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Abstract. The characterization of chaotic spatiotemporal dynamics has been studied for a
representative nonlinear autocatalytic reaction mechanism coupled with diffusion. This has been
carried out by an analysis of the Lyapunov spectrum in spatially localised regions. The linear
scaling relationships observed in the invariant measures as a function of the sub-system size have
been utilized to assess the controllability, stability and synchronization properties of the chaotic
dynamics. The dynamical synchronization properties of this high-dimensional system has been
analyzed using suitable Lyapunov functionals. The possibility of controlling spatiotemporal chaos
for relevant objectives using available noisy scalar time-series data with simultaneous self-
adaptation of the control parameter(s) has also been discussed.
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1. Introduction

Spatially extended nonlinear systems are known to exhibit a wide variety of complex
dynamics ranging from stable stationary states to coherent travelling waves, solitons and
spatiotemporal chaos. Studies on this topic have been reviewed by Cross and Hohenberg
[1] from a global perspective and their importance in many physical, chemical, biological
and social systems have been summarized. To cite a few examples, complex patterns have
been experimentally observed in hydrodynamic fluids, nonlinear optics, crystallization of
solids, chemically reacting systems, morphogenesis, self-replication of living cells, neural
systems, population dynamics, and economics. Even though these systems are high-
dimensional due to mechanisms such as diffusion, convection, etc., concurrently
occurring in the spatial domain, a wide range of complex phenomena exhibited by these
systems may be modelled by simple partial differential equations or coupled maps.
Considerable application potential exists if it were possible to devise strategies that would
regulate and control these dynamical patterns to exhibit the desired behaviour. This is
especially true for systems exhibiting spatiotemporal chaotic patterns which are highly
sensitive to the initial conditions and parameter settings [2] and their robust control needs
highly efficient and newer techniques of analysis to be developed.

Systems exhibiting chaotic behaviour offer the advantage of controlling the system
dynamics in a variety of dynamical patterns with low energy inputs [3]. Typically, an
experimenter may wish to stabilize the spatiotemporally chaotic dynamics, or switch
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it over to a different dynamical pattern (which may also be chaotic), using limited
available information in the form of scalar time-series data in the spatial domain.
Possible control strategies in such situations would require controllers to be dispersed
in the spatial domain with each one perturbing the value of the chosen control
parameter(s), or alternatively, introducing appropriate forcing in the form of dynamical
waveforms from outside the system. Recent studies using these methodologies [4-7]
have shown that it may be possible to suitably tune the 'spatiotemporally chaotic
dynamics to a stabilized mode or a periodic orbit of the homogeneous system, devoid
of spatial effects. A dense distribution of the controllers may be necessary to account
for the large number of unstable degrees of freedom in high-dimensional systems.
However, if some information about the basic mechanism governing the system dynamics
is known, then ingenious strategies involving simple localized control algorithms may
be employed. For instance, the spatiotemporal patterns observed in cardiac tissues [8],
reaction-diffusion models for catalysis [9,10], and Ginzburg-Landau equation [11-13]
arise because of unstable topological defects nucleating spontaneously from an initial
disordered state. In such situations it has been shown that the stabilization of even
one wave-generating defect may interact and control all the others right up to the
system boundary [13]. In the event when the spatiotemporal system is subjected to
noise and a periodic forcing function, the cooperative effects that may arise between
the inherent nonlinear dynamics, the external noise and periodic forces may stabilize
the system dynamics due to the phenomenon of stochastic resonance, In fact, in a
recent experimental study with linearly coupled array of nonlinear oscillators, it has
been shown that ordered periodic states can be achieved by the optimization of noise
levels and/or forcing frequency [14, 15]. Thus, while working with chaotic systems,
even unconventional methods may be rationally applicable for regulating the system
dynamics.

The control of nonlinear chaotic systems may also be looked at from a different
viewpoint. Given a process from which we monitor scalar time-series data, can we use it
to drive a response system so that its dynamics in all the other non-monitored variables
becomes synchronized with that of the process? Despite the fact that the chaotic
behaviour exhibits rapid decorrelation of nearby orbits, it has been observed that it may
be possible to synchronize the response system dynamics to that of the process [16].
Considerable attention has been focussed on this topic in the recent years and conditions
for obtaining synchronization have been studied when the response system is: 1) a replica
of the process with incorrect knowledge of the initial conditions and 2) a non-replica of
the process with unknown initial conditions and incorrect parameter settings. In particular
it has been shown that for synchronization in initial conditions to occur, the response
system, excluding the driving variables should possess only negative Lyapunov exponents
[17-26]. When the response system is a non-replica of the process, synchronization may
be possible by suitable perturbations in the response parameter(s) (depending upon local
stability considerations) [27, 28] — much in the same fashion as suggested by OGY for
controlling chaos [29, 30].

It may be noted that the above synchronization and control studies refer to systems
described by low-dimensional chaotic systems. On the other hand, spatio-temporal
chaotic systems may be thought of as a network of chaotic elements with a large number
of positive Lyapunov exponents, and hence, for their dynamical synchronization a large
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number of driving signals may be necessary. Furthermore, it would be computationally
difficult to characterize the system dynamics and clearly demarcate the stable and
unstable directions associated with the attractor because of the high dimensions involved
[7,31-33,35,37-39]. It is then worthwhile to see if simpler and practical ways of
analyzing these systems can be devised. A possible strategy may be to first assess the
complexity and stability properties of the high-dimensional system in a lower
dimensional framework. Our earlier studies on this topic have shown that interesting
scaling relationships in the system invariant measures (such as Lyapunov exponents,
entropy, etc.) as a function of sub-system size exists for the spatiotemporally chaotic
dynamics in nonlinear reaction-diffusion systems [40]. An analysis of these relationships
may yield valuable information about the requirements of spatial time-series data for the
characterization and control of spatiotemporal systems.

