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Statistical properties of excited fissioning nuclei
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Abstract. The phienomenon of the disappearance of the shell effects on the thermo-
dyvnamic properties of nuclei with increasing excitation cnergy has been cxamined
quantitatively on the basis of numerical calculations bascd on realistic shell model
single particle level schemes. It is shown that shell effects disappeatr at moderate
cxcitation energies and above thesc excitation energies, the thermodynamic behaviour
of the nucleus is identical to that of the equivalent liguid drop model nuclous.
Implications of the above feature in the interpretation of some aspects of fission of
excited nuclei such as mass-asymmetry and angular anisoiropy are cxamined. The
relationship of the phenomenon of washing out of shell cifects at high  excitation
energies with the temperature smearing method of determining ground state
shell correction energies is also outlined.

Keywords. Nuclear shell effects; nuclear fission; thermodynamic propertics;
shell correction energies.

1. Intreduction

From the time the classic paper of Bohr and Wheeler (1939) to explain the
nuclear fission process appeared, the concept of nuclear deformation potential
energy has been basic to our understanding of the fission phenomenon. Until
recentlv. the interpretation of many fission features such as [fission probabilitic:
and fission {ragment angular distributions were based on o single-humped
fission barrier in the deformation potential energy surface, which results from
the surface and Coulomb energy changes of the nucleus on the basis of Liquid
Drop Model (LDM). The last few years have seen many intensive theorctical
studies of the nuclear potential energy taking into account the nuclear shell and
pairing eﬂ-'ects, These studies based on the now well-known macroscopic-
microscopic method (Strutinsky 1966, 1967) have revealed new structures in the
nuclear deformation potential energy surface and for nuclei in the actinide region
tlhf: f?aion bbnrriers have been shown to be double-humped. Much of our currenf,;
thinking about spontaneous and nea i LE : Gssi
isomers and intcinediute structure inr gzz?giclciogss-sslgcli' feawies S}]’Ch 'as II'S"SIOH
this double-humped fission barrier concept. It should ;0118, 1E~LS leSLllthd o
here that the static potential energy surface-and theref , lf(‘) ion t be_ pomf;ed -
of relevance only as far as the interpretation of s ore ission bacrier height are
pontaneous and near threshold

fission features is concerned. In the case of fission of an excited nucleus. the
9

nucleons populate a number of single particle states around the Fermi level and
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consequently the influence of nuclear shell effects on the fission process is expected
to decrease and finally disappear with increasing cxcitation energy since the shell
effects have their origin in the non-uniform distribution of single particle states
near the Fermi level (Ramamurthy efa/ 1970, Huizenga and Moretto 1972,
Adeev and Cherdantsev 1973). In other words, at sufficiently high excitation
energies, the nucleus is expected to behave like a liquid drop nucleus and will not
exhibit features which are specifically characteristic of a double-humped fission
barrier. ‘

In this paper, the phenomenon of the washing out of the shell effects with
excitation energy and its implications on some of the observed fission features
are cxamined on the basis of a numerical study of the thermodynamic preperties
of excited nuclei. It is also shown that from a study of the thermodynamic pro-
properties of excited nuclei, the ground state shell correction energies of nuclei
can be determined.

2. Thermodynamics of excited nuclei

An important quantity describing the statistical thermodynamic properties of an
excited nucleus is its level density, expressed as a function of the various constants
of motion like number of particles, excitation energy, angular momentum,
parity, etc. In recent years, it has been possible to calculate numerically
nuclear level densities starting from shell model single particle states (Ramamurthy
et al 1970, Huizenga and Moretto 1972), and thereby include the nuclear shell
effects on the level densitics. This method of calculation of the entropy § versus
excitation energy of a specified nuclear system with known single particle states is
as follows:

For a system of non-interacting fermions, with total number of particles N and
total energy E, one can write the following relations.

N=2X Ny | (1)

E = 2 n,e | (2)
= —X {mInn, + (1 —n) In (1 —n,)} 3

Here ¢, are the energies of the single particle states and n, is the Fermi-Dirac
distribution function given by

1
1 texp(a—m/T

where 7 is the thermodynamic temperature and p is the chemical potential. If
the magnetic quantum numbers my of the single particle states are known, omne
can also obtain the spin cut-off parameter o2 which determines the width of the
distribution of the angular momentum projection M, from the relation

4

Hy

ot = 3 n, (1 — ng) o7t (5)

For a specified temperature 7T the calculation of various thermodynamic quanti-
ties, S, E and o2 can be carried out numerically on the basis of egs 1-5, starting
from a given set of single particle energies . The corresponding excitation
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N . U
energy E, is given by E, = E— ié,: ¢.. In applying the above relations for the

the contributions from both protons and neutrons are added.

