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Abstract This paper entails a comprehensive study

on production of a biosurfactant from Rhodococcus

erythropolis MTCC 2794. Two optimization techniques—

(1) artificial neural network (ANN) coupled with genetic

algorithm (GA) and (2) response surface methodology

(RSM)—were used for media optimization in order

to enhance the biosurfactant yield by Rhodococcus

erythropolis MTCC 2794. ANN and RSM models were

developed, incorporating the quantity of four medium

components (sucrose, yeast extract, meat peptone, and

toluene) as independent input variables and biosurfactant

yield [calculated in terms of percent emulsification index

(% EI24)] as output variable. ANN-GA and RSM were

compared for their predictive and generalization ability

using a separate data set of 16 experiments, for which the

average quadratic errors were *3 and *6%, respectively.

ANN-GA was found to be more accurate and consistent in

predicting optimized conditions and maximum yield than

RSM. For the ANN-GA model, the values of correlation

coefficient and average quadratic error were *0.99 and

*3%, respectively. It was also shown that ANN-based

models could be used accurately for sensitivity analysis.

ANN-GA-optimized media gave about a 3.5-fold enhance-

ment in biosurfactant yield.
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Introduction

Biosurfactants are surface-active metabolites produced

extracellularly or as part of the cell membrane by a wide

variety of microorganisms such as bacteria, yeasts, and

fungi. Biosurfactants have been identified for several

industrial applications particularly in cosmetic, pharma-

ceutical, and food processes as emulsifiers, humectants,

preservatives, and detergents. Because of their structural

diversity (i.e., glycolipids, lipopeptides, fatty acid esters),

low toxicity, and biodegradability, biosurfactants have

potential for replacing synthetic surfactants. Moreover,

they are ecologically safe and can be applied in bioreme-

diation and waste treatments [1].

Biosurfactants produced by a few Rhodococcus species

have been reported to be more effective and efficient in

reduction of surface and interfacial tensions than many

synthetic surfactants [2]. Chemically, Rhodococcus bio-

surfactants are trehalose lipids. Although their commercial

potential has been recognized in recent years, like other

biosurfactants, of rhodococcal biosurfactants have yet to

penetrate in the market [3]. The major obstacles to their

commercialization are low fermentative yield and high

production cost.

Formation of most microbial products is a complex,

highly nonlinear process. Along with other process vari-

ables, the media components play a key role in controlling
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yield and specific productivity. Thus in the fermentation

process, media optimization is recognized as a simple but

effective method for achieving high productivity of desired

products. The limitations of the classical method (one

factor at a time) are discussed in detail in many earlier

reports [4, 5]. To overcome their inability to determine

interactive effects between input variables and to predict

the ‘‘true’’ optimum, two alternative approaches are com-

monly employed for media optimization: (1) artifical

intelligence (AI)-based techniques and (2) statistics-based

techniques.

In the past few decades, AI-based techniques—specifi-

cally artificial neural network (ANN) coupled with genetic

algorithm (GA)—offer an attractive choice for nonlinear

modeling and optimization. The ANN-based models have

several advantages over different statistical methods.

ANN-based models can be constructed solely from the

historic process input–output data without any detailed

knowledge of the process phenomenology. ANN has been

successfully implemented in modeling a large number of

biochemical processes such as pattern recognition [6],

classification [7], process control [8], soft sensor applica-

tions [9], and reaction kinetics modeling [10, 11], including

modeling of fermentation yield [12]. Though the obvious

requirement for ANN is a large number of data points,

being black-box models they don’t reveal system infor-

mation in a subtle way. However these drawbacks can be

easily overcome, which makes ANN an attractive option

for handling data with a wide range of nonlinearity.

Moreover, the capability of ANN models to perform sen-

sitivity analysis further expands their applicability [13].

The ANN-GA hybrid combinations are widely used in

nonlinear optimization problems. GA belongs to class of

evolutionary algorithm. It is a stochastic method that can

be easily applied to nonlinear and noncontinuous functions,

and it only requires a zeroth-order derivative [14]. GA has

been successfully used to solve complex nonlinear prob-

lems in highly diverse fields [15–20], including media

optimization [21, 22].