In this paper, we shall discuss the control of spatiotemporally chaotic dynamics in
nonlinear reaction-diffusion systems for limitations in the knowledge of the system. The
reaction-diffusion system considered here belongs to a fairly general class of chemically
reacting systems involving nonlinearity by way of autocatalytic steps [45, 49] and in the
following section we shall elaborate on the specifics of the system studied. Subsequently,
in §3 we summarize the possible methodology to characterize the spatiotemporal chaotic
behaviour in terms of sub-system invariant measures like Lyapunov exponents, entropy,
etc. Section 4 studies the synchronization and control of replica and non-replica response
systems with simultaneous estimation of the response parameter(s) and §5 briefly
summarizes the scope of the results.

2. Model description

In recent times considerable interest has been aroused in the study of nonlinear reaction-
diffusion systems with the experimental observance of complex spatiotemporal patterns,
e.g., striped, hexagonal, travelling waves, and spatiotemporal chaos in a simple gel-
reactor uncontaminated by convection effects [41, 44]. Pattern formation in these systems
arises as a result of spontaneous symmetry breaking transitions with intrinsic length
scales dependent on the diffusion coefficients and the reaction rate constants [42, 43]. An
interesting class of spatial patterns observed include spots which have an uncanny
resemblance to what is observed in many biological systems in the sense that they
replicate, grow and die [46, 47]. These replicating patterns, do not have the high degree of
sensitivity associated with the chaotic dynamics and hence their control is less difficult.
In fact, in an earlier study with a simple autocatalytic reaction-diffusion model, using
controllers dispersed in the spatial domain, we have shown that the control of these
patterns in desired dynamical states may be possible [48]. In the present study we
consider a similar reaction network with an additional mechanistic step involving a new
species D, i.e., a three-step parallel autocatalytic reaction mechanism [49] with .
competing interactions between the chemical species A, D, and B, viz.,

A+2B—3B, rn = k]CACIZ;, (I)
D+2B—3B, r,=kCpCs, (1)
B—C, r3=kC, ()
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Figure 1. (a) Schematic diagram of a well-mixed continuous stirred tank reactor
(CSTR). (b) Temporal chaos arising for the autocatalytic reaction (1) in a CSTR,
shown as a phase-plane plot; o =1.5; 8=2.93; Da; = 18000; Da, = 400;
Da3 = 80.

and the rate expressions r;, i = 1,2, 3 for each step, given alongside. Nonlinear feedback
in this mechanism occurs due to the rates of formation of species B being autocatalytic in
steps (I) and (II), while, in (III) the effect is inhibitory. For a continuous flow well-mixed
cell (shown in figure 1a), the model description for the above reaction takes the followin g
dimensionless form

dX;
—d—t =1~ Xl - Da1X1X§7
dX;
—2 = X, — DayX,X2,
dr
d.X3 { 1 D 2 1
5 = !~ (1+Da3)Xs + a(DarX; + DayX,)X3, )

where X;, i = 1,2, 3, respectively, represent the dimensionless species concentrations of
A, D, and B relative to their concentrations at the inlet to the cell. Here, Da;’s are the
dimensionless kinetic parameters associated with the reaction steps (I-III) and the
parameters o and (3 are the feed concentration ratios of species B and D with respect to A.
An analysis of the dynamical properties of this cell shows features such as mulfi-
stationarity, oscillatory behaviour and chaos in chosen parameter space of «, 8 and Da;’s
[49]. In figure 1b a typical phase portrait diagram of X, vs X3 depicting the chaotic
dynamical behaviour of (1) (with maximum Lyapunov exponent, Ayax ~ 1.36) is shown.
On introducing a diffusive transport mechanism for a system of N coupled autocatalators
(1), the system dynamics may be described by the following set of PDE’s, viz.,

5%, (. 1 , X, (r,t
e 1 —X1(r,£) — DarX (v, )X3(, £) + d —31?(2_)
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Figure 2. (a) Schematic of N CSTRs coupled bi-directionally via diffusion in one
spatial dimension with periodic boundary conditions. (b) Spatiotemporal chaos arising
for a perturbation given at ¢t =40. Dy =D, = 1.0; D3 =0.01; a = 1.5; B =2.93;
Da; = 18000; Da, = 400; Das = 80; [X; axis-scale: (0.0,0.07).

BX r,t 82X r,t
23(x ) = 8= Xa(r,1) — DasXa(r, )X2(x, 1) + d __é%;(_ZJ
BXaég:, 5 _ 1 — (1 + Da3)Xs(r,t) + afDaX; (r,2) + Dax X5 (r, 1)) X3 (r, £)
 0PX3(r,t ‘ ‘
ra T2, (2)

where r = (x,,z) is the spatial vector; and d;, i = 1,2, 3 are the dimensionless diffusion
coefficients of the respective species A, D and B. Autocatalytic reaction-diffusion systems
of the type (2) are known to possess a rich variety of dynamical patterns with properties
such as excitability, wave reflection and wave splitting, propagating fronts, etc. [50, 51].

In this paper, all studies were carried out for N independent autocatalators coupled via
bi-directional diffusion on a one-dimensional spatial lattice (schematically shown in
figure 2a). On Euler discretizing the Laplacian, 8%/0x2, in the spatial dimension x, viz.,
we obtain

?_Xla(tﬂ =1-Xi1(j,t) — Dar X1 (j, )X3(j, 1)
+ DG (74 1,0) = 2600 + X0 - L),
aLégtj’Q = B — X2(j,1) — DayXa(j, ) X2(j, 1)
+ DX (j+1,8) = 2%:(j, D) + X2 (G — 1,1)],
Q{sé%f) =1~ (1+ Das)X3(j, ) + a[Dar X1 (j, 1) + DaxXs (j, )}X2(j, 1)

+D3[X3(j+1:t)—2X3(jat)+X3(j“1at)]7 (3)

with D; = d;/(Ax)?, Ax being the spatial mesh size; j=1,2,...,N. The number of
degrees of freedom is significantly increased to 3N and the characterization of the system
dynamics is, now, not a trivial task. In this study, the diffusion coefficients of the species
A and D are assumed equal throughout and much greater than that for the species B, i.e.,
Dy = D, > Ds. The unequal rates of diffusion and the local nonlinearity may then result
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in the formation of complex spatiotemporal patterns including spatiotemporal chaos.

depending on the parameter values. In figure 2b is shown the spatiotemporally chaotic
dynamics exhibited by (3) for N = 64 and assuming periodic boundary conditions.
Initially, all the N cells were assigned identical initial conditions and the parameter values
were chosen corresponding to single cell (1) exhibiting chaotic dynamics (figure 1b). The
extended system (3) was then simulated using the fourth order Runge-Kutta algorithm
with time step Af=0.0002. For time 7 <40 (in dimensionless units), the system
dynamics is seen to be spatially correlated though temporally it is uncorrelated and
chaotic. Note that the diffusion mechanism is not active in this region because of identical
initial conditions assumed over the entire spatial domain, and therefore all the cells
evolve synchronously. Now at time ¢ = 40, a perturbation was given to the set of eleven
cells lying in the central region of the lattice. This perturbation assumed that the
dynamics of the chosen cells progressively went out of phase with each other by time
t =0.002. A spread of this perturbation to the system boundaries by diffusion, with a
complete loss in the spatial correlation, is qualitatively seen in figure 2b and this
dynamical behaviour was seen to persist indefinitely. Characterization of this loss in
correlation and their effects, however, need to be studied quantitatively to make more
meaningful interpretations. The following section discusses a means of doing so.

3. Characterization of reaction-diffusion dynamics

The characterization of spatiotemporal dynamics in terms of the Lyapunov exponents
[52] which quantify the growth rate of trajectories for infinitesimally small perturbations
will be discussed in this section. For the spatially discretized system (3) with three
chemical species interacting on a one-dimensional lattice of size N, there are 3N
dependent variables. Hence the complete Lyapunov spectrum would have 3N exponents
and their calculation would be computationally very intensive, especially for large N. To
alleviate this difficulty, in an earlier study we discussed the analysis of the Lyapunov
spectrum for sub-systems of size n,(< N) and studied the behaviour of the system
invariants as ny — N [40]. For the sake of completeness in discussing issues related to the
control of these systems, we shall now review this approach, highlighting the major
results obtained.

For the extended system (3) with x denoting the set of fixed parameters, the temporal

evolution of the concentrations of each of the species for chosen values of D; may be
functionally written as )

dXic(lItc, t) = i,k(Xl(k, Z‘), e ,X3 (k, l),X,'(k +1, t), h:), (4)

where the first index i = 1,2, 3 of the functionals Fx denotes the respective species and
the second index k=1,...,n; represents a sub-system lattice site. The Lyapunov

exponents of the sub-system of size ny may then be calculated in a manner similar to that
for the full system [52], viz.,

: 1. 16X | -
A =timesup o= . |
TP T Sy | REE (%)
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where §X'(1y) refers to the infinitesimal perturbation from a reference state at ¢ = #o and
8X!(¢) its evolution at a time 7. While calculating these exponents for (4), open boundary
conditions were assumed at the sub-system boundary sites, i.e., at k = 1 and k = ns. The
open boundary conditions indicate that only for the purposes of evaluating the A;’s, the
flow of information from the outer site of the sub-system boundaries, may be likened, to
presence of noise in the analysis. Alternatively, for the 1d lattice, we may characterize the
sub-system dynamics on excluding the outermost sub-system boundary sites, although
time-series signals at these boundary sites are available. The effective sub-system size for
characterization is now ng —2, and the invariant measures of (4) can be studied
accurately. '

The characterization of the sub-system dynamics may now be carried out by applying
the well-known Kaplan and Yorke (KY) conjecture [53] to the spectrum of sub-system
Lyapunov exponents, \;”. For doing so, we define the effective sub-system Lyapunov
dimension, d;”, as

! ,
d(s) I+ 1) STAY, (6)

where [ is the lar§est integer for which the sum of the exponents, )\gs) +-ee A§S) >0.If
A1 <0, then d¥ =0 and if [=3n,, then d¥ = 3n, [54]. Further reduction in the
computational effort is possible as it may not be necessary to evaluate all the 3n; sub-
system exponents. A relationship in the variation of d(L) with ng would then help in
establishing the number of effective variables required to determine the long-term
behaviour of the complete system dynamics. From a knowledge of dg) we can define the

“sub-system dimension density, p(s) as

(s)
) = 9L
p = ng ) ‘ (7)
by normahzmg the sub-system Lyapunov dimension with its size ns. The behaviour of p(®
as a function of n, may then importantly help in identifying a critical sub-system size, n,
required for accurate characterization of the complete system dynamics.

- Another important invariant measure is the Kolmogorov-Sinai (KS) entropy used for
quantifying the mean information production and the growth of uncertainty in a system
subjected to small perturbations [53]. The KS entropy is defined as the sum of the
positive Lyapunov exponents Ay [52, 55]. For regular predictable behaviour, the KS
entropy is zero while for chaotic systems it takes a finite positive value and tends to
infinity for a stochastic process. In the present analysis we shall use this relationship for
evaluating the sub-system KS-entropy, A%, as

B =320, o (®)
and the normalized sub-system entropy, (h(s)), as
(h(s )= Z )\(S)/ns | v (9)

We now discuss the role of these sub-system invariants in the characterization of
the full spatiotemporal system. In figure 3a is shown a plot of the sub-system dimension
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Figure 3. Behavior of the sub-system invariants as a function of its size ns: (a) f
Lyapunov dimension, d;”; (b) entropy, 2; (¢) dimension density p®; (d) normalized i
entropy, (A®)). v !
d,(f) as a function of its size n;. A clear linear scaling relationship in the sub-system ,
dimension is seen for increasing sub-system size (figure 3a). This suggests that it may
indeed be possible to determine the effective dimensionality of the whole system from an ,

analysis of a relatively small sub-system. Some generic conjectures based on
dimensionality have also been seen [34]. A clear linear scaling relationship with
increasing sub-system size was also observed for the sub-system KS entropy, 4(), shown
in figure 3b. The sub-system dimension density, p), is however, seen to saturate to a
constant value for ng greater than a critical sub-system size ng, (figure 3c). This
converging behaviour of p(® for n, > nse, may importantly help in assessing the number
of degrees of freedom required for the characterization of the whole system. The
saturating behaviour observed for the normalized sub-system entropy, (h®)), (figure 3d)
suggests that even though the total entropy of the sub-system may increase with its
size, the average rate of information loss/gain levels off for ng > ng.. These results
suggest that sub-system analysis may suffice for the characterization of the full
system dynamics. Similar scaling relationships in the system invariants as a function
of sub-system size have also been observed for coupled maps with near neighbour
interactions indicating possible generalizations [35, 36]. The knowledge of these sub-
system properties may be used in identifying favourable conditions for controlling

the spatiotemporal system and in the following section we shall further elaborate on
this aspect.

i
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4. Synchronization and control of spatiotemporal chaos

In this section, we discuss the synchronization and control of the spatiotemporally chaotic
dynamics of a response system driven by monitored time-series signals from a
spatiotemporal process for various objectives like stabilizing the chaotic behaviour of the
response system and its ability to mimic the process dynamics under different situations
[16]. In practice, there exists constraints in the monitoring of scalar time-series data from
the entire spatial domain of the process, and moreover, this data may generally be noisy
due to errors arising during measurement. It would be desirable to consider the control of
the spatiotemporal dynamics of replica and non-replica response systems for these
limitations. ‘

4.1 Synchronization in replica systems

To begin with, we first consider the response system to be a replica of a spatiotemporally
chaotic process, i.e., the response and the process systems are assumed to be identical in
all respects except in their initial conditions, X;(j,0) # X;(/j,0), where X;(j,0) denote the
response system variables. The response system model may then be written in its
variables, X;(j,1), as

A~

X1(j,8) = Fr(%.(j, 1), X3(j, 1))
=1-X1(j,1) - Da X1 (j, 1) X2 (j, 1)
+Di X (j+ 1,0 = 2% (j, ) + X1 (J - 1,1)],
X:(j,1) = Fa(%a(j,1), %, 1)
=B —%(j,1) — Dary X (j, )X2(j, 1)
+Da[%a(j+1,8) = 2%(j, 1) + Xa (j — 1,1)],
X3(j,1) = F3(%1(4,1), %2.3,2), %7, 1)
= 1= (14 Da3)Xs(j, ) + a[DaiX1(j, ) + Dax X (j, ))X2(j, 1)
+D3[X3(j+1,8) — 2%3(j, 1) + Xa (j — 1,2)), (10)

where, j = 1,2,...,N. If the response system (10) is now assumed to be driven by scalar
time-series signals, X3(j,t), j=1,2,...,N, from the process, its dynamics follow

Xl (k, t) =F (Xl (k) t)7X3(k’ t)):
jfz(k, t) = FZ(XZ(ky t),X3(k, t))a :
).23(](7 t) = F3(Xl(k7 t)aXZ(ka t)7X3(j? t))’ (11)

and was found to completely synchronize with the process dynamics, in all the 3N

~ variables. This is clearly seen in figure 4a from the diminishing behaviour of the relative

error in the response and process dynamics, ie., €(j,2) = [¥(j,1) — Xa(j,1)]/
X>(j,t) = 0. (Similar synchronized behaviour was observed in the other two variables
also).
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Figure 4. Synchronization in a replica system for parameter values in figure 2. The
relative space-time error behaviour for &, (j, ) shown. (a) Complete synchronization
in the spatio-temporally chaotic dynamics of the response system obtained on using
driving signals, X3(j,#), j=1,...,N, from the process; €, axis-scale: (—0.005,
0.0007). (b) On using sub-system driving signals, X3(k,?), k = 1,...,n, for ng = 11,
from the central region (shown by tics), synchronization was observed only within the
sub-system. e}, axis-scale: (—1.11,6.35).

We now show that it may be possible to explain the observed synchronization
behaviour of the combined response-process dynamics using Lyapunov stability analysis.
The method suggests that a given system is stable, if any continuously derivable positive
definite function, L, (called the Lyapunov function) can be defined along a trajectory with
the property that its time derivative, L <0, as ¢z — 0o [56]. This method may be
advantageously used since it affords analytical reasoning of the stability properties of the
system. In the present study, we show by constructing suitable Lyapunov functionals in
terms of error variables, ¢;(j, #) = X;(,) — X;(j, t), that synchronization in the dynamics
between the response and the process may be assessed. The dynamical equations for the
error function variables ¢;(j,t) are

e1(j,1) = X1(j 1) — % (G, 1
= —e1(j,1)[1 + Dan X3 (j, 1)]
+Diler(j — 1,1) — 2e1(j,2) + ex(j + 1,1)], (12)
ea(j 1) = Xa(), 1) - X))
= —ex(j, 1)1 + DaxX3(j, 1)}

+ Dafex(j —1,1) — 2e2(j, 1) + e2(j + 1, 1)), (13)
ég(j,t) =X3(.j) t) '—X3(j:t)
- Q[Dalel (], t) +D112€2(j, t)]Xg(L t): (14)

written using (3) and (10). Then, fqr a chosen positive Lyapunov functional L defined as
L=3" % el(j,1), its derivative L is

3 N .
(1/2)L:ZZei(j7t)éi(jat)' | ; (15)

Substituting (12-14) in (15) and for the assumed periodic boundary conditions, we obtain
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on simplification

N N '
> el en(yr) = =y e (,1)[1 + DarX3(j, )]
j=1 j=1
N
_DIZ[el(j: t)_el(j+1at)]2> (16)
J=1 .

N N
> ea(fin)ea(ist) = = Y e (j,1)[1 + DaxX3(j, 1))
j=1 J=1 .
‘ ‘N
—DZZ[eZ(jv t) —'62(j+ 17t)]27 (17)
Jj=1

N
Z (J: )93(.]7 _aZ{ei’:(.]a [Dalel(]: )+Da232(J’ )]XZ(]a t)} (18}

It may be noted from (12) and (13) that the error dynamics of e;(j,¢) and ex(j, ) are
dependent only on their respective error function variables, and on the square of the
driving signals, X3(j, ). Equations (12) and (13) are decoupled in this sense and may be
considered independently for assessing the synchronization behaviour of X, and X, by
independent Lyapunov functions L; = 3, e e*(j,2), i = 1,2. Then, from (16) and (17), it is
clear that the Ls are negative definite, and el(], t),eg(}, t)— 0 as t — oo by the
Lyapunov stability theorem. Using these conditions in (15), L is strictly nonpositive and
indicates the stable convergence of the error dynamics (12-14) to the origin. That is, the
response system would dynamically synchronize with the process dynamics in all its
variables.

On the other hand, if the time-series signals are available from a sub-system of size
ns(< N), then following the above Lyapunov stability analysis, synchronization should
be possible only within the sub-system region. This is because for the variables outside
the sub-system, the error function variables are governed by

é (la t) =€ (la t) - Dal [Xl (la t)}'z% (17 t) - X (l) t)XE’%(la t)]

+D1[e1(l— 1,t) —261(1,t)+81(l+1,t)], (19)
e(L,1) = —ex (I, 1) — Dag[Xo (L, )RE(L, 1) — X2 (1, )X5 (1, 1))
+Dales(i- 1,0) = 2e2(1,1) + ea(I+ 1, 1)), (20)

é3(1,) = —(1 + Da3)[%s(L,1) — Xa(1,1)]
+ aDay[X; (1, )X3(1, 1) — X1 (1, )X5(1, 1))
+ aDay[Ra (1, HRA(1,2) — Xa (1, HX2(L, )]
+ Dsfes(1—1,1) —2es(l,t) + es(I+ 1,1)], (21)

where I denotes the lattice sites outside the sub-system, i.e., [ = 1,2, ..., N, excluding the

n, sub-system lattices sites from the central region. Note that the terms (19) and (20) are .

‘now not necessarily negative and synchronization in these variables cannot be guaranteed.
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This behaviour was numerically observed on driving the response system (10) by scalar
time-series signals from a sub-system of the process of size ng = 11, from the central
region of the lattice. The space-time plot of the error function e5(J,t) in figure 4b clearly
shows only sub-system synchronization. ' _

In situations when a suitable Lyapunov functional cannot be constructed, the
synchronization capability of the response system with that of the process may be
inferred from an analysis of the conditional Lyapunov exponents of the response system
[18,19]. Following the results of the sub-system invariants discussed in §3, it may be
sufficient to analyse the conditional Lyapunov exponents of only a sub-system of size
ng(> ng) of the response system. The procedure for calculating the conditional Lyapunov
exponents of a sub-system is similar to that of the sub-system Lyapunov exponents
discussed in the §3, but now we need to monitor the growth rate of only 2ng sets of
orthonormal vectors (6X;(k,t), i=1,2; k=1,2,...,n) in a linearized region of (11).
The maximum conditional Lyapunov exponent for a sub-system of size ng = 11 of the
tesponse, system (11) was found to be negative (\yax ~ —0.07), as expected. Thus, the
sub-system conditional exponents may be used to assess the synchronization capability of
the response system (see figure 4a). :

4.2 Synchronization in non-replica systems

Next, we consider the situation when the response system is a non-replica of the process,
ie., the response and the process are assumed to be operating in different parametric
regimes. Synchronization of the response dynamics with that of the process in this
situation may be difficult because of inaccuracies in its parameter values. For example,
consider both the process and the response system exhibiting spatiotemporal chaos, but
with a chosen control parameter, f, of the process having a value 2.93 (which may not be
known a priori in a given experimental situation), and the corresponding response
parameter, (3, set incorrectly at 2.73 at 7 = 0. The hence response and the process evolve
asynchronously because of this parametric inaccuracy, and simple driving as employed in
subsection 4.1 for replica systems, was found to be insufficient for the complete
dynamical synchronization. There exists a need, therefore, to correctly estimate the
parametric inaccuracy. To do so, we focus attention on a convenient strategy which allows
to correctly estimate the inaccuracy in the control parameter via suitably chosen
functional forms for parametric self-adaptation. For low-dimensional chaotic systems it
has been shown that many simple choices of the functional forms may indeed be used for
parametric self-adaptation and control [57-65].

For parametric self-adaptation of spatiotemporal systems, we begin by introducing
space-time dependence in the chosen response parameter, i.e., B( J,t) and define a new
variable, AB(j, 1), denoting the time-dependent parametric corrections to be made such
that, 5(j,2) = [8(j, 0) + AB(j,2)] — B as t — oo. For convenience, it was assumed that
at t=0, 5(j,0) = g, and AB(j,0) =0, for j = 1,2,...,N with the following simple
functional form for the dynamical corrections, AB(j,1), viz., ‘

f‘é—ﬂi—"’f’- = I8, 1) = X3(j, 0] = —es(j, 1). (22)

It would be interesting to see if a Lyapunov functional can predict the stability of the error
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dynamics with the parametric self-adapter equation (22). The error dynamics in this case
follows

é1(j, 1) = —e1(j, )[1 + Day X3 (j, 1))

+D1[€1(j—1,t)——281(j,t)+€1(j+ l,t)], (23)
(7, 1) = (B(j,0) + AB(j, 1)) — B — ea(Jj, D)1 + DarX3(j, 1)]

+ Dylea(j — 1,8) — 2e2(j, 1) + e2(j + 1,1)], (24)
é3(j, 1) = a[Daye; (j, 1) + Dages(j, )]X5(j, 1). (25)

It may be noted that, similar to the analysis for the replica system, the error dynamics of
e1(j,t) is again dependent only on e;(j,¢) and the square of the time-series signals,
X3(j,1). That is, we can define a Lyapunov function L; = 3, e3(j,t) such that

N

N
(/2L =3 e1(i e (1) = = _ei(i 0L + DarX3 (o))

N
—Di Y e —a(i+ 1,01 (26)
J=1

is negative definite. Hence, following the Lyapunov stability theorem, e;(j,?) — 0,
irrespective of the dynamical behaviour of the time-series signals, X3(J,?) apd the

~ remaining variables of the response system. This implies that synchronization in X (J,?)

is guaranteed and this feature may be used for studying the synchronization behaviour
with respect to the remaining variables. Thus, on defining a positive Lyapunov functional
of the form L =73 €3(j,1) + e1(J, 2)[e3(j, 7) + €3(J, 1) + AB*(j,2)], we find that its
derivative, L, is strictly nonpositive as t — oo. Hence, dynamical synchronization of the
response system with that of the process is likely with the corrections, AB(J,1),
appropriately estimated. A numerical study confirmed the above prediction (results not
shown).

It is interesting to note that the above Lyapunov functional analysis is valid even if the
monitored time-series signals are noisy due to measurement errors. That is, we assume
the response model to be driven by noisy scalar time-series data, X3(/,#), of the form

X304, 1) = X3(j, 1) +m(j,1), j=1,...,N, ' (27)

where 1 is the intensity of Gaussian noise, 7)(j,¢). The inherent tendency of the response
to. reduce the errors e;(j,7), i =1,2,3 still persists with a noise reduction capability
depending on the noise level and frequency. Our studies showed that when the driving
signals X5(j,t), were assumed to be available from all the lattice sites, synchronization
in the response variables was observed over the entire spatial domain even for noisy
time-series signals. This is depicted in figures 5a and b, by the diminishing behaviour
of the relative error signals e(j,?) = [Xi(j,1) - Xi(f,0]/Xi(j,t), i=1,2, with the
convergence of ASB(j,t) to the mean correction, S — 3(j,0) = 0.2, shown in figure Sc.
Note that AS(j, ) fluctuates around this mean correction in an attempt to filter the effects
of noise on the dynamics of the response system. In keeping with the observations made
earlier on studying synchronization properties for data monitored from a subsystem,
the results obtained with noisy driving signals from a sub-system, i.e., X3(k,1),
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Figure 5. Synchronization in a non-replica system for an initial inaccuracy in
response parameter (3, i.e., 8 = 2.73, while process parameter 8 = 2.93. The study
assumed the response system to be driven by time-series signals, X}(j,z),
j=12,...,N, corrupted with measurement noise of intensity v = 0.00002. (a,b)
The relative error signals, e;(j,t),e2(j,t) — 0, showing the synchronization of the
response dynamics with the process; €] axis-scale: (—0.051,0.316); €, axis-scale:
(—0.051,0.316). (c) Space-time behaviour of the correction, AB(j,z), converging
accurately to 0.2 over the entire spatial domain is seen; AB axis-scale:
(—0.051,0.251). ‘ :

k=1,2,...,ns; showed that synchronization was again possible only within the sub-

system region. This is shown in figures 6a and b, where the relative synchronization .

error, €,(j,t), i = 1,2, has been plotted. Note that for the lattice sites outside the sub-
system (and not covered by the adapter equations (22)), an average adaptation
(AB) = 3", AB(k,t)/ns was employed. The dynamical convergence of this average
correction, (Af), to 0.2 is shown in figure 6¢c. These results suggest that even with
limited and inaccurate sub-system information, it may be possible to correctly estimate
the inaccuracy in the chosen control parameter, though, complete dynamical
synchronization of the response in all its variables may be a difficult task.