It may be pointed out here that the level density p is related to the entropy.S
by the relation p = ce® where ¢ is a weakly energy depe.ndent pre—exponentmi_
factor. On the assumption that the density of single particle energy levels near
the Fermi-level is nearly constant, the above formalism leads to the well known
Bethe expression for the nuclear level densities given by p = c¢exp 2 (@B,
where E, is the excitation energy of the nucleus. The level density parameter @
being proportional to the density of single particle states near the Fermi level
increases nearly linearly with the mass number A4 of the nucleus. It is now known
that in a nucleus the density of single particle states near the Fermi level is not
constant but exhibits appreciable non-uniformities which can be correlated to
the well known shell effects on the nuclear masses and dcformation potential ener-
gies (Strutinsky 1966, 1967). It is therefore expected that for a nuclear system
with non-uniform distribution of single particle states, the actual entropy will
deviate from that given by the Bethe expression. The excitation energy dependence
of entropy for such a system with ground state shell effects can be studied through
egs 1-4 in the above formalism.

Let us first consider the shell correction to the ground state energy of a nucleus.
Since protons and neutrons are considered to be independent in the present for-
malism, we treat here only one kind of nucleons, say protons, the results and con-
clusions of the analysis being equally valid for the other kind of nucleons. Let
G () = £ 6(e—¢,) be the density of single particle states of protons in a
nucleus where ¢, are a set of single particle states given by the shell model. On
the basis of the Strutinsky-Swiatecki concept (Myers and Swiatecki 1965,
Strutinsky 1966) G(e) can be written as the sum of a smoothly varying part g (e)
and a local flucturation &g (¢). The shell correction A, to the total encrgy is, by
definition, equal to the difference between the ground state energies of the actual
system and that of a hypothetical smooth system having a density g (¢) of thc
single particle states, i.e.,

case of real nuclei,

DMn

\ _ o
ta=E,—E,= 3 ¢,— [ eg(e)de (6)

T

1

where E, and E, are the ground state energies for the actual and the correspond-
ing smoof;h. systems, and p is the Fermi energy for the smooth system. The
smooth -smgte particle level density g (e) corresponding to any level scheme can
be obtal'ned by a suitable smearing of the energy states ¢, as has been proposed
by Stfutmsky (1966). A number of calculations of the ground state shell correction
energies .of nuclei have been carried out in recent years using the Strutinsky method
(see Teviews by Nix etal 1973, Brack eral 1972).

With the aboYe definition of the ground state shell correction energy one can
a.lso study qugntltatively the influence of shell effects on the thermodynamic proper-
ties of an excited nucleus. For example, a comparison of the calculated entrop
S of the actual system with the corresponding quantity § of the liypotlleticlza);
(simouth S)‘zstem evaluated at the same temperature will bring out the temperatui’e

ependence of shell effects on entropy. In the following, we present the results
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of calculations for the cases of two typical schemes of single particle energy states.
The first one was a model scheme with equidistant levels where each level was ten-
fold degenerate. The second one was a modified harmonic oscillator level scheme
(Seeger and Perisho 1967). For each of these systems, the corresponding smooth
density of states was obtained by the Strutinsky smearing procedure (Strutinsky
1965). The thermodynamic quantities S and £ were calculated from the set of
eqs 1 to 4, while the corresponding quantities S and E for the smooth reference
system were -obtained from equations analogue to egs 1 to 4, where summations
are replaced by integrations. Figure 1 shows plots of the calculated (S — S) and
(E — E) versus the temperature T for the equidistant level scheme for the cases
of a closed shell and mid-shell systems having 10 and § particles respectively in
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Figure I.ECalculared temperature dependence of the aifference in entropy and
excitation energy of a system of Fernions in a bunched level scheme and in th'e
corresponding smooth level scheme. The levels in the bunched scheme were equi-
spaced and had a degeneracy of 10. The two cases studied refer to the closed shlel
system with 10 particles in the last occupied level and the mid-shell system with

5 particles in the last occupied level,
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the last level. Figure 2 shows similar plots calculated with the modified harmonic
oscillator level scheme for the cases of the closed shell nucleus =%Pb (spherical
shape) and mid-shell nucleus Py (spherical shape). The following conclusions
can be readily drawn from figures 1 and 2:

(i) At low temperatures, the actual system and the smooth system behave
differently, as a result of the shell effects.