Among various statistical methods, response surface

methodology (RSM) is the most widely used method in

media optimization. The ability to search for an opti-

mum condition from a relatively small number of

experiments and the ability to interpret the interactive

effects among input variables are some attractive fea-

tures of RSM [23]. One drawback of RSM is that it is

mainly restricted to quadratic nonlinear correlation,

whereas biological process may show more complex

nonlinear dependencies.

ANN and RSM are compared in a few earlier reports

[10, 24–26], and in almost all cases ANN was found to

perform better than RSM. But these reports mainly focused

only on the predictive capability of models. Besides

predictive capabilities, optimization and sensitivity analy-

sis are essential criteria required to make a comprehensive

comparison between ANN and RSM.

The present paper deals with comparison between two

optimization techniques—ANN-GA and RSM—that were

used to enhance the yield of Rhodococcus biosurfactant by

media optimization. ANN-GA and RSM were compared

for their predictive and generalization ability. Moreover the

accuracy of ANN-GA and RSM predictions were estimated

using a sensitivity analysis method.

Materials and methods

Materials

All media components were purchased from Hi-Media,

India. All other chemicals were of analytical grade and

procured from S.D. Fine Chemicals, India.

Microorganisms and growth conditions

Six microbial strains, Rhodococcus erythropolis MTCC

1526, 1548, 2794, and 3951 and Rhodococcus spp. MTCC

2678 and 2683, were purchased from MTCC-Chandigarh

(India).

All Rhodococcus strains were maintained on nutrient

agar slants for 48 h at 30�C. Pre-inoculum (5 ml) was

prepared in tubes from the slants and incubated for 24 h at

30�C on a rotary shaker at 200 rpm. This was transferred to

45 ml of the growth medium in 250-ml erlenmeyer flasks

and incubated under identical conditions. The liquid fer-

mentation medium used for batch culture experiments

(termed medium A) contained the following (g/l): glucose

(10), yeast extract (3), meat peptone (7.5), Na2HPO4 (4.0),

KH2PO4 (2.0), MgSO4�7H2O (0.2), CaCl2�2H2O (0.02),

ammonium ferric citrate (0.05), and trace mineral solution

(1 ml/l). The composition of trace mineral medium con-

tained the following (g/l): H3BO3 (0.1), MnCl2�4H2O (0.1),

ZnSO4�H2O (0.1), FeCl3�6H2O (0.1), CaCl2�2H2O (1),

CuCl2�2H2O (0.05).

Selection of optimum nitrogen source, carbon source,

and inducer

The effect of different nitrogen sources was studied by

replacing the organic nitrogen sources (yeast extract and

meat peptone) from medium A with different inorganic

nitrogen sources (urea, ammonium sulphate, and ammo-

nium phosphate) at equivalent nitrogen levels.

To evaluate the optimum carbon source, glucose was

replaced by an equivalent amount of different carbon

sources, namely sucrose, sorbitol, mannitol, and glycerol.
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Seven inducers (3% v/v each) were screened to evaluate

the corresponding enhancement in biosurfactant produc-

tion. Biosurfactant production was calculated in terms of

emulsification index (% EI24) as described Below. Among

seven different inducers, toluene was found to give maxi-

mum % EI24. Hence toluene was selected for further

experiments.

Media optimization using ANN-GA

ANN was used for obtaining the functional relationship

between media component and % EI24. The popular

architecture multilayer perceptron (MLP) with sigmoidal

function was used. The data set was divided into training

set (80%) and test set (20%) to avoid over-parameteriza-

tion. The input data were scaled within proper range to

avoid any numerical overflow. The output parameter was

scaled between 0 and 1, as output is produced by a sig-

moidal transfer function. A fully connected feed forward

neural network (FANN) architecture in which data always

flow in a forward direction, i.e. from input layer to output

layer, was used. A real number quantity, known as a

weight, is associated with the connection of two neurons,

which is analogous to a synapse in a brain neuron. The

output of ANN was calculated as a function of input and

weights using summation and transfer function. Weights

are the adjustable parameters of the network.

An error back propagation (EBP) algorithm, which is a

generalized form of least mean square (LSM) conver-

gence, is used for adjusting the weights. It uses a gradient

descent approach, in which weights are changed in pro-

portion to the negative of the error gradient. The details of

training an optimal MLP model possessing good predic-

tion and generalization abilities are described in [12]. The

EBP training algorithm makes use of two more adjustable

parameters, the learning rate (g±) (0 \ g B 1) and

momentum coefficient (a) (0 \ a B 1). The magnitudes of

both these parameters are optimized heuristically along

with the number of hidden layer neurons. The average

quadratic error (AQE) was chosen as performance index.

The training iterations are stopped when the test AQE

reaches a minimum, even though the training set AQE may

continue to decrease with continuation of training. Initially

a network with zero neurons in the hidden layer is used for

training. The number of neurons in the hidden layer is

increased subsequently and the AQE generated for net-

works with varying initialization, learning rate, and

momentum coefficient are calculated. The topology, which

gives a minimum AQE in all the above-mentioned heu-

ristic training cycles, is chosen for final training. This

optimum network is trained using the above procedure.

The weights obtained after training are retained as model

parameters.

After developing an ANN-based process model with

good prediction accuracy and generalization ability, its

input space can be optimized by using a genetic algorithm

with a view of maximizing the yield. The objective func-

tion is to find a decision variable, i.e., ANN input vector

(x), such that it maximizes the objective function, i.e.,

ANN output. The GA-based search for an optimal solution

vector, x*, begins with a randomly initialized population

of probable (candidate) solutions. The candidates are

referred to as strings or chromosomes. Each chromosome

is evaluated to measure its fitness using the ANN-based

model. The steps involved in GA-based optimization

algorithm are (1) selection: choosing fitter parent chro-

mosomes to create a mating pool and (2) crossover: the

production of offspring solutions, i.e., next generation

solution by using genetic operators such as pair-wise

crossing-over between fitter parent chromosomes and

mutating of the offspring strings. This procedure creates a

new population of chromosomes, which is then compared

with the current pool of chromosomes. The best chromo-

somes evolve after repeating the above procedure until the

termination criteria are met. The termination criteria could

be a fixed number of generations or when the improvement

in the fitness value of the subsequent generation is

negligible.

An initial population of 40 chromosomes was generated

randomly. Each chromosome was made up of a distinct

media composition consisting of four different genes. Each

gene represents a concentration of different medium com-

ponents. The % EI24 value at the end of the batch was

chosen as the fitness function. The ANN model built earlier

from historic data was used to evaluate the fitness of each

chromosome. After computing the fitness function, com-

binations producing high % EI24 were acted upon by the

following genetic operators: selection, cross-over, and

mutation. The roulette wheel scheme was used to deter-

mine a string with higher chance of surviving in subsequent

generations. Selected chromosomes were used as parent

chromosomes for single-point cross-over. Mutation was

used to avoid premature termination due to entrapment

local minima. Nevertheless, this parameter was used

sparingly with a probability of 1% as compared to cross-

over probability of 90%. Thus, the offspring of the next

generation are generated. The fitness of the offspring was

computed as output of the ANN model (% EI24). This

procedure was carried out for 100 generations to get the

optimum solution.

Media optimization using RSM

The experimental design used for ANN was also used as

input data for developing the RSM model. To examine the

combined effect of four different medium components
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(independent variables), a central composite factorial

design of 24 = 16 plus 6 center points plus 8 (i.e., 2 9 4)

star points leading to a total of 30 experiments was per-

formed in duplicate. The value of the dependent response

(% EI24) was the mean of two replications. The second-

order polynomial coefficients were calculated and analyzed

using a trial version of Design Expert software (version

6.0, Stat-Ease, USA). Statistical analysis of the model was

performed to evaluate the analysis of variance (ANOVA).

Extraction of biosurfactant

Biosurfactant was extracted using methyl ter-butyl ether

(MTBE) as described earlier by Kuyukina et al. [27]. To

one volume of whole-cell broth, two volumes of MTBE

were added and the extraction carried out for 3 h, at 28�C

at 200 rpm. The top phase containing biosurfactant

was collected using a separating funnel and dried on a

rotary evaporator (Rotavap) to obtain a powder of crude

biosurfactant.

Analytical methods

The emulsification index (% EI24) provides a rapid and

reliable measure of the quantity of biosurfactant. % EI24

was determined as described by Nitschke and Pastore [28].

The Rhodococcus cells were isolated by centrifugation at

10,000 rpm for 10 min at 10�C. The cell residue was

suspended in distilled water (cell concentration was

adjusted to 0.2 g/mL) and sonicated for 10 min to release

biosurfactant from the cell wall. Then, 2 ml of sonicated

sample was mixed with 3 ml of n-dodecane (hydrocarbon)

in a 20-ml graduated, stoppered glass bottle. This was

vortexed for 10 min and kept at room temperature. The

percent ratio of height of emulsified zone to total height

after 24 h gives % EI24 as in Eq. 1.

Type of emulsion was determined using methyl

orange (water soluble dye) and Sudan red III (lipid sol-

uble dye) as described by Tian et al. [29]. Total

carbohydrate and protein content of crude biosurfactant

were estimated by phenol sulphuric acid method [30] and

Folin Lowry assay [31], respectively. Surface tension

measurement and critical micelle concentration were

detected using a Kruss K-11 tensiometer (accuracy ± 0.1

mN/m).

Results and discussion

The Rhodococcus biosurfactant is a glycolipid that contains

trehalose as the major carbohydrate along with (unsaturated

and saturated) fatty acids and fatty alcohols. The glycolipid

biosynthesis is predominantly cell-growth associated [32,

33]. Therefore initial attempts were made to increase the

cell mass based on a one-factor-at-a-time strategy.

Selection of optimum nitrogen source, carbon source,

and inducer

For all Rhodococcus strains, the complete substitution of

organic by inorganic nitrogen resulted in very low cell mass

(results not shown), therefore organic nitrogen sources (yeast

extract and meat peptone) were selected for further studies.

Glucose was replaced by equivalent amounts of differ-

ent carbon sources, namely sucrose, sorbitol, mannitol, and

glycerol. The carbon source was found to affect the cell

mass to a great extent. As the biosurfactant is cell-wall

associated, high cell density is desirable [34]. The effect of

carbon source on cell growth for six Rhodococcus strains is

given in Fig. 1. The optimum carbon source was found to

differ depending upon the Rhodococcus strain. Among

different Rhodococcus erythropolis, MTCC 2794 gave

maximum cell mass when grown on sucrose as carbon

source. This combination was selected for further studies.

Hydrocarbons added to the fermentation medium are

known to induce the production of biosurfactant [35]. Seven
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such hydrocarbon inducers were screened for enhanced bio-

surfactant production by MTCC 2794. The effect of inducer

on biosurfactant production is represented in Fig. 2. The %

EI24 values of cell-free supernatant were very low (in the range

of 0–4%) as compared with sonicated cell suspension. This

indicated that the major portion of biosurfactant remained

adhered to the cell surface. The % EI24 values of sonicated cell

suspension and cell-free supernatant for different inducers

are given in Fig. 2. Toluene gave maximum % EI24 (53.84%)

and was therefore selected for further experiments.