4.3 Stabilization of spatiotemporal chaos

Frequently, it may be necessary to stabilize the spatiotemporally chaotic dynamics and
in this subsection we present the results obtained on driving a response system
using limited and noisy time-series signals from a process exhibiting time-independent
stable dynamics. The response system was assumed to exhibit spatiotemporal chaos
with Das = 80 and the aim was to self-adapt this parameter so that the response system
now self-regulates itself to operate at a desired stable state (say, at Da; = 30, not known
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~ Figure 6. Synchronization behaviour of a spatiotemporally chaotic dynamics of the
response when driven with noisy data from a sub-system of size ng = 11, from the
central region of the lattice. (a, b) Synchronization observed only within the sub-
system region where, e1(j,1),e2(j, ) — 0; €} axis-scale: (—24.89,182.8); e, axis-
scale: (—1.117,8.316). (c) The temporal behaviour of (Af), is seen to accurately
estimate the correction required.

a priori). Thus, in this case, we study the inverse problem of locating the control
parameter value which yields a desired output in the dependent variables of the
response system. The dynamical equations for the error functions ;(j, ), in this situation
follows

&1(j,1) = —e1(j,)[1 + DarX3(j, 1)) ,
+D1[61(j—-1,1’)—261(j,t)+€1(j+1,1‘)], (28)
é2(j7t) = _e?-(j:t)[l +Da2X%(j: t)]

+Dslex(j — 1) — 2e2(j, 1) + e2(j + 1, 1), (29)

' é3(ja t) = ""ADaS (Ja t)XS(ja t)
+ C’4[‘Dalel (]7 t) +Da262(j: t)]X:%(]a t): | (30)

on introducing space-time dependence in the chosen response parameter, i.e., Das(j, 1)
with Das(j,0) = Das. As before, we now define a new variable, ADas(j,t), for the
parametric corrections required to be made to the response parameter Das such that the
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(b)

BEAr T 2?0 1300 400
Figure 7. Stabilization of the spatiotemporal chaos with noise reduction. (a) The
relative error e (j, ) — 0 indicating stabilization of the response system at the desired
state; 3 axis-scale: (—2.88, 27.89). (b) The convergence of (ADas) to the initial
difference Da; — Das = —50.

true process value Das is realized as t — oco. For convenience, we assign at ¢ =0,
ADa3(j,0) =0 and to bring out the flexibility in choosing a dynamical form for the

parametric self-adaptation, we now consider

dAD as (.] ) t)
dt

Then, for a positive Lyapunov functional L defined as
L=3 Y &)+ ADd(j,1), (32)
i j

its derivative, L, is again seen to be strictly nonpositive and from the Lyapunov stability
theorem it follows that the response system would completely synchronize with the stable
process dynamics for appropriate dynamic corrections, ADas(j,¢). This was also
numerically confirmed for noisy driving signals, X}(k,¢), from a sub-system of the
process. However, unlike in the previous studies, we now observe synchronization over
the entire spatial domain. This is clearly seen in figure 7a for the relative error signal,
e5(j,t) = 0,j=1,...,N, when the response system was assumed to be driven by time-
series signals from a sub-system of size n; = 11, from the central region of the process
(following (27)), viz., X3(k, 1), k= 1,2,...,n,. As in the previous study, for the lattice
sites outside the sub-system (and not covered by (31)), an average adaptation
(ADas) = 3, ADas(k,t) /ns was employed. The convergence of (ADas) to the initial
difference in the response and process parameters, Das — Das = —50, is seen in
figure 7b. Similar results were observed on varying the noise strength «. Thus, the self-
adaptation mechanism can be effectively used even in the presence of reasonable extents
of noise. These results also suggest that it may be possible to stabilize the spatiotemporal
chaos in real-life experiments, using only scalar driving signals from a subsystem of an
experimental process along with an appropriate self-adaptation mechanism as controller

feedback. Importantly, a knowledge of the nonlinear mathematical model or a process
simulator may not be essential. '

= [5{3(]7 f) - X3(js t)]X3(j’ I) = 63(j,t)X3(j, t)' (31)
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4.4 Multi-parameter control

In the different situations discussed above, inaccuracies were assumed in only a single
system parameter. However in many situations, the inaccuracies may exist in more than
one parameter and for synchronization to occur, simultaneous correction in all the
inaccurate parameters would then be required. This topic is being actively pursued and
different strategies, e.g., parametric self-adaptation [64,66], optimization [68], neural
networks [69,70], etc. have been reported. In this subsection, we show that multi-
parameter control of a spatiotemporally chaotic system via judicious self-adaptation is
feasible and advantageous because of its simplicity. For the sake of convenience, we
rewrite the process equations as

X1(j,1) =1 — X1(j,1) — Dan X (J, X3 (J, 1)
+DiXa(j+1,0) = 2% (J, £) + X (J — 1, 9],
X2(j, 1) =B — Xa(j, £) — DarXa(j, X3 (J, 1)
+ DaXa(j + 1,8) = 2X2(J, 1) + X2(F — 1, 1)},
Xa(j, 1) =A1 — A2Xs(j, 1) + As[Dar X1 (j, 1) + DaxXa(J, 1X3 (4, 1)
+D3[X3(j + 1,1) — 2X3(j, 1) + X3 (j — 1,1)], (33)
where Aj, Ay, and A; are the chosen control parameters and may be identified as
A1 =10, 4, =1 +qu = 81 and A; = a = 1.5 in (3). Let us assume that these are

incorrectly set to A =1.1,4,=82 and A; = 1.7, respectlvely, in the response system
driven by the time-series signals, X3(/,), j=1,2,...,N. Thus,

£1(5,6) =1 = %1 (jy 1) — DX (J, X3, 1)
+D1f%( +1,8) = 2%, 1) + XK (= 1,1)),

%2(j,1) =B — %2(j, 1) — DasXa (j, )X2(j, 1)
+Da%(j+ 1,8) = 280,10 + % (i - 1,9)],

}23(].’ t) ‘:A] —AZXS(jo t) +A3[DCI1X1 (]7 t) +Da2X2(j7 f)]X%(], t)
+D3[X3(j+17t)_2X3(jat)+X3(j"‘l’t)]' . (34)

The aim is then to control the response system dynamics by proper estimation of the
parametric corrections, viz., AA;, AA; and AAz. We first show that for an appropriate
choice of driving signals and functional forms for self-adaptation, a Lyapunov
functional may be formulated to assess the synchronization and control capability of the
response system. The dynamical behaviour of the error functions, ei(j, 1) =