(ii) With increasing temperature, the differences in the calculated values of
the total energy and the entropy between the actual system and the reference
smooth system decrease and vanish completely at high temperatures.
Even for the case of the doubly closed shell nucleus *Ph a temperature
of about 2 MeV (E, ~ 100 MeV) is sufficient to nearly wipe out the s} ¢t

effects.
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Figure 2. Calculated
gure 2. temperature depende i
e r nce of the d i
m:ml éo?e:er;ezi of two 1ypical nuclei, 208pp gng 2°opy, lgv‘?trlf]:icihl?l odel 'and
of Seeper e Pes:;.lz ((lgggsrated fc')r the modified Han’nonic osci‘ial'ltg-:'Odel tsmg']e
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The same conclusions have also been drawn by Jensen and Damgaard (1973)
on the basis of calculations carried out for various nuclcon numbers and defor-
mations.

An interesting consequence of the above temperature behaviour of the thermo-
dynamic properties of nuclei is as follows: For a sufficiently high temperature T
where the shell effects have disappeared we have § (T) = § (T)or S(E,) =S (E),
where E, and E, are the excitation energies of the actual and smooth systems at
temperature 7. Considering that at these temperatures we also have E = £ or
E,-+E,=FE,+E, it follows that at sufficiently high temperatures, S (E,) =
S(E, + A Consequently, at temperatures where shell cffects have disappeared,
the entropy of a nucleus can be obtained simply from LDM calculations of the _
entropy corresponding to an effective excitation energy obtained by measuring
the energy excess with respect to the LDM ground state. If one writes the usual
Bethe expression for the smooth system, it follows that in the asymptotic limit of
high temperatures, onc has S*(E,) = S2(E, -+ A,) = 4a (E; - A,), where @
is related to the average density g of the smooth system at the Fermi energy by ‘
the expression a — (#%/6) g, on the assumption that the temperature of disappear-
ance of shell effects is not so large as to require inclusion of higher derivatives
of g in the expression for a. Hence if one plots cither dS¥dE, or S}(E, + A,)
versus E,, one finds that these quantities asymptotically reach the same constant
value equal to 4a after the shell effects have disappeared. On the other hand, a
plot of S, versus [, never reaches a constant value which, however, should 5
not be interpreted io imply that shell effects persist at all excitation energies. 5
Plots of S*/(E, -I- A}, dS*/dE, and S¥YE, versus [, are shown in figure 3 for a
typical case of single particle level scheme of Nix (1972) for the outer barrier defor-
mation of *2Pu, which demonstrate the validity of the preceding remarks. From
the preceding discussion it 1s also apparent that in the phenomenological model,
the excitation energy dependence of shell cffects on level density can be taken
into account by a simple expression of the form §* = 4a (£, 4- 3), where § — A,
at high excitation energies, and « is a constant related to the single particle level
density of the smooth system, as defined earlier.

It is seen from the above discussion that as far as its thermodynamic properties
are concerned, the nucleus behaves like a liquid drop model nucleus at high tempe-
ratures, As is shown in the subsequent sections, the above conclusion ‘has
important implications in the interpretation of some of the aspects of fission of

excited nuclel.

T T G ez e e ey oeve oo+ e 1.
TR TTIRST e

3. Shell effects on fission fransition state

The fission transition state, by definition, COII‘C‘SpOI?dS to that shape of the excited
fissioning nucleus along the fission path where minimum pumber gf open Chann'els
are encountered. In the absence of shell effects, the fission tra-ns1t10n state. co'm-
cides with the LDM saddle shape, since in this case, the ]?Vel density of the fissioning
nucleus at any deformation can be calculated on the basis of thfe usval Bethe expres-
sion S = 2 (aF ) for the entropy S, where £, is the cxcitation energy and a is
the level density parameter. Since for a given total energy, the excitation energy
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consequently the influence of nuclear shell effects on the fission process is expected
to decrease and finally disappear with increasing cxcitation energy since the shell
effects have their origin in the non-uniform distribution of single particle states
near the Fermi level (Ramamurthy efa/ 1970, Huizenga and Moretto 1972,
Adeev and Cherdantsev 1973). In other words, at sufficiently high excitation
energies, the nucleus is expected to behave like a liquid drop nucleus and will not
exhibit features which are specifically characteristic of a double-humped fission
barrier. ‘

In this paper, the phenomenon of the washