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Abstract

Mixtures of .owing granular materials containing particles of di/erent sizes or di/erent den-
sities have a tendency to segregate. We focus here on the segregation that occurs in the
cross-section of the cylinder using short cylinders (axial length is much smaller than the
diameter) ensuring small variation along the cylinder axis. The typical structure formed in these
systems is a radial core of the smaller or more dense particles. Coupling of composition with .ow
can lead to instability causing a pattern of radial streaks. The predictions of hard sphere mixture
theories are brie.y discussed 6rst. Results of experimental and modelling studies of segregation
are reviewed for density-induced radial segregation of equal sized particles, and size-induced
radial streak formation. Experimental results for size-induced radial segregation are presented.
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1. Introduction

Granular segregation in rotating cylinders is undoubtedly of considerable practical
signi6cance. Rotary cylinders are used as kilns, mixers, dryers and granulators and
segregation is often the cause of process and product defects. The rotary cylinder
system is attractive for studying the basics of granular segregation in surface .ows
which can display remarkable complexity. For example, mixtures can spontaneously
form regular layered patterns when poured to form a heap. Di/erences in particle
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shape (leading to di/erences in angle of repose) may be suFcient to produce these
layered patterns [1].
The .ow in rotating cylinders comprises a thin surface .owing layer with the

remaining particles rotating as a 6xed bed. We focus here on the segregation that occurs
in the cross-section of the cylinder using short cylinders (axial length is much smaller
than the diameter) ensuring small variation along the cylinder axis. Even in this case
several outcomes are possible. The objective here is to review observed phenomena
and models based on a simple continuum approach.
Rotation of a mixture of particles in a cylinder usually results in rapid radial seg-

regation with the small (or high density) particles concentrating in a central core and
the large (or low density) particles in the periphery [2–12]. However, segregation is
never complete because of the di/usional mixing produced by interparticle collisions
in the .owing layer. Nityanand et al. [4] showed that the pattern of radial segregation
could reverse (small particles at the periphery and large particles in the core) at high
rotational speeds in mixtures with di/erent sized particles. More recently, Thomas [12]
showed for mixtures with a few large particles that the large particles could concentrate
at any radial position in the bed depending on the size ratio. Such double segregation
was also reported by Dolgunin and Ukolov [13] and Thomas [12] in chute .ow of
mixtures.
The basic explanation for regular segregation was provided by Savage and Lun [14]

and is geometric in origin. In densely .owing layers, small void spaces are more likely
than large ones so that the small particles can preferentially drop into them. The upward
.ux to ensure a constant bulk density should be uniform for both types of particles
resulting in a net downward .ux of the small particles and a net upward .ux of the
large particles. Thomas [12] proposed that reverse segregation occurs when the large
particles are massive enough to move down by pushing aside the small particles. The
theory of hard sphere mixtures provides an alternate framework for analysis, but the
theory is valid only for slightly inelastic spheres [15,16]. We review the predictions of
this theory for the cases of mixtures of di/erent density particles and of di/erent size
particles, with comparisons to computational results. Application of the hard sphere
results for density radial segregation in a rotating cylinder are given. The conditions
for an instability causing the formation of a pattern of radial streaks are discussed
next along with a model. Finally, new experimental results for radial size segregation
are presented.

2. Hard sphere theory

Jenkins and Mancini [15] have extended the theory of hard sphere mixtures [17]
to the case of slightly inelastic spheres. The theory gives the complete set of bal-
ance equations and constitutive equations for .ow and species transport for binary
mixtures. The di/usion .uxes are of interest here, and may arise due to gradients in
number fraction, pressure and temperature. The equations for the .uxes simplify consid-
erably in the limit of an ideal gas, and are given below [18,19]. The pressure di/usion
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Fig. 1. Inset: Schematic view of the system: elastic hard spheres in a gravitational 6eld at constant tempera-
ture. (a) Equilibrium number ratio pro6les for equal size particles for di/erent temperatures (T ) and density
ratios ( L�). (b) Equilibrium dimensionless number density pro6les for equal density particles. Points are the
results of Monte Carlo simulations and solid lines are the predictions of kinetic theory [18].