Xi(j) t) - Xi(j) t), is

e1(J,1) = —e1(j, 1)l +Da1X3(J, 1)

+Difer(j—1,1) —2e1(ji, 1) + ex(j + 1,8)], (35)
ex(j,1) = —ea(j, 1)[1 +Da2X2(J= 1)]

+ Dalex(j — 1,1) — —2e,(j, 1) +ea(J+ 1,1, (36)
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é3(j,t) = DAL (j,1) — AAL(j,0)X3(j, 1)
+Dai[AA(j,0)R1(j,1) + Aser (G, )] X3 (j, 2)
+Day[AAs(j, )% (), 1) + Asea (J, )] X3 (), 1), (37)

with the dynamical equations for the parametric corrections, AA;(j,1), i = 1,2, 3, chosen

respectively, as

A1) = =[%a(,1) = Xs(),1)] = —es (1), (38)
AAZ(j: t) = [5(3(]’ t) _XS(j1 t)]X3(ja t) = ei(j: t)X3(j7 t)5 (39)

-

AAs(j,t) = ~Dar Xy (j,)[Rs(J, 1) — X3 (7, 0)]X2(j, 1)
— Dar X (j, 1) [Xa(j, 1) — X3(j, 0|2 (j, 1)
= [DayX1(j, t) + DaxXo(j, 1)]es(j, ) X2(j, £). (40)

Then the derivative of a positive Lyapunov functional, L = 3=, 3" [e?(j, ) + AA%(j, 1)),
is

(/2L =" s, e, 1) + A, )AA(, 7)), (41)
i
that is,

(/2)= =3 G0 + DU, ) ~ Dafes ) — x (i 1,

N
= > AU + DayX3(j, 1)) - Dales(j, 1) — e2(j + 1,8)]%}
=1

+Y_Ases(j,)Dmer(j, 1) + Daser (03 (yr).  (42)
j=1

It may be noted that (35) and (36) are again decoupled systems, and following the
arguments presented in the previous subsections, we obtain e;(J, t) — 0 as t — oo, for
i=1,2. Using these results in (41), it is clear that L is non-positive and dynamical
synchronization of the response with the process should be possible. This was confirmed
numerically and below we present our results obtained on using driving signals only from
a sub-system of the process, i.e., in X3(k,t), k=1,2,...,n,. As before, we begin by
introducing space-time dependence in the chosen control parameters, and assume that at
t=0,4,(j,0) = A; #A,;. The parametric corrections, AA;(k, t)’s, within the sub-system
are assumed to be governed by (38-40). For the lattice sites outside the sub-system, an
average adaptation, (A4;) = 3, AA;(k, 1) /ns, were implemented. Figures 8a, 8b and 8¢
respectively show the convergence of (A4;) — —0.1, (AA;) — —1.0 and (AA3) —
—0.2, the required corrections. Thus, these results suggest that it may be possible to
simultaneously adapt more than one system parameter using limited scalar time-series
data from a sub-system of the process for appropriate choices of the functional forms for

parametric corrections. It may be clarified that when ns = N, not only adaptation of the

parameters but control via synchronization of the complete space-time dynamics of the
response system may be possible.
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Figure 8. (a, b, ¢) Multi-parameter control via self-adaptation showing the accurate
estimation of the corrections, (A4, i = 1,2,3.

5. Conclusion

The analysis of sub-system dynamics for a nonlinear autocatalytic reaction-diffusion
system as a function of increasing sub-system size showed interesting linear scaling
relationships with respect to the invariant measures like the Lyapunoy dimension and KS-
entropy, while the dimension densities and normalized entropy were found to become
independent of the sub-system size beyond a certain critical size ns. These results
suggest that characterization of the complete system dynamics may be possible from an
analysis of the Lyapunov spectrum of its sub-system of size ng > ng with considerable
reduction in the computational effort. Our preliminary results for the autocatalytic
reaction-diffusion system on a two-dimensional lattice has also shown similar trends for
the system invariants as a function of its sub-system size. Thus, the approach of analyzing
sub-system behaviour may be advantageously used in the characterization of more
complex higher-dimensional systems. It may be noted that the studies discussed in this
paper were carried out for nearest-neighbor diffusive coupling. However, in most
practical situations, other transport mechanisms such as convection may also concurrently
occur. It would then be worthwhile to study the validity of the scaling relationships in the
sub-system invariant properties for systems involving more complex and long-range
coupling.

We have used the above characterization results to analyse the synchronization and
controllability of spatiotemporal systems exhibiting chaotic dynamics. The control
objectives were carried out for inaccurate knowledge of the initial conditions, parameter

Pramana - J. Phys., Vol. 48, No. 1, January 1997 (Part I)
Special issue on “Nonlinearity & Chaos in the Physical Sciences” 321




Nita Parekh et al

settings, and limitations in the monitoring of time-series data from the spatial domain

which may additionally be corrupted with noise. Our results using sub-system
information show that it may be possible to correctly estimate the inaccuracies in the
control parameter(s) via suitably chosen forms of parametric self-adaptation(s).
Suppression of chaos and stabilization of the spatiotemporally chaotic dynamics to a
desired stable state was also possible using sub-system driving signals even in the
presence of reasonable extents of noise. However, for the synchronization of complex and
chaotic dynamics, time-series data from the entire spatial domain may be required.
Further, it has been shown that it may be possible to assess the synchronization capability
of a spatiotemporal system from the stability analysis of suitably constructed Lyapunov
functionals. This approach offers the advantage of a priori knowledge of the
synchronization behaviour under different situations.
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