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Abstract

Two important classes of spatio-temporal patterns, namely, spatio-

temporal chaos and self-replicating patterns, for a representative three

variable autocatalytic reaction mechanism coupled with diffusion has

been studied. The characterization of these patterns has been carried

out in terms of Lyapunov exponents and dimension density. The re-

sults show a linear scaling as a function of sub-system size for the Lya-

punov dimension and entropy while the Lyapunov dimension density

was found to rapidly saturate. The possibility of synchronizing the

spatio-temporal dynamics by analyzing the conditional Lyapunov expo-

nents of sub-systems was also observed.

Keywords: Spatio-temporal chaos; self-replication; reaction-diffusion; auto-

catalysis; Lyapunov exponents; synchronization
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1 Introduction

The study of temporal chaos – based on the analysis of data from physical mea-

surements at a point in phase-space or using model equations defined as a set

of ordinary differential equations (ODE’s) – has matured considerably. Thus,

methods for characterizing the basic properties of low-dimensional nonlinear

systems are now reasonably well developed [1,2]. In comparison, the under-

standing of spatio-temporal chaos is at a less developed level and presently

considerable attention is being focussed on this topic [1,2,3]. Examples of

systems exhibiting complex spatio-temporal patterns include hydrodynamic

systems [4,5], thermal convection in fluids [6], nonlinear optics [7], chemical

reactions [8,9], excitable biological systems [10], crystallization and solidifica-

tion fronts [11], etc. The phenomenological models in the form of nonlinear

partial differential equations (PDEs), e.g., the Swift-Hohenberg equation and

its variants, the Kuramoto-Sivashinsky equation, Ginzburg-Landau equation

and reaction-diffusion models have been developed to study the nonlinear and

nonequilibrium properties of these systems [2]. Other modelling strategies such

as Coupled Map Lattices (CMLs) [12], Cellular Automata (CA) [13], lattice gas

models and their derivatives [14] have also been used for understanding the

dynamical behavior of the spatially-extended systems. These methods have

been successfully employed for analyzing multi-phase flow systems, reaction-

diffusion behavior, polymeric dynamics, etc.

For the phase-space reconstruction and model building of the spatio-temporal

systems, attempts have been made to generalize the known methods of ana-

lyzing temporal systems from time-series data [1]. For higher dimensional

systems, the analysis turns out to be computationally very demanding be-

cause of the large number of spatial degrees of freedom [15-18]. In this paper,

we aim at exemplifying some features of sub-system behavior which may help

in the characterization of the spatio-temporal behavior of reaction-diffusion

systems exhibiting complex dynamics. We shall focus attention on quantita-

tively estimating the degree of space-time coherence in the apparently complex
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dynamics (e.g., spatio-temporal chaos and self-replicating patterns) that arise

in a representative nonlinear autocatalytic reaction model. Our analysis gives

interesting relationships in the system invariant properties as a function of sub-

system size. We have also attempted to study the dynamical synchronization

properties of this extended system from sub-system analysis. The possibility of

synchronizing the behavior of spatio-temporal dynamics may have considerable

implications in the control of the system behavior.

2 Model Development

The objectives outlined above were studied by considering a specific example

from a fairly general class of mechanisms in chemically reacting systems and

commonly referred to in the literature as an autocatalator [19,20]. The reac-

tion scheme considered here is the three-step parallel autocatalytic reaction

mechanism [20] with competing interactions between the chemical species A,

D, and B and expressed as,

A + 2B −→ 3B, −r1 = k1CAC2
B, (I)

D + 2B −→ 3B, −r2 = k2CDC2
B, (II)

B −→ C, r3 = k3CB, (III)

with the rate expression ri, i = 1, 2, 3 for each step given alongside. As may

be seen nonlinear feedback occurs due to the rates of formation of species B

being autocatalytic in steps I and II while in III the effect is counteractive and

inhibitory. For a continuous flow well-mixed cell, the model description for the

above reaction mechanism takes the following dimensionless form

dX1

dt
= 1 − X1 − Da1X1X

2
3

dX2

dt
= β − X2 − Da2X2X

2
3

dX3

dt
= 1 − (1 + Da3)X3 + α(Da1X1 + Da2X2)X

2
3 , (1)

where Xi, i = 1, 2, 3, respectively, represent the dimensionless species concen-

trations of A, D, and B relative to their concentrations at the inlet to the
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cell from the surroundings. Here, Dai’s are dimensionless kinetic parameters

associated with the reaction steps (I-III) and the parameters α and β are the

feed concentration ratios of species B and D with respect to A. An analysis

of the bifurcation map and dynamics of this cell is known to exhibit features

such as multistationarity, oscillations and low dimensional chaos in system pa-

rameter space of α, β and Dai’s [20]. The corresponding model for a diffusion

mechanism operating in one spatial dimension x may be written as

∂X1(x, t)

∂t
= 1 −X1(x, t) − Da1X1(x, t)X2

3 (x, t) + d1
∂2X1(x, t)

∂x2

∂X2(x, t)

∂t
= β −X2(x, t) − Da2X2(x, t)X2

3 (x, t) + d2
∂2X2(x, t)

∂x2

∂X3(x, t)

∂t
= 1 −(1 + Da3)X3(x, t) + α[Da1X1(x, t) + Da2X2(x, t)]X2

3 (x, t)

+ d3
∂2X3(x, t)

∂x2
, (2)

where di, i = 1, 2, 3 are the diffusion coefficients of the species A, D, and B

respectively. The Euler discretization of the Laplacian yields

∂X1(j, t)

∂t
= 1 −X1(j, t) − Da1X1(j, t)X

2
3 (j, t)

+ D1[X1(j + 1, t) − 2X1(j, t) + X1(j − 1, t)]

∂X2(j, t)

∂t
= β −X2(j, t) − Da2X2(j, t)X

2
3 (j, t)

+ D2[X2(j + 1, t) − 2X2(j, t) + X2(j − 1, t)]

∂X3(j, t)

∂t
= 1 −(1 + Da3)X3(j, t) + α[Da1X1(j, t) + Da2X2(j, t)]X

2
3 (j, t)

+ D3[X3(j + 1, t) − 2X3(j, t) + X3(j − 1, t)], (3)

Di = di/(∆x)2; ∆x is the spatial mesh size of the discretized lattice; and

j = 1, 2, . . .N . This discretized model may be considered to describe the dy-

namics of N autocatalytic cells defined by (1) and coupled through diffusion.

The effects of diffusion may result in an interplay between the local cell dynam-

ics and this in turn may lead to pattern formation. The number of degrees

of freedom is now significantly increased to 3N and the characterization of

the system dynamics is not a trivial task. Here, the diffusion coefficients of

species A and D are assumed equal and much greater than for species B, i.e.,

D1 = D2 > D3. This is in accordance with Turing’s conjecture for the occur-

rence of spatio-temporal patterns in biological systems [21]. It has been shown
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that for appropriate choices of diffusion rates, a variety of stationary spatio-

temporal patterns such as target, striped, or hexagonal patterns and travelling

waves may develop in simple reaction-diffusion systems [22,23]. Recently, this

conjecture has been confirmed by experiments with thin two-dimensional gel

laboratory reactors uncontaminated by convection effects [24,25].

For the first part of the study all the cells of the system were assigned

identical initial conditions and the parameter values were chosen corresponding

to single cell (1) exhibiting chaotic dynamics. The chaotic nature of the single

cell dynamics was confirmed by the positive value of the maximum Lyapunov

exponent for its temporal dynamics, λmax ∼ 1.36. The extended system (3)

dynamics was then simulated using the fourth order Runge-Kutta algorithm

with time step ∆t = 0.0002. The studies were carried out on a one-dimensional

lattice with N = 64 and periodic boundary conditions were given. In fig. 1, for

time t < 40 in dimensionless units, the system dynamics is seen to be spatially

correlated though temporally it is uncorrelated and chaotic. Note that the

diffusion mechanism is not active in this region because of identical initial

conditions assumed over the entire spatial domain, i.e., all the cells evolve in

phase with each other. Now at time t = 40, a perturbation was given to the

chosen eleven cells lying in the central region of the lattice. This perturbation

assumed that the dynamics of the chosen cells progressively went out of phase

with each other by time t = 0.002. A spread of this perturbation to the system

boundaries by diffusion, with a simultaneous loss in the spatial correlation, is

qualitatively seen in fig. 1. This loss in the spatial correlation was seen to

persist even at t = 10, 000 time units (results not presented here).

In the second part of this study we considered the system in the param-

eter range where it might exhibit coherent patterns and one such interesting

pattern is shown in fig. 2. In this case, the perturbation was seen to develop

into peaks that self-replicate structurally in time. Similar patterns have been

observed in a two-variable model system [26,27]. Recent experiments have also

shown their presence unambiguously [25]. This self-replicating behavior, is in a

sense, analogous to what is observed during the phenomenon of self-replicating
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growth of biological cells [28], DNA and RNA [29,30], micelles [31], etc. For

comparative purposes, it may be noted that for the study in fig.2, the math-

ematical model for the three step autocatalytic reaction mechanism, assumed

the form similar to that considered in [27] by suitable dimensionalization. i.e.,

∂X1(x, t)

∂t
= 1 −X1(x, t) − Da1X1(x, t)X2

3 (x, t) + d1
∂2X1(x, t)

∂x2

∂X2(x, t)

∂t
= β −X2(x, t) − Da2X2(x, t)X2

3 (x, t) + d2
∂2X2(x, t)

∂x2

∂X3(x, t)

∂t
= − (1 + Da3)X3(x, t) + α[Da1X1(x, t) + Da2X2(x, t)]X2

3 (x, t)

+ d3
∂2X3(x, t)

∂x2
, (4)

We shall study the dynamical characterization of the above two widely differ-

ent and important class of spatio-temporal patterns, namely, (a) the chaotic

behavior and (b) the coherent self-replicating behavior.

3 Characterization of Spatio-Temporal Dynam-

ics

We shall first discuss the characterization of chaotic dynamics exhibited by this

spatially extended system in terms of the system Lyapunov exponents [32].

For the present system with three species interacting on a one-dimensional

lattice of size N there exists 3N Lyapunov exponents and their calculation

is computationally very demanding. To alleviate this problem we propose to

analyze the Lyapunov spectrum of its sub-systems of size ns(< N) as ns → N

and look for any interesting relationships that may help in characterizing the

system dynamics. We shall now briefly discuss below the calculation of sub-

system Lyapunov exponents.

For the extended system (3) with κ denoting the set of fixed parameters,

the temporal evolution of the concentrations of each of the species for chosen
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values of Di may be functionally written as

dXi(k, t)

dt
= Fi,k(Xi(k, t), Xi(k ± 1, t), Di, κ), (5)

where the first index i = 1, 2, 3 denotes the respective species and the second

index k = 1, . . . , ns denotes a sub-system lattice site. For a sub-system of size

ns, there are 3ns independent variables and therefore 3ns exponents. These

may be calculated by monitoring the growth rate of 3ns sets of orthonormal

vectors δXi(k, t), i = 1, 2, 3, k = 1, 2, . . . , ns, in a linearized region of (3).

The complete set of linearized equations built around a reference system state

Xr(t) ≡ Xi(k, t) may then be written as

dδX(t)

dt
= JδX(t). (6)

Here, J is the augmented Jacobian of size 3ns × 3ns evaluated at Xr(t) and

δX(t) refers to the infinitesimal perturbation from this reference state. Using

the fundamental matrix φ(t, t0) the 3ns solutions of (6) may be expressed in a

general form as

δX(t) = φ(t, t0)δX(t0). (7)

The above relation is a linear map of different vector spaces. That is, φ(t, t0)

is the mapping of δX(t0) (related to the tangent space E0 at the phase-space

point Xr(t0) = Xi(k, t0)) to δX(t) (associated with the tangent space Et for

the phase-space point Xr(t) = Xi(k, t)) with

φ(t, t0) = φ(t, tn−1) . . . φ(t2, t1)φ(t1, t0). (8)

The time averaging of δX(t), along with Gram-Schmidt orthonormalization at

periodic intervals, yields the 3ns sub-system Lyapunov exponents as

λ
(s)
j = lim

t→∞

sup
1

t
ln

| δX(t) |

| δX(t0) |
, j = 1 . . . 3ns, (9)

in a decreasing order. While calculating these exponents for the discrete set

of equations (3), fixed boundary conditions were assumed at the sub-system

boundary sites, i.e., at k = 1 and k = ns . The fixed boundary conditions

suggest that only for the purposes of evaluating the λj , the flow of information

from the outer site of the sub-system boundaries, may be likened, to presence

of noise in the analysis.
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Using the above formalism we found that convergence of the sub-system

Lyapunov exponents was robust, although, for large ns the computer time

required was extremely high. In figs. 3a and 3b is shown the channelled

dynamics, considered from the central region in fig. 1, for sub-systems ns = 7

and ns = 31, respectively. The convergence behavior of the maximum sub-

system exponent for these cases is presented in figs. 3c and 3d.