ANN-GA-based modeling and optimization

The design of experiments (DoE) used as input data for

developing an ANN based model is given in Table 1. The
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Table 1 Experimental design and corresponding experimental and model-predicted values of % EI24

No. Sucrose Yeast extract Meat peptone Toluene % EI24

Experimental valuesa ANN-predicted RSM-predicted

1 1.15 0.25 0.65 2.75 51.82 53.61 51.73

2 2.45 0.25 0.65 2.75 48.15 48.36 48.73

3 1.15 0.55 0.65 2.75 53.86 52.34 51.26

4 2.45 0.55 0.65 2.75 43.92 44.02 47.34

5 1.15 0.25 1.55 2.75 59.79 58.81 58.33

6 2.45 0.25 1.55 2.75 56.53 57.99 60.22

7 1.15 0.55 1.55 2.75 51.23 53.68 56.46

8 2.45 0.55 1.55 2.75 59.07 57.78 57.43

9 1.15 0.25 0.65 6.25 51.31 52.46 52.62

10 2.45 0.25 0.65 6.25 49.37 48.64 46.58

11 1.15 0.55 0.65 6.25 55.90 55.95 53.13

12 2.45 0.55 0.65 6.25 47.14 46.98 46.16

13 1.15 0.25 1.55 6.25 55.58 54.60 54.07

14 2.45 0.25 1.55 6.25 50.65 52.57 52.92

15 1.15 0.55 1.55 6.25 54.09 52.87 53.18

16 2.45 0.55 1.55 6.25 50.10 50.02 51.11

17 0.50 0.40 1.10 4.50 50.98 51.22 54.80

18 3.10 0.40 1.10 4.50 52.15 51.79 49.73

19 1.80 0.10 1.10 4.50 53.76 53.66 52.41

20 1.80 0.70 1.10 4.50 49.38 51.32 50.13

21 1.80 0.40 0.20 4.50 46.46 46.38 48.78

22 1.80 0.40 2.00 4.50 59.66 62.13 60.32

23 1.80 0.40 1.10 1.00 57.60 56.53 54.95

24 1.80 0.40 1.10 8.00 47.45 49.37 49.51

25 1.80 0.40 1.10 4.50 52.16 52.06 51.54

26 1.80 0.40 1.10 4.50 51.76 52.06 51.54

27 1.80 0.40 1.10 4.50 51.11 52.06 51.54

28 1.80 0.40 1.10 4.50 52.69 52.06 51.54

29 1.80 0.40 1.10 4.50 51.45 52.06 51.54

30 1.80 0.40 1.10 4.50 50.49 52.06 51.54

a Values indicate mean of duplicate observations
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six center-point experiments were considered as a single

data point with output as an average of outputs for these

six replica experiments. Thus, the total data set of 25

points was divided into a training set of 20 and a test set of

5 data points. The star data points of DoE were kept in the

training set as these points were the only data points for

extreme values of input variables. The output, i.e. % EI24,

was used for obtaining the functional relationship between

media component and biosurfactant yield. The momentum

and learning rate were set to 0.1 and 0.8, respectively. The

number of optimum hidden nodes was determined to be

five. Thus, the final topological structure of the ANNs was

4-5-1. The correlation coefficients between predicted and

experimental data for the training set and test set were

0.949 and 0.988, respectively, and average percent errors

for training and test sets were 1.14 and 4.01, respectively.

The overall correlation coefficient and average percent

error were 0.96 and 1.79, respectively. The maximum

error was *4.79%. The small and comparable magnitudes

of the average prediction error (%) and the high and

comparable values of the correlation coefficient for both

the training and test set outputs suggest that the MLP-

based model possesses good approximation and general-

ization characteristics.

Even though ANN is a black-box model, useful infor-

mation about the system can be obtained using simple

sensitivity analysis. The center point of DoE data was used

as the reference point. The data set was generated by

changing the concentration of each component in steps on

both sides of the reference point, keeping concentrations of

all other components at the center composition. Figure 3

shows the simulated values of % EI24 for this data set using

the ANN model. Each series represents the effect of each

variable on the fermentation yield. The effect of each

variable can be gauged from the extent of variation in

response and also from the slope of each series. It can be

seen that meat peptone has the most significant effect on

the yield followed by sucrose and toluene. Yeast extract

showed the least effect on biosurfactant yield. The positive

slope suggests that biosurfactant yield is higher at the

higher concentrations of meat peptone, whereas the nega-

tive slope of toluene implies higher yield at its lower

concentration. The effect of sucrose on % EI24 was found

to be highly nonlinear. The comparison of ANN sensitivity

results with RSM are discussed below.

