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Abstract, Calculations of shell correction energies by the temperature smearing
method for realistic single particle level schemes of finite depth potentials are described
and discussed. It is found that the method provides unique values of the shell correc-
tion energies for the various shapes relevant in the fission of actinide nuclei including

tltl)ose sl(liapes where breakdown of the usual Gaussian energy smearing procedure was
observed.
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1. Introduction

In the last few years several calculations of nuclear deformation potential energy
surfaces have been carried out on the basis of the now well known macroscopic-
microscopic approach (Strutinsky 1967, 1968) where the nuclear potential energy as a
function of nucleon number and nuclear deformation is split into two components—
a smooth part expressible in terms of the liquid drop model and a small fluctuating
residue arising from nuclear shell effects. It has been shown by Strutinsky (1967)
that the small fluctuating component, known as the shell correction energy, can be
determined by considering the independent particle motion of nucleons in an appro-
priate one body potential well, as the difference between the sum of energies of the
occupied single particle states and the corresponding quantity of a hypothetical system
with suitably smoothed density of single particle energy states in which the shell
structure has been washed out. In most calculations of nuclear potential energy
surfaces, the equivalent smooth system is generated by the well known Strutinsky
smearing procedure (Strutinsky 1967) where in the single particle spectrum each delta
function in energy is replaced by an appropriate Gaussian function. An alternate
approach for the calculation of the nuclear shell correction energies has been earlier
suggested (Ramamurthy and Kapoor 1972), based -on a study.(Ramamurthy et -a/
1970) of the high temperature behaviour of the thermodynamic properties of nuclei.
This method basically exploits the fact that at high temperatures, the smooth Fermi
occupation factor of the single particle states in nuclei leads to. a washing out of the
influence of shell effects on the thermodynamic properties of nuclei, The method
was earlier demonstrated (Ramamurthy and Kapoor 1972) for the single particle
energy level scheme of Seeger and Perisho (1967) generated for a modifted harmonic
oscillator potential, where the calculated shell correction energies by the temperature
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smearing method were found to be in good agreement with those obtained by the
Strutinsky smearing procedure. The general validity of this method and its basic

based on similar thermodynamic approach, but restricted to harmonic oscillator level
schemes. However, so far no numerical calculations of the shell correction energies
by this method have been reported for realistic single particle level schemes of finite
depth potentials and it is not known as to whether this method can be successfully
applied in those cases where the Gaussian energy smearing procedure has been found
to have some difficulties, ' ‘

In this paper, after a brief discussion of the present method of determination of the
shell correction energy, typical results obtained by this method for a range of nucleon
numbers and deformations for the realistic single particle levels schemes of Bolsterli
et al (1972) generated for a folded-Yukawa potential are presented and discussed.

2. Outline of the method

On the basis of many numerical calculations (Ramamurthy et al 1970, Huizenga and
Moretto 1972) starting from shell model single particle energy level schemes it is now
well known that there is a rapid washing out of the influence of nuclear shell effects
on the thermodynamic properties of nuclei with increasing temperature and a tem-
perature of 2-3 MeV is sufficient to wipe out the shell effects in most medium and
heavy nuclei. An important consequence of this behaviour of the thermodynamic
properties of nuclej is that at sufficiently high temperatures, the entropy S and the
total energy E of a nucleus become independent of the shell fluctuations inthe single

particle level density and the following simple relations hold (Kapoor and Rama-
murthy 1975). :

S = & W
E = F | @
E, = E'x_As (3)

where A, isthe ground state shell correction energy, and E. is the excitation energy.
The quantities ', E' and E'; refer to an equivalent smooth system, stripped off its
shell effects. The problem of calculation of the shell correction energy A\, is there-
fore reduced to that of determination of E’, of the equivalent smooth system at
temperatures sufficiently high to ensure disappearance of shell effects such that
eqs (1-3) hold. It is known (Gilbert 1968) that the temperature dependence of

‘the entropy S’ for a smooth single particle level density can be expressed analyti-
cally as follows:

S'= aT! 4)
i=1,3,5,..
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and therefore

E'y= [ Tds' — Z L a i RO,
_ i+1
i=1,3,5, ..
where the coefficients o, are related to the single particle level density and its deriva-
tives at the chemical potential. It is also known that the maximum value of  in
eqs (4) and (5) is related to the highest non-vanishing derivative of the single particle
level density. Combining eqs (3) and (5) one gets

E, = AP URUN ‘ 6
s z ya A, ©
i=1,3,5, ...