For the analysis of the complete system dynamics we consider the Kaplan

and Yorke conjecture [32,33] to calculate the effective sub-system Lyapunov

dimension d
(s)
L defined as

d
(s)
L = j +

1

| λ
(s)
j+1 |

j∑

i=1

λ
(s)
i , (10)

where j is the largest integer for which the sum of the exponents, λ
(s)
1 + . . . +

λ
(s)
j ≥ 0. In fig. 4a is shown a plot of the sub-system dimension d

(s)
L as a

function of its size ns. A clear linear scaling relationship in the sub-system

dimension is seen with its size, indicating that analysis of relatively small sized

sub-systems may suffice in estimating the effective dimensionality of the large

system. It may be noted that similar interesting relationships in Lyapunov

dimensions as a function of lattice system size have been observed in coupled

maps [18] indicating a possible generalization. Further, for analyzing the spa-

tial complexities in the system dynamics we studied the behavior of sub-system

dimension density function ρ(s) defined as

ρ(s) = lim
ns→∞

d
(s)
L

ns

. (11)

A plot of ρ(s) as a function of sub-system size ns in fig. 4b depicts a rapid

convergence to a constant value ( ∼ 0.57 for ns > nsc) although the entropy

(defined as the sum of the sub-system positive Lyapunov exponents) increases

linearly with ns (fig. 4c). This increase in entropy suggests that the rate of

information production and the growth of uncertainity varies with the sub-

system size. Further, the converging behavior of ρ(s) may help in assessing the

complexity in the system dynamics. On comparing the magnitudes of ρ(s) for

the case without diffusion to that when diffusion is present, we find that there is
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marked drop in its value from 2.01 (without diffusion) to 0.57 (with diffusion).

This implies that diffusion results in a decrease in the average contribution to

the Lyapunov dimension from each cell and attempts to bring about spatial

uniformity in the system variables. The sensitive nonlinear features however

play an antagonistic role. In summary, a knowledge of the Lyapunov dimension

d
(s)
L and the corresponding dimension density ρ(s) of a sub-system can help in

resolving the extents of complexity in the system dynamics.

We also studied the effect of varying the diffusion coefficients of the inter-

acting species (but maintaining their ratio constant) on the system dynamics.

In fig. 5 are shown plots of D1 as a function of dimension density ρ(s) (for

ns = 7) for two different ratios of D3/D1. The figure shows the region where

the spatio-temporal behavior is more sensitive to the values of the diffusion

coefficients and points out that the chaotic patterns may break into coherent

ones (at D1 = 0.75). It may be clarified that similar behavior may also be

observed for variations in the other system parameters.

The characterization studies of coherent but self-replicating patterns shown

in fig. 2 yield a negative maximum Lyapunov exponent (λmax ∼ −0.07, cal-

culated for ns = 21). Thus, although the dynamics of these patterns are

complex, the negative value suggests that the pattern would finally evolve to

a stationary system solution.

4 Synchronization of Spatio-Temporal Dynam-

ics

In this section, we shall analyze the capability of a suitably chosen response

system to synchronize its dynamics with that of a spatio-temporal chaotic sys-

tem using limited time-series data. In the context of low-dimensional chaotic

dynamics it has been observed that synchronization is possible if conditional

Lyapunov exponents turn out to be negative [34,35]. The results obtained in
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Section 3 suggest that it may be worthwhile to study whether it is sufficient

to calculate the conditional Lyapunov exponents for the sub-system of the re-

sponse model to determine its synchronizing ability. Note that the response

model has a reduced dimensionality because it is driven by space-time signals

in one of the dependent variables Xi, i = 1, 2, or 3 . We shall present the

results on assuming that space-time data in X3(j, t) are available. The model

of the response system then assumes the form

∂X̂1(j, t)

∂t
= 1 −X̂1(j, t) − Da1X̂1(j, t)X

2
3 (j, t)

+ D1[X̂1(j + 1, t) − 2X̂1(j, t) + X̂1(j − 1, t)]

∂X̂2(j, t)

∂t
= β −X̂2(j, t) − Da2X̂2(j, t)X

2
3 (j, t)

+ D2[X̂2(j + 1, t) − 2X̂2(j, t) + X̂2(j − 1, t)], (12)

where X̂1(j, t) and X̂2(j, t), j = 1, 2, . . . , N are the response variables.

Similar to the sub-system Lyapunov exponents, it is possible to calculate

the conditional sub-system exponents by monitoring the growth rate of now

2ns sets of orthonormal vectors δXi(k, t), i = 1, 2, k = 1, 2, . . . ns in a linearized

region of (12) but in the reduced dimensionality index i.

We found the maximum conditional sub-system exponent (for the chaotic

dynamics in fig. 1 with ns = 11) to be negative indicating that the response

system may have the ability to synchronize. This was tested by dynamically

passing space-time signals in the variables X3(j, t) (j = 1, . . . , N) from (3) to

the response system defined by (12) (for N = 64). For the study it was further

assumed that the response system did not experience the finite amplitude per-

turbation and was only temporally chaotic, while, (3) had evolved considerably

into spatio-temporal chaos before time-series signals in X3(j, t) were passed to

(12). The simulation showed that the dynamics of the response system did

synchronize completely with the main system. This is depicted in figs. 6a and

6b where the space-time errors converge to zero over the entire spatial domain

in both the dependent variables ei(t) = Xi(j, t) − X̂i(j, t), (i = 1, 2).
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For the self-replicating patterns (fig. 2), the maximum sub-system expo-

nent calculated from (3) was found to be negative as reported above. The

evaluation of the conditional exponents is trivial and synchronization is again

likely to occur. From a different perspective, we have in an alternate study,

focussed our attention on the synchronization behavior of these patterns with

a view to controlling the dynamics of this interesting class of spatio-temporal

patterns [36].

5 Conclusions

In summary, the characterization of a reaction-diffusion system with nonlinear

autocatalytic kinetics and exhibiting complex dynamics has been studied from

a viewpoint of relating spatial sub-system dynamical behavior to that of the

system considered as a whole. The analysis indicates that for the system

exhibiting spatio-temporal chaos there exists a linear scaling relationship in

the Lyapunov dimension d
(s)
L as the sub-system size ns increases. For a set

of operating parameter values it is also seen that above a critical sub-system

size nsc , the Lyapunov density function ρ(s)(= d
(s)
L /ns), which quantifies the

average information, saturates to a constant value. The growth of uncertainity

of the system and rate of information production evaluated in terms of the K-S

entropy, however, increases linearly with sub-system size. These results may

help in formulating strategies for embedding complex dynamics of reaction-

diffusion systems from time-series data.

Apart from chaotic spatio-temporal patterns this system is also seen to ex-

hibit other interesting patterns for suitable choices of parameter values. One

such interesting pattern, viz., the self-replicating patterns, has been demon-

strated. The sensitivity of the complex dynamics to operating values and

especially the magnitudes of the diffusion coefficient has been brought out.

Finally, the synchronization ability of the dynamics of a response system us-

ing time-series data from the spatial domain was analyzed for both spatio-
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temporally chaotic and self-replicating dynamics. Our analysis indicates that

if the maximum conditional Lyapunov exponent of a sub-system is negative,

synchronization over the entire spatial domain is likely to occur.
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Figure 1:
Spatio-temporal chaos arising for a perturbation given at T = 40. D1 = D2 =
1.0; D3 = 0.01; α = 1.5; β = 2.93; Da1 = 18000; Da2 = 400; Da3 = 80; [ X1

axis-scale: (0.0, 0.07); x axis-scale: (0.0, 12.8); t axis-scale: (0.0, 100.0) ].

Figure 2:
Self-replicating pattern for the three-variable autocatalytic reaction D1 =
D2 = 1.0; D3 = 0.01; α = 1.0; β = 1.0; Da1 = 50; Da2 = 50; Da3 = 2.95; For
the entire system (with N = 256) placed in a homogeneous stationary state
[X1(0, 0) = 1.0, X2(0, 0) = 1.0, X3(x, 0) = 0.0] at t = 0, a finite perturbation
X1(0, 0) = 0.5, X2(0, 0) = 0.5, X3(x, 0) = 0.25 was given in the central 21 sites.
[ X3 axis-scale: (0.0, 2.96); x axis-scale: (0.0, 51.2) ; t axis-scale: (0.0, 200.0) ].

Figure 3:
Sub-system dynamics for spatio-temporal chaos (a) ns = 7; (b) ns = 21.
(c,d) The respective convergence of the maximum Lyapunov exponent for the
above sub-systems. System parameter values and other conditions of analysis
identical to fig. 1.

Figure 4:
Behavior of sub-system a) Lyapunov dimension, b) dimension density, and c)
entropy as a function of ns .

Figure 5:
Sensitivity of dimension density ρ(s) for varying D1 for two different ratios of
D3/D1 (D2 = D1). Solid curve: D3/D1 = 0.01; dashed curve: D3/D1 = 0.1.

Figure 6:
Space-time errors converging to zero in both the dependent variables, ei(t) =
Xi(j, t) − X̂i(j, t), j = 1, . . . , N (a) i = 1, (b) i = 2 indicative of complete
synchronization in the spatio-temporal chaotic dynamics of the system and
its response model. System parameter values and other conditions of analysis
identical to fig. 1. Note the response model had initial conditions (correspond-
ing to temporal chaos) while the system had developed into spatio-temporal
chaos (i.e. 100 time units in Fig. 1) at t = 0 when driving was switched on. X1

axis-scale: (a) (−24, 26), (b) (−45, 9.5); x axis-scale: (0.0, 51.2); t axis-scale:
(0.0, 200.0).
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