Since GA does not guarantee global optimum explicitly,

it was necessary to search the entire input space rigorously.

This was done by repeating the GA-based optimization

procedure several times for different randomly initialized

populations of chromosomes and for different GA-specific

parameters. Almost all the varied initial conditions con-

verged to similar solutions, suggesting it to be the global

solution. The optimum solution with experimental verifi-

cation is given in Table 2. The average percent error

between predicted and experimental response for optimum

conditions was less than 2% in all the cases.

RSM-based modeling and optimization

A second-order polynomial equation was used to correlate

the independent process variables with biosurfactant pro-

duction. The second-order polynomial coefficient for each

term of the equation was determined through multiple

regression analysis using the Design Expert. The experi-

mental design used for ANN was also used as input data for

developing the RSM model (Table 1).

The results were analyzed by using ANOVA. The

results are shown in Table 3. The model F-value of 3.65

implies the model is significant. There is only a 0.90%

chance that a model F-value this large could occur due to

noise. Noise, which is responsible for most of the vari-

ability in the response, arises due to parameters that are

hard and expensive to control in process settings (envi-

ronmental conditions such as temperature and humidity,
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Fig. 3 Sensitivity analysis of ANN-based model

Table 2 ANN-GA-based optimum solutions and experimental verification

No. Sucrose Yeast extract Meat peptone Toluene Experimental % EI24 ANN-GA-predicted % EI24

1 1.95 0.10 1.99 4.30 65.20 63.95

2 2.02 0.30 2.00 3.57 63.60 62.92

3 1.98 0.27 1.99 2.33 63.76 62.57
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variations in raw material, accuracy limits of instruments,

etc.), and it varies randomly within the process. The pro-

cess parameters other than the chosen independent

variables are also a source of noise. The model error can be

attributed to model lack of fit and experimental noise. The

experimental noise can be estimated from replication

experiments. This further confirms the significance of the

model.

After regression analysis, the second-order response

model was obtained as shown in Eq. 2:

% EI24 ¼þ 51:54095� 1:26788A � 0:56988B

þ 2:88487C � 1:35871Dþ 0:18189A2

� 0:066751B2 þ 0:75165C2 þ 0:17197D2

� 0:23066AB þ 1:22192AC� 0:76146AD

� 0:34898BC þ 0:24352BD � 1:28694CD

ð2Þ

where A, B, C, and D represent sucrose, yeast extract, meat

peptone, and toluene, respectively.

The P values were used as a tool to determine the sig-

nificance of each of the coefficients, which, in turn, are

necessary to understand the pattern of mutual interactions

between the test variables. The smaller the magnitude of

P, the more significant is the corresponding coefficient.

Values of P less than 0.05 indicate model terms that are

significant. The coefficient and the corresponding P values

suggest that, among the input variables, A (sucrose), C

(meat peptone), and D (toluene) are significant model

terms. The lack-of-fit F-value of 19.66 implies the lack of

fit is significant. There is only a 0.21% chance that a lack-

of-fit F-value this large could occur due to noise. The

RSM-based optimum solutions and experimental verifica-

tion are given in Table 4.

Comparison of ANN-GA and RSM in biosurfactant

optimization

While RSM is the most widely used method in fermenta-

tion media optimization, ANN-GA has rapidly developed

into one of the most efficient methods for modeling and

optimization, especially for nonlinear systems. This section

presents the comparison between predictive capabilities of

ANN and RSM for two data sets: (1) the experimental data

that are used for developing the model (DoE data) and (2)

the separate unseen (validation) data. The generalization

capability of the model can be verified by its prediction

accuracy for a validation set. Table 5 shows the results for

16 experiments randomly performed to form a validation

data set.

