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Internal avalanches in a granular medium
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Avalanches of grain displacements can be generated by creating local voids within the interior of a granular
material at rest in a bin. Modeling such a two-dimensional granular system by a collection of monodisperse
discs, the system, on repeated perturbations, shows all signatures of self-organized criticality. During the
propagation of avalanches the competition among grains creates arches and in the critical state a distribution of
arches of different sizes is obtained. Using a cellular automata model we demonstrate that the existence of
arches determines the universal behavior of the model sy$&1063-651X98)51212-3

PACS numbe(s): 81.05.Rm, 05.70.Jk, 64.60.Lx, 74.80.Bj

The search for “self-organized criticality(SOQ [1] in evolve under a nonlinear, diffusive mechanism, leading to a
granular systems in general, and in sandpiles in particulanonequilibrium critical state. The most widely studied is the
has been a subject of active research over the last decadsbelian sandpile modglASM), in which the stable configu-
How such a system reacts in the form of fast cascades ahtion does not depend on the sequence of sand grain addi-
grain displacements, called “avalanches,” in response to @ions[9]. Other variants of the sandpile model include situ-
slow external drive at the microscopic level, is the crucialations in which the stability of a sand column depends on the
question of study. It has been suggested that, starting from docal slope or the Laplacian of the height prof[l€0]. A
arbitrary initial condition, a nonequilibrium critical state, two-state sandpile model with stochastic evolution rules is
characterized by scale-free avalanches in both space amdso studied11].
time, should be expected after a long tifdg2]. Other natu- In all of the studies discussed above, the avalanches
rally occuring physical phenomena, such as forest fi8ds propagate on the surfaces of the sandpiles. However, there
river networks[4], earthquake§5], etc., have also been pro- exists the possibility of creating avalanches in the interior of
posed as examples of systems showing SOC. a granular material. In a granular material kept in a bin at

It was observed that a steadily shaped sandpile, grown orest, different grains support one another by mutually acting
a fixed base, fulfills all of the requirements of SOC. In thisbalanced forces. If a grain is removed, the grains that were
state, dropping even a few grains creates rapidly movingupported by it become unstable and tend to move. Eventu-
avalanches of sand sliding along the surface of the pile. lally the grains in the farther neighborhood also lose their
was expected that the avalanches should be power law distability. As a result, an avalanche of grain displacements
tributed in their spatial, as well as temporal, extents andtakes place, which stops when no more grains remain un-
therefore, a sandpile should be considered a simple examp#gable. The basic physical behavior here is thus quite differ-
of SOC[1,2]. ent from the avalanches on the surface of the pile because of

Experimental observations, however, show partial supporthe constraints to particle motion in the dense particle beds.
of this idea. Sand is allowed to fall from a slowly rotating A two-dimensional semilattice model was studied for this
semicylindrical drum through the space between the plates giroblem[12]. Nonoverlapping unit square boxes model the
a vertical parallel plate capacitor. The Fourier spectrum ofyrains, whose horizontal coordinates can vary continuously,
the time series data of fluctuating capacitance showed a peakhereas the vertical coordinates are discretized. A grain can
contrary to the expectation of a power law distributi@.  only fall vertically if insufficiently supported, and sufficient
Similarly, sand dropping from the edge of a sandpile on aspace below is available. The system is disturbed by remov-
fixed base was directly measured, and was seen to haveigg grains at the bottom and thus creating avalanches of
power law distribution only for small systenj3]. It was  grain movements.
argued that, due to the approximately spherical shape of the During the propagation of avalanches inside a granular
grains used in these experiments, the effect of inertia cannahedium, grains compete locally with one another to occupy
be neglected, and this was the reason for the absence tife same vacant space. The high packing densities of the
scaling behavior. This is verified in an experiment using riceparticle beds prevent a single particle from occupying the
grains, which are highly anisotropic, and criticality was ob-available void space and, consequently, particles get locked
served[8]. to form “arches” [13]. A stable arch is a chain of grains in

A number of theoretical models, generally known aswhich the weight of each grain is balanced by the reaction
“sandpile” models, have been studied. The models areorces from two neighboring grains in the chain. Arches can
based on stochastically driven cellular automata, whictform only when a grain is allowed to roll over other grains.

Since the rolling motion of the grains was absent, the arches
were not formed in the granular pattefig].
*Electronic address: manna@boson.bose.res.in Here we study a more realistic model of this problem in
"Electronic address: khakhar@cupid.che.iitb.ernet.in two dimensions, where both fall and roll motions of grains
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are allowed. The granular system is represented\tyard
monodisperse discs of rad®. No two grains are allowed to
overlap, but they can touch each other and one can roll over
the other without slipping if possible. A rectangular area of
sizeL XL on thex-y plane represents our two-dimensional
bin. The periodic boundary condition is used along the
direction, and the gravity acts along thg direction. The
bottom of the bin ay=0 is highly sticky and any grain that
comes into contact with it gets stuck there and cannot move
any further.

The dynamical evolution of the system is studied by a
“pseudodynamics”[14]. Unlike the method of molecular
dynamics, we do not solve here the classical equations of
motion for the grain system. Only the direction of gravity :
and the local geometrical constraints, due to the presence of 6.:' Q X o '... O ....
other grains, govern the movement of a grain. To justify L) LO) I.},»{.‘. MO
using the pseudodynamics we argue that due to the high OO0 0T C80 .1.‘.1'1.‘!.‘

compactness of the system a grain never has a sufficient i 1. picture of a typical avalanche. Open circles denote the
amount of time to accelerate much. Therefore, in our modelyngisturbed grains; closed circles denote the displaced grains;
a grain can have only two types of movements in unit timeigpaque circle at the bottom denotes the position of the grain that
it can eitherfall vertically up to a maximum distanc® or it was removed; shaded circle denotes the position of the grain at
canroll up to a maximum anglé= 6/2R over another grain which the removed grain was replaced. In a system of lsiz80,
in contact. However, for the whole system, some disks camith the number of grainsl =340, 97 grains took part in the ava-
fall, some others can roll, and the rest remain stable in unitanche.
time.
Movement of a grain requires information on the posi-the new position, if the graim rolls an angled,,< 6, it is
tions of other grains in the neighborhood that it may possiblyaccepted; otherwise it rolls up to an angle
interact with. An efficient way to search this is to dlgltlze the The initial grain pattern is generated by the ballistic depo_
bin into a square grid and associate the serial number of gition method with restructurinflL5,16. Grains are released
grain to the primitive cell of the grid containing its center. sequentially one after another along randomly positioned
The choice ofR=1/y/2+ ensures that a cell corresponds to, vertical trajectories, and are allowed to fall until they touch
at most, one grain. With this choice it is sufficient to searchthe growing pile, and then roll down along the paths of
only within the 24 neighboring cells for possible contactsteepest descent to their local stable positions. We notice that
grains. The weight of a grain is supported by two other in the initial pattern no big arch exists, since a grain, while
grains. Ifn_ andng are the serial numbers of the I¢ft) and  rolling down along the surface, does not need to compete
right (R) supporting grains, then the gramis updated as with any other grain. Using a system bf=80, we compute
follows: (i) if n_.=ng=0, it falls; (ii) if n_#0, butng=0, it  the packing fractionp=0.822+0.005, which is consistent
rolls overn ; (iii) if n_=0, butng#0, it rolls overng; (iv)  with the more precise estimate of 0.81800.0002 in[16].
if n_#0 andng#0 it is stable. The system is repeatedly perturbed by removing grains
When the graim, with the center atx,,y,), is allowed randomly at the bottom, one after the other. Every time a
to fall, it may come in contact with a grain at (X,,y,) grain is removed, an avalanche follows, and after the ava-

within the distanced. The new coordinates are lanche is over the removed grain is placed back at a random
position on the top surface again, using the same ballistic

Y=Y T VAR = (Xp—x,)° if y,—y,<d method (Fig. 1). We first observe thap of the stable con-
figuration, averaged over many initial random patterns gen-
otherwise, y,=y,—d. erated with the same algorithm, decreases with the number

o . . ) . of avalanches created, and finally reaches a steady value of
Similarly, the grainn, while rolling over the grairr, may 748 + 0.005. A similar study but with different initial
come in contact with another grainat (x,y,). The new  configurations with a different value of average initjal
coordinates for the center aofat which it touches bothand  shows that the final steady state packing fraction reaches the

tare same value, which implies that the final stable state is inde-
pendent of the initial state. The total humber of grain dis-
, 4R 1 placements is called the avalanche sizand the duration of
XHZE(XtJrXng(yt_yr) d_rzt_ 4 the avalanche is the lifetime Power law distributions are

observed fors andt: D(s)~s " andD(t)~t~ ", with 74
1 IR 1 ~1.7 (Fig. 2) and 7;~2.1. The peak at the right end of the
V=2 (YY) — g —X) \ ] — — = distribution is due to the finite size of the system. Upon
"2 dz 4 increasing the system size, the position of the peak shifts to
the right and the scaling region becomes longer.
Hered,, is the distance between the centers of the grains  The observed exponents in this model are significantly
andt, andg=+1 and—1 for left and right rolls. To reach larger than the corresponding values ff1.34 and 7
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FIG. 2. Plot of the avalanche size distributibr(s) vs s for a