Equations (4) and (6) can be exploited in different ways to numerically calculate A,
from the calculated entropies and excitation energies at temperatures sufficiently
high to ensure that eqs (1-3) hold. Calculations for a few typical cases using the
modified harmonic oscillator level scheme of Seeger and Perisho (1967) were presented
in an earlier work (Ramamurthy and Kapoor 1972). In these calculations, the quan-
tities S and E, were first numerically calculated as a function of temperature as des-
cribed earlier (Ramamurthy er al 1970).  Since in the asymptotic region of high tem-
peratures \§ = .§’, the calculated entropies in this region were used to evaluate the
coefficients g, in eq. (4) for a given order of the polynomial and the values of o, were
then used in eq (6) to determine As. It was found that in all the cases, A could be
determined to within 0-1 MeV by retaining terms up to i = 3 only in eqs (4) and (6),
where the input values of the entropies in these equations corresponded to those
calculated at temperatures above 30 MeV to ensure disappearance of shell effects.
The observation that terms with i>3are not important is consistent with our a priori
knowledge that for harmonic oscillator level schemes the average single particle
level density is a second degree polynomial in energy and consequently has non-
vanishing derivatives up to second order only. It may be pointed out here that for
the same reason curvature corrections of higher orders were unimportant in the
Strutinsky smearing procedure for this type of level scheme.

As different from the harmonic oscillator level scheme, for single particle energy
level schemes based on realistic finite depth shell model potentials, no a priori know-
ledge exists regarding the functional form of the average single particle level density.
It is therefore not known beforehand as to how many terms will be required in the
polynomial expressions for the entropy and the excitation energy and what temperature
range is approriate for the calculations of A, so that the evaluated values of s
satisfy the important requirement that these are insensitive to the temperature range
and the number of terms chosen. We have examined these points in the following
section and show that the shell correction energies can be uniquely determined by
this method even for level schemes generated for finite depth potentials.

3. Typical numerical results for realistic single particle level schemes and discussion

We have used for the present investigations the level scheme of Bolsterli et al (1972)
generated for a folded-Yukawa potential. This level scheme has in addition to the
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bound levels, a limited number of levels in the positive single particle energy
region also up to single particle energies of about 20 MeV. Numerical calculations
of entropy and excitation energy were first carried out for this level scheme as
a function of the temperature 7. In order to qualitatively infer as to how many
significant terms will have to be retained in eqs (4) and (6) for the entropy and
the excitation energy, we show in figure 1 a plot of the calculated (S/T’) versus T for
the cases of single particle levels of protons and neutrons for a typical case of 29Pu
nucleus in its spherical shape. It is seen from the figure that for both neutron and
proton levels, the asymptotic functional form of (S/T) versus T2 deviates appreciably
from a straight line implying that terms with i> 3 are significant for this type of level
scheme, unlike the case of harmonic oscillator potential based level schemes. The
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Figure 1. Plot of the calculated (S/T) versus T® for protons and neutrons in *°Pgy
for the spherical shape. :
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_ Figure 2. Calculated (E’,— E,) versus imax evaluated in the temperature range T=4
- to 4-1 MeV for protons and neutrons in #°Py for the spherical shape, ‘
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sh‘ell f:orregtion energies are therefore to be calculated with the inclusion of terms
with i>3 in eqs (4) and (6). We have examined the sensitivity of the calculated
values of the shell correction energies with respect to the number of terms in eq. (4)
when a temperature range of 40 to 4-1 MeV is used. Figure 2 shows these result;
for the cases of proton and neutron levels in *°Pu nucleus ini its spherical sha,be where
the c.alculated shell correction energies are plotted as a function of imax. It is seen
that in both the cases four terms are sufficient in eq. (4) to ensure a constancy of the
calculated s.hell correction energies with respect to the number of terms used. In
order to bring out the sensitivity of the calculated shell correction energies on the
temperature range used, we show in figure 3 for the same cases a plot of (E'x—E;)
ver,sus r o]otained with four terms in eq. (4). The observed asymptotic constancy of
(E’x—E,)in figures 2 and 3 show the validity of the method as applied to levels of finite
erth potentials for the calculation of the shell correction energies. Similar calcula-
tions of . A, for a range of nucleon numbers and deformations for heavy nuclei cor-
responding to shapes relevant in fission were also carried out and results similar to
those shown in figures 2 and 3 were obtained in all cases. It therefore follows that the
thermodynamic method of calculation of A, is applicable to any type of level
scheme, with the requirement of a proper choice of imax and temperature range.