The predictive and generalization capability of the RSM

and ANN models was compared on the basis of correlation

coefficient, average percent error, and maximum error

given by the model. The comparative results are shown in

Fig. 4 and in Table 6. It can be observed from Table 6 that

both the models performed reasonably well, but ANN

performed consistently better than RSM. In the case of the

DoE data, the correlation coefficients for the ANN and

RSM models were 0.96 and 0.83, respectively. The average

percent error and maximum error for ANN were less than

half those for RSM. In the case of the validation data set,

the correlation coefficients for the ANN and RSM models

were 0.90 and 0.70, respectively. The average percent

errors for the ANN and RSM models were 2.79 and 6.11,

respectively, and the maximum errors for ANN and RSM

models were 7.64 and 15.08, respectively, for the valida-

tion data set. The prediction performance of the ANN

model for the validation data set confirms its superior

generalization capacity for the given case.

The main limitation of RSM is that is assumes only a

quadratic form of nonlinear correlation. So if we want to

use RSM effectively, we need to narrow down the search

window appropriately. (If we make the search window

narrow enough, linear correlation may also suffice.) This

makes the search process highly dependent upon the search

Table 3 ANOVA of RSM model

No. Model terms Values

1 Standard deviation 2.69

2 Coefficient of variation (CV) 5.14

3 R2 0.772

4 Adj. R2 0.560

5 Adequate precision 7.43

6 Model F-value 3.65

Table 4 RSM-based optimum solutions and experimental verification

No. Sucrose Yeast

extract

Meat

peptone

Toluene % EI24

Experimental

values

ANN-predicted

(% error in prediction)

RSM-predicted

(% error in prediction)

1 2.42 0.38 2.02 2.19 61.26 60.54 (1.17) 67.01 (9.38)

2 2.25 0.27 2.03 2.82 60.78 62.87 (3.44) 66.30 (9.08)

3 1.61 0.20 1.98 1.53 57.59 59.24 (2.49) 63.22 (9.77)
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space. It will require either extra experiments or good

a priori knowledge of the system to fix the search win-

dow. Since ANN can inherently capture almost any

form of nonlinearity, it can easily overcome the limita-

tion of RSM discussed above. Thus, in case of ANN, we

can choose a more liberal search space, even if the

correlation (in that search space) is more complex than

quadratic.

In the present study, lack of fit and low correlation R2 in

RSM can be attributed to noncompliance of quadratic

correlation between dependent and independent process

variables in the given search space. This problem could be

tackled by narrowing the search space or shifting it in the

direction of steepest descent. But since ANN has captured

the nonlinear correlation successfully (shown by low AQE

and high R2), there is no need for further amendment in

RSM.

The RSM- and ANN-GA-predicted optimized compo-

sitions were comparable. However, RSM over-predicted

the maximum yield. The average percent errors in maxi-

mum predicted yield by ANN-GA and RSM were

approximately 2.5 and 9.5%, respectively. This difference

in the optimum prediction can be attributed to the higher

average and maximum percent error of RSM. The ANN

has accurately predicted the yield for RSM-optimized

conditions (see Table 4). This again exemplifies the supe-

rior generalization capacity of ANN and the accurate

prediction of optimum by ANN-GA.

The sensitivity analysis, i.e., an effect of each variable

on the system (as described in ANN section) shows that

inferences derived from ANN and RSM are comparable.

Both methods showed that the meat peptone is the most

significant media component followed by sucrose and

toluene. There are also methods available in literature to

quantify the interactive effect of variable pairs on the
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Table 6 Statistical comparison of predictive capability of ANN and

RSM models

Parameter DoE data Validation data

ANN RSM ANN RSM

Correlation coefficient 0.96 0.83 0.90 0.70

Average percent error 1.76 3.97 2.79 6.11

Maximum error 4.79 10.22 7.64 15.08

Table 5 Validation data set with experimental as well as model-predicted % EI24

No. Sucrose Yeast extract Meat peptone Toluene % EI24

Experimental values ANN-predicted RSM-predicted

1 1.00 0.20 0.50 1.00 53.14 52.46 49.96

2 1.00 0.20 0.25 1.00 48.50 48.88 49.13

3 0.50 0.10 1.00 1.00 53.55 53.81 52.27

4 2.00 0.10 1.00 1.00 53.00 52.57 51.70

5 0.50 0.20 0.50 1.00 51.92 51.76 50.55

6 0.50 0.10 2.00 1.00 58.33 54.79 56.69

8 0.50 0.40 0.25 1.00 52.00 50.50 49.76

9 2.00 0.40 1.00 1.00 51.44 51.22 51.35

10 0.50 0.60 2.00 1.00 52.17 48.75 56.10

11 1.00 0.40 0.5 3.00 50.00 52.98 45.84

12 2.00 0.10 0.25 1.00 45.26 45.85 47.99

13 0.50 0.10 0.25 8.00 51.85 52.67 46.51

14 2.00 0.40 0.25 1.00 41.66 42.55 47.72

15 0.50 0.40 1.00 1.00 49.35 47.58 52.02

16 2.00 0.20 0.50 3.00 43.24 46.54 43.46
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system using ANN models. But that study is beyond the

scope of this report.

MTBE extraction of biosurfactant

MTBE was used as a method of extraction for recovery of

biosurfactant from Rhodococcus spp. 2794 grown on

optimum medium predicted by ANN model (given in

Table 2, optimum solution no. 1). The yield of crude bio-

surfactant was expressed in grams per liter of fermentation

broth. The yields of crude biosurfactant before and after

optimization were 2.05 and 7.2 g/l, respectively. Thus, a

significant increase (3.5-fold) in the yield of biosurfactant

was achieved by ANN-GA optimization.

Characterization of crude biosurfactant

The type of emulsion can be determined by observing the

mixture of emulsion and dye under a binocular light

microscope. The two dyes used were methyl orange (water

soluble) and Sudan red III (lipid soluble). The emulsion/

methyl orange dye mixture, when observed under the

microscope, appeared as colourless droplets on an orange

background. This indicates that it is an o/w emulsion, as the

water-soluble dye gave colour to an external aqueous

phase, while oil droplets remained colourless. The o/w

nature of the emulsion was confirmed using Sudan red III

where droplets appeared red on a colourless background.

The crude biosurfactant was analyzed for the carbohy-

drate and protein contents. It was found to contain 22.62%

protein and 50.13% total carbohydrates. The crude bio-

surfactant decreased the surface tension of water from 72 to

33.8 mN/m (at 120 mg/l) and achieved a CMC value of

100 mg/l.

Conclusions

The production of biosurfactant by Rhodococcus spp.

MTCC 2794 was observed to be growth associated. It was

observed that use of an organic nitrogen source gave higher

cell mass than with inorganic nitrogen. Among six Rho-

dococcus strains selected for the work, R. erythropolis

MTCC 2794 was found to give maximum cell mass when

grown in a medium containing sucrose as carbon source.

Among seven different inducers studied for MTCC 2794,

toluene gave the best results.

Two optimization techniques, ANN-GA and RSM, were

applied for media optimization in order to enhance the

biosurfactant yield by Rhodococcus erythropolis MTCC

2794. A three-step systematic optimization approach

comprised of (1) screening, (2) ANN-based modeling, and

(3) GA-based optimization was reported for the first time to

maximize the fermentative production of biosurfactant.

Moreover, the present manuscript describes a comparative

assessment between artificial intelligence (AI)-based and

statistical methodologies in media optimization. Most such

comparative studies have focused only on the predictive

abilities of ANN and RSM. This study, however, compares

optimization abilities and sensitivity analysis in addition to

comparison between predictive capabilities of ANN-GA

and RSM optimization methods. Thus the present manu-

script gives a broader and more generalized comparison

that can be used in designing media-optimization

strategies.

ANN has better generalization capacity, and ANN-GA

is more accurate in predicting the optimum than RSM. It

was also demonstrated that ANN models could be used

effectively for sensitivity analysis. In this particular case,

ANN-GA proved to be consistently better than RSM.
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