.ux is

jp1 =
D12�1�2
�2T

(m1 − m2)∇p ; (1)

the temperature di/usion .ux is

jT1 =−D12�1�2n2

�2
KT (m1 − m2)∇ ln T ; (2)

and the ordinary di/usion .ux is

jf1 =−D12m1m2n2

�
∇f ; (3)

where p, T and f = n1=n are pressure, temperature and number fraction, respectively.
D12 is the binary di/usion coeFcient while KT is the thermal di/usion ratio. Particle
mass is denoted by m, the mass density by � while n corresponds to the number density.
Subscripts 1 and 2 denote the two di/erent particle species. Thus, ordinary di/usion
results in mixing, while pressure and temperature di/usion result in segregation of the
species. From the above equations, it is clear that the heavier particles go to the higher
pressure and lower temperature regions. At higher number densities, the constitutive
equations obtained are similar in form but algebraically more complex [18].
Consider the case of an isothermal system comprising elastic particles in a grav-

itational 6eld at equilibrium (Fig. 1, inset). In this case, the pressure gradient is
@p=@z = −�g. Suppose that bulk density is low enough for the mixture to behave
as an ideal gas. The balance between the pressure and ordinary di/usion .uxes then
gives

ln
(
n1
n2

)
= ln

(
n10
n20

)
− (m1 − m2)g(z − z0)

T
: (4)
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It can be shown that a similar equation is obtained for particles of equal size which is
valid for all bulk densities [18].
Fig. 1a shows the comparison between predictions of Eq. (4) to computational

results from Monte Carlo simulations for equal size particles of di/erent density.
There is good agreement between the two for a wide range of temperatures. Simi-
lar agreement is obtained for frictional and elastic particles in chute .ow but only
when a 6tted “e/ective” temperature is used [18]. These results suggest that the
form of the di/usion .ux given above may be reasonable for real systems with
equal size particles but the temperature should be taken to be a 6tted parameter.
The case of mixtures of di/erent sized particles is more complex. Fig. 1b shows
a comparison between the predictions of the full theory to Monte Carlo simulation
results for elastic particles in a gravitational 6eld. Although the predictions in the
low-density regions are reasonable, at higher densities there are signi6cant devia-
tions. Most notably, the theory does not show the reversal in the number density
pro6les seen in the Monte Carlo results. The Monte Carlo results indicate that there
is a small region of regular segregation (small particles moving down) and a larger
region of reverse segregation (small particles moving up). In real systems, the region
of regular segregation is much larger because of the high bulk density of the .owing
layer.

3. Density segregation

The hard sphere results are applied to analyse the segregation of equal size but
di/erent density particles in a rotating cylinder. The convective di/usion equation
describing the variation of concentration of the high-density particles in the .owing
layer is

@f
@t

+ vx
@f
@x

+ vy
@f
@y

=
@
@y

(
D
@f
@y

− �s DR f(1− f)
)
; (5)

where D is the di/usion coeFcient, R is the cylinder radius and �s is the character-
istic segregation velocity. The .ow is nearly una/ected by particle density, hence the
velocity 6eld (vx; vy) for the pure component system [20] can be used. A correlation
for D is used and �s is treated as a 6tting parameter [8].
Fig. 2a shows a comparison of the model predictions to experimental results for

mixtures of equal sized steel balls and glass beads. There is good agreement between
theory and experiment. The dynamics of segregation are also reasonably well predicted
by the model. Fig. 2b shows the variation of the intensity of segregation (Is, standard
deviation of the concentration from the mean over the cross-section of the bed) with
cylinder revolutions, for an initially segregated system. When the cylinder is less than
1
2 6lled ( LH = 0:45) there is an optimal time of mixing at which the best mixing
is achieved. This is because of fast initial mixing followed by segregation, and the
behaviour is described by the model.



133

Fig. 2. (a) Equilibrium number fraction of steel balls in the bed (fall) versus dimensionless distance along
the free surface (x=L) obtained for mixtures of steel balls and glass of di/erent compositions (fT ). LH denotes
the distance of the free surface from the cylinder axis, and lines show the corresponding model predictions.
(b) Variation of the intensity of segregation (Is) with cylinder revolutions of an initially segregated mix-
ture for di/erent extents of 6lling of the cylinder. Symbols are experimental measurements and lines are
predictions [8].