A slightly different procedure, numerically simpler for routine calculations, has
also been investigated by us. In this procedure, the calculation of the shell correction
energy A, was carried out on the basis of the function (ST/2)—E,. From eqs (4)

and (6) we have

ST 1 i
..——-'——-Ex —_ -—-2 e —— TI—Z—" .y
(2 ) B f”‘(z f+1) )

The zero temperature intercept of (ST/2) —E, is the shell correction energy while the
For harmonic oscillator potential based level

leading term in temperature is T4
schemes, the terms higher than T* in eq. (7) are absent and, consequently, determina-

tion of A, in this case is straightforward through a straight line extrapolation to zero
Even for realistic single particle level schemes, which have non-vanish-
the extrapolation to zero temperature of (ST'2) —E, is more
n this case the T2 term is totally absent and the coefficients
4(a) and 4(b) show plots

temperature.
ing higher order terms,
reliable and accurate since i
of the higher order terms are considerably reduced. Figures
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' Figure 3. Calculated (E x—Ex), versus temperature evaluated with imax =7 for pro-
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of(S7]2) —E versus T* for proton and neutron levels in *%Pu nucleus for its spherical
shape and for the shape corresponding to symmetric second barrier, where it can be
seen that the significance of terms higher than 7' has been considerably reduced as
expected. It therefore follows that in all cases (ST/2)—E, is a more suitable function
for the determination of As by extrapolation to zero temperature. Figure 5 shows the
results for typical cases of proton and neutron levels in %0Py nucleus for its symmetric
second barrier shape, where the values of As obtained by extrapolating the function
(STj2) —E, t0 zero temperature with terms up to Imax, 2nd a temperature range of 4
to 41 MeV are plotted against imay. It is seen that well defined values of the shell
correction energies ., can be obtained in both the cases with iyax=7. Figure 6
sho‘w§ for the same two cases, plots of the values of A obtained by extrapolating the
function (5772) —E, to zero temperature with terms Up 10 imax =7 versus the average of
the temperature Tange used in the calculations. The asymptotic constancy of A, for
tempergture:; T?3 MeV is evident in both cases, leading to unique values of shell
correction energies.  Similar resylts have been obtained for other nuclear shapes and
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Figure 6. ,
angd neutrgr?;qmﬁ:d (E’x—Ey) versus temperature evaluated with ipyp,=7 for protons
in *°Pu for the second symmetric fission barrier shape.
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Figure 8. Calculated shell correction energies versus nucleon number for spherical
shape of the nucleus. The dots represent the results obtained by the present method

zlvhile the open circles represent the results obtained by the Strutinsky smearing proce-
ure,

¥ and the mass asymmetric deformation parameter a corresponding to the second
barrier as defined in the paper of Bolsterli et a/ (1972). The values of A, calculated
using the Strutinsky smearing procedure with smearing parameter corresponding to
Gaussian smearing width y==7 MeV, and a sixth order polynomial (p=6), are also
shown in figure 7, as dashed curves. Figure 8 shows a similar plot of the calculated
shell correction energies versus nucleon number for the spherical shape along with
the values of A, obtained with the Strutinsky smearing procedure. It can be seen
from figures 7 and 8 that although the values of the shell correction energies obtained
by the present method are generally in good agreement with the values obtained by
the usual Gaussian energy smearing procedure of Strutinsky, significant differences
of the order of 1 MeV or more are encountered in specific cases, particularly for
protons in the region of symmetric second barrier shapes. It may be remarked here
that with the same level schemes for the same shapes close to the second symmetric
fission barrier, the Strutinsky procedure for the evaluation of A has been found
(Ramamurthy et al 1976) to break down as it fails to give an unique value of the
shell correction energy. No such breakdown has been encountered in the present
method, as for éxample, seen from figures 5 and 6 for the specific cases where the
Strutinsky procedure does not yield unique values. This difference between the two
methods, in spite of their basic equivalence, appears to be related to the relative
importance of the higher order curvature correction terms in the two methods. In
particular, the use of two thermodynamic variables in the present method, namely E,
and S, seems to provide partial curvature corrections of all orders, as compared to the
Strutinsky procedure where only energy smearing is used. - n '

In conclusion, the tetnperature smearing method is shown to give unique values
of shell correction energies of nuclei for any ‘type of single particle level scheme
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including realistic level schemes of finite depth potentials. No breakdown of the
method is encountered, while applying the method to calculations of shell correction
energies of actinide nuclei for various shapes of interest in fission.
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