in the
insertion probability of the smaller particles with change
the number density of the larger particles would be smal
infinite dilutions as considered here. The criterion for fl
reversal thus becomes

2
] ln P1

ins

] ln n1
.

1

R3
. ~62!

Since2 ln P1
E→` as the limit of close packing is approache

it is likely that the above criterion will be satisfied. Thus
high volume fractions percolation of the smaller particl
should occur due to pressure diffusion alone.

The above discussion shows that the percolation mec
nism proposed by Savage and Lun4 is described by the ki-
netic theory. The relation between the flux and the insert
probability in the two theories are, however, different. T
mechanism of size segregation depends on the local so
volume fraction—percolation of the smaller particles dom
nates at high volume fractions whereas the smaller parti
rise to the top at low volume fractions.

Figure 15 shows the number density profiles for sligh
inelastic, equal density frictionless particles with differe
sizes. As in the case of elastic particles discussed above
small particles by and large concentrate in the upper reg
of the layer, and again there is evidence of flux reversa
the lower high volume fraction region. This is also evident
the number ratio profiles shown in Fig. 16. Theoretical p

s
e

-
e



ti
a

io
s
ac
c
-
ns
an
be

ient
on
ller

ure
ect
the

ar-
ion

the
the
the
ult

en
he

d
the

sit
li-
re
s

less

-
line

ic-
nd

ed.

607Chaos, Vol. 9, No. 3, 1999 Granular material in chute flows
dictions of the number density profiles and the number ra
profiles, using the temperature profile obtained from the p
ticle dynamics simulations as an input~Fig. 17!, are in good
agreement with computed results in the low volume fract
regions~Figs. 15 and 16!. There are significant difference
between theory and computations in the high volume fr
tion region, and these are due to both boundary effe
~which cause particle layering! and deficiency of the expres
sion for the chemical potential used at high volume fractio
Notice that the theory predicts flux reversal and signific
segregation in the high volume fraction region—the num
ratio sharply increases with distance in this region~Fig. 16!.

FIG. 15. Equilibrium dimensionless number density profiles for equal d
sity inelastic, frictionless particles with different sizes in chute flow. T
size ratio isR50.7 and the inclination of the chute isb525°. Points are
results of particle dynamics simulations and the error bars show the stan
deviation; thick solid lines are predictions of the kinetic theory using
temperature profile shown in Fig. 17.

FIG. 16. Equilibrium dimensionless number ratio profiles for equal den
inelastic, frictionless particles with different sizes in chute flow. The inc
nation of the chute isb525°and different size ratios are used. Points a
results of particle dynamics simulations and the thick lines are prediction
the kinetic theory for the conditions indicated in the legend.
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Thus the existence of a small positive temperature grad
along with a pressure gradient in a high volume fracti
region results in strong reverse segregation, with the sma
particles concentrating in the lower levels.

The relative importance of the temperature and press
effects are examined using the theory in Fig. 18. The eff
of excluding the temperature gradient terms is greatest in
high-volume fraction regions. As in the case of elastic p
ticles, no flux reversal is seen without temperature diffus
and the number ratio profile is monotonic~Fig. 16!. Exclud-
ing the pressure diffusion results in segregation of
smaller particles in the lower regions of the bed, though
extent of segregation is not large. This is in contrast to
equal sized particles of different density which did not res
in any segregation.

-

ard

y

of

FIG. 17. Computed temperature profile for equal sized inelastic, friction
particles with different density in chute flow. The size ratio isR50.7 and
the inclination of the chute isb525°. Points are results of particle dynam
ics simulations and the error bars show the standard deviation; the solid
is a second-order polynomial fitted to the data.

FIG. 18. Theoretically predicted number density profiles for inelastic fr
tionless particles in chute flow for the conditions indicated in the lege
obtained from the kinetic theory. The density ratio isR50.7, the inclination
of the chute isb525°, and the temperature profile shown in Fig. 17 is us
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Finally, the typical equilibrium segregation profiles fo
inelastic, frictional particles is shown in Fig. 19 and numb
ratio profiles for three different size ratios are shown in F
20. In contrast to the cases of elastic particles and slig
inelastic particles considered above, here the smaller
ticles concentrate in the lower part of the layer~Fig. 19! and
the number ratio of the larger particles increases monot
cally with height~Fig. 20!. This implies that the segregatio
flux of the larger particles is upward throughout the layer,
compared to the other two cases where it is downward in
low volume fraction regions and reverses direction in

FIG. 19. Equilibrium dimensionless number density profiles for equal d
sity inelastic, frictional particles with different sizes in chute flow. The s
ratio isR50.9 and the inclination of the chute isb524°. Points are results
of particle dynamics simulations and the error bars show the standard
viation; thick solid lines are predictions of the kinetic theory using an eff
tive linear temperature profile obtained by fitting the theory to the data
Fig. 20.