4. Size segregation—streak formation

The most notable feature of the .ow of mixtures of di/erent sized particles is that the
.ow is signi6cantly dependent on composition. Increase in the concentration of small
particles results in faster .ow. We highlight this here by means of an example—the
radial streak formation process in a size segregating system. Radial streaks are found
to form for slightly more than half-6lled cylinders at low rotational speeds [21]. The
instability is facilitated by large size di/erences between the particles. Starting with an
initial con6guration that is radially segregated, upon rotation the boundary between the
small and large particles becomes wavy, the bumps grow and eventually the 6ngers
reach the periphery of the cylinder (Fig. 3).
A model that describes the above behaviour has several elements and assumptions

[22]. For the purpose of calculating the mean velocity in the layer, the particles are
assumed to be completely segregated with the small particles at the bottom. The
velocity pro6le is assumed to be piecewise linear with the velocity gradient inversely
proportional to the square of the particle diameter. Further, to take into account the
variation of the surface angle with the composition of the .owing layer in a sim-
ple way, each half of the free surface is allowed to pivot about a point. The depth
averaged, unsteady mass, momentum and species balance equations for the layer are
solved simultaneously to obtain the dynamic variation of the .ow and concentra-
tion in the system. The variation of the bed composition as a result of in.ow and
out.ow from the layer is also computed. Streak formation starts with a slight
excess of small particles in the layer, due to a small bump entering the layer from
the bed. This speeds up the .ow in the layer causing the bump to become longer.
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Fig. 3. Experimental and computational results showing the dynamics of streak formation at a rotational
speed of 0:75 rpm. A 50% vol/vol mixture of 3mm (dark) and 1mm (light) glass beads is used for the
experiments [22].

Since the cylinder is nearly half-full a streak once formed enters the .owing layer
all at once reinforcing the instability. Further, because the surface angle is smaller
for the small particles, the surface angle reduces as small particles enter the layer
and this increases the rate of in.ow of particles from the bed into the layer. Thus,
the rate at which the streak enters the layer is increased by this pumping action.
We found that streaks are not formed if pumping is switched o/. The variation of
the concentration in the layer results in oscillations of the free surface, each oscil-
lation corresponding to the passage of a streak through the layer. The dynamics of
the streak formation is qualitatively predicted by the model (Fig. 3). The suppression
of streaks at high rotational speeds and at lower 6llings is also predicted by the
model [22].

5. Size radial segregation

Experiments to obtain the radial concentration pro6le were carried out in a quasi-2d
cylinder of radius 16 cm and length 1 cm, driven by a computer-controlled stepper
motor. Mixtures of monodisperse and highly spherical steel balls of di/erent sizes were
used. In all the experiments, the cylinder was 6lled 50% by volume with mixtures of
speci6ed compositions and rotated at di/erent speeds for 150 revolutions to achieve
a steady state. To measure the bed pro6le, the cylinder was removed from the drive,
placed on an inclined surface and the top face plate was replaced by a sampling plate
with twenty-three 10 mm holes at 13 di/erent radial positions. The volume of material
sampled was precisely controlled and relatively small, and the sample was sieved to
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Fig. 4. Variation of the percentage weight fraction of small particles (f) with scaled radial distance (r=R)
for (a) mixture of 1 and 3 mm particles at di/erent rotational speeds and (b) mixture of particles for three
di/erent size ratios at a rotational speed of 6 rpm.

obtain the weight fraction of the small particles (f). Each experiment was repeated at
least 3 times.
Fig. 4a shows the variation of the weight fraction of the small particles with radial

distance in the bed for di/erent rotational speeds. At the lowest rotational speed, signif-
icant reverse segregation is observed. At higher rotational speeds, reverse segregation
is suppressed and there is little e/ect of rotational speed on the pro6le. This trend is
the reverse of that observed by Nityanand et al. [4] who found reverse segregation at
high rotational speeds. Fig. 4b shows the e/ect of size ratio on the pro6les. At size
ratios closer to unity, reverse segregation is reduced. Surprisingly, the slope of the graph
for a mixture of 2 and 3 mm particles is higher, and thus the extent of segregation
is the highest in this case. The e/ect of size ratio observed is very di/erent from the
predictions of the model of Prigozhin and Kalman [10]. The observed behaviour is not
predicted by hard sphere theory either.

6. Conclusions

We reviewed the range of phenomena observed in the segregation of particle mix-
tures in the cross-section of a rotating cylinder. Both density and size di/erences are
considered. A review of the predictions of the hard sphere theory for di/usion .uxes
shows that density segregation is well predicted by hard sphere theory provided that the
temperature is taken to be 6tting parameter. Hard sphere theory, however, gives qual-
itatively di/erent results for mixtures of di/erent size particles. The segregation .ux
expression obtained from hard sphere theory is shown to give reasonable predictions for
density radial segregation in a rotating cylinder. In the case of di/erent size particles
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at low rotation speeds, streak formation occurs. A model based on dynamic variation
of .ow, composition and surface angle is shown to give a qualitative description of the
process. The radially segregated pro6les for mixtures of di/erent size particles reveal
double segregation and a complex dependence on size ratio. Hard sphere theory does
not predict the observed behaviour in this case and new models are needed.
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