FIG. 4. Stable configuration of the granular system in the cellu-
lar automata modeh after a large number of avalanches are cre-
ated. Triangular arches are noticed.

to the vacant site & and in theroll move the grain goes to
the vacant site either dtD or at RD (Fig. 3). An arch is
formed when a grain &€ is considered stable if both of its
two diagonally opposite sites eitherlab andRU or atLU
andRD, are occupied. As a result, on the square lattice, the
only possible shape of an arch consists of two sides of a
triangle. Depending on whether or not we allow the arch
formations, we define the following two models.

system of siz&N=10 000, and over 70 000 avalanches. The straight |n modelA we allow arch formations. The grain @tfalls
part fits with a sloperg = 1.7.

~1.47 in[12]. We argue that the reason for this difference
could be the existence of arches in our model. Due to th
arches, the propagation of avalanches is arrested more fre
guently than in[12] and, therefore, smaller avalanches are
more probable, which enhances the values of the critical ex

ponents in our model.

To demonstrate more explicitly that the above reasonin
may be correct, we study a cellular automata model for th
granular systems. A square lattice of sizewith periodic
boundary condition along theaxis, represents the bin. The
gravity acts in the y direction. Positions of the grains are
limited only to the lattice sites: a site can either be occupie
by a grain or remain vacant. Initially, the bin is filled up

again using the ballistic method.

A single movement of a grain aE(i,j) involves the
neighboring seven sitesLU(i—1,j+1),L(i—1,j),LD(i
-1j-1),D(i,j—1),RD(i+1,j—-1),R(i+1,), and RU(i
+1,j+1). In thefall move the grain comes down one level
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FIG. 3. Possiblefall and roll moves in the cellular automata
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only if any of the following three conditions is satisfie()
LD, L, andLU are vacant(ii) RD, R and RU are vacant
i) LD andRD are vacant. In all other situations the grain
oes not fall. Notice that in conditiong) and (ii) we are
allowing the formation of arches. The grain@tolls only if
site D is occupied. This is done in any of three ways:if
othLD andL are vacant, but either D andR is occu-
ied, then the grain rolls ta.D; (ii) if both RD and R

%re vacant, but either dfD and L is occupied, then the
grain rolls toRD; (iii ) if all four sites atLD,L,RD andR are
vacant, then the grain rolls either td> or to RD with a
probability of 1/2. A steady state pattern is shown in Fig. 4.

In model B we do not allow arch formations. The first
qwo conditions for fall of modelA are modified agi) LD
and L are vacant,(ii) RD and R are vacant. All other
conditions of fall, as well as roll, remain the same as in
modelA.

Initial granular patterns are generated using the same ran-
dom ballistic deposition method with restructurifith,16,
and patterns are the same for both models. As before, the
avalanches are created by taking out one grain at a time at
the bottom, allowing the system to relax, and replacing it
randomly on the surface after the avalanche is over. Here we
also see that the average density of sites, starting from an
initial value of 0.907 0.005, decreases to the final stable
value of 0.59@:0.005 in modelA, and to 0.618 0.005 in
model B. The avalanche size and lifetimet follow power
law distributions:D(s)~s~ T?,D(t)~t‘7?, and similarly for
modelB. Different exponents are obtained for the two mod-
els: 75~1.48 andr{'~1.99 whereasZ~1.34 andr®~1.50.
We explain that absence of arches makes the exponent val-
ues for the modeB close to that of12], but their presence
enhances the values in modél

To summarize, avalanches of grain displacements can

model of the granular system on the square lattice. A filled circleP€ created in the interior of a granular material at rest
denotes the position of a grain, an unfilled circle denotes a vacarly locally disturbing the system. In a numerical study
site. The grain moves to the vacant position irrespective of theve provide indications that on repeated creations of
occupation of the sites with square boxes. A shaded rectangle déuch avalanches, the granular system reaches a critical state

notes a pair of sites, in which at least one is occupied.

characterized by longrange correlations. The presence
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of arches plays an important role in determining the criticallanches, in which anisotropic grains are necessary to observe
behavior. Since in an avalanche grain motions arecriticality.

highly constrained, the effect of inertia may not be very sig-

nificant. Therefore, we conjecture that in real experiments of The funding provided by the Indo-French Centre for the
internal avalanches it should be possible to observe SO@romotion of Advanced ReseardFCPAR) is gratefully ac-
even with spherical grains, unlike the case of surface avaknowledged.
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