FIG. 20. Equilibrium dimensionless number ratio profiles for equal den
inelastic, frictional particles with different sizes in chute flow. The inclin
tions of the chute areb524° for R50.5,0.9 andb526° for R50.7. Points
are results of particle dynamics simulations and the thick line is a fit to
data forR50.9 using a linear effective temperature profile.
r
.
ly
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e

e

high volume fraction region. This behavior is most like
obtained because the volume fraction of solids is uniform
high across the layer~Fig. 21!.

As in the case of equal sized, inelastic, frictional pa
ticles with density differences discussed in Sec. V A, us
the computed temperature profile as an input to the calc
tion of the number density profile does not give reasona
predictions. The theoretical predictions shown in Figs.
and 20 are obtained by choosing a linear temperature pr
~with the temperature increasing with height! so that the
number ratio profile is well-described~Fig. 20!. The predic-
tions of the number density profiles are then reasonable~Fig.
19!.

VI. CONCLUSIONS

Computational and theoretical analyses of size and d
sity segregation in a chute flow of spherical particles
presented. The effects of particle inelasticity and interpart
friction are considered by means of the computations. Th
retical predictions of the equilibrium number density profil
are obtained from the kinetic theory of hard sphere mixtu
~de Haroet al.21! which is valid for slightly inelastic par-
ticles.

Computational results for density segregation are qu
tatively similar for all three types of particles consider
~elastic, slightly inelastic, and inelastic and frictional! in that
the denser particles sink to lower regions, and the varia
of number ratio profile with height is nearly linear. In th
absence of temperature diffusion, a simple expression for
pressure diffusion flux is obtained, and an analytical res
for the number ratio profile is obtained. These are in agr
ment with earlier results obtained using a different approa
Predictions of the theory are in excellent agreement w
computational results for the elastic particles~even at high
volume fractions!, and in good agreement for the case
slightly inelastic particles away from the region where la
ering of the particles occurs. In the case of inelastic frictio
particles, the computed temperatures are low, and u
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-
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e

FIG. 21. Equilibrium volume fraction profiles for equal density inelast
frictional particles in chute flow obtained from particle dynamics simu
tions for b524° andR50.9.
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these in the theory gives poor predictions. However, reas
able predictions of the number density profiles are obtai
if the temperature obtained by fitting the theory to the nu
ber ratio profile is used. Temperature diffusion has little
fect on the segregation for equal sized particles. The com
tations indicate that Eq.~52! describes density segregatio
well, if the temperature is treated as an empirical param
of the problem for the case of inelastic frictional particles

The case of size segregation is more complex. Ela
and slightly inelastic particles show concentration of t
smaller particles in the upper regions of the layer, indicat
a net downward flux of the larger particles. In the low
regions where the volume fraction is higher there is a rev
sal of the flux. However, qualitatively different behavior
observed in the case of inelastic, frictional particles, with
smaller particles concentrating in the lower regions of
layer, which implies that the net flux of the larger particles
upward throughout the layer. Comparisons of theory to
results for elastic particles shows very good agreement
solid volume fractionsn,0.2. However, at higher solid vol
ume fractions there are deviations between the two, and
theory does not predict flux reversal. Improved predictio
may be possible with a more accurate expression for
chemical potential. Theoretical predictions are reasona
good for inelastic particles in the low volume fraction r
gions; the theory predicts a strong flux reversal in the h
volume fraction regions as a result of a temperature grad
~temperature increasing with height!. Reasonable prediction
of the number density profiles for inelastic, frictional pa
ticles are obtained if an effective temperature profile is us

The computational and theoretical results presented
go some way toward explaining the experimental results
Nityanand et al.15 for radial segregation discussed earl
~Sec. II!. At low rotational speeds, slow flow in the casca
ing layer of the rotating drum results in high solids volum
fractions, and thus smaller particles would sink to low
parts of the layer, resulting in the formation of a core of t
smaller particles. However, at higher speeds because o
lower volume fractions the flux of the smaller particl
changes direction, resulting in the formation of a core of
larger particles with the smaller particles at the periphery

The computational results presented show the utility
the kinetic theory expressions for the analysis of segrega
in more complex systems. The theory appears to be q
good for mixtures of nearly elastic, equal sized particles
all volume fractions, and for mixtures of nearly elastic, d
ferent sized particles at low volume fractions. A more ac
rate constitutive equation for the chemical potential
needed for mixtures of nearly elastic, different sized partic
at higher volume fractions. The above conclusions hold
mixtures of inelastic and frictional particles provided an
fective temperature is used. A fundamental understandin
the effective temperature for highly dissipative syste
would render the theory more useful for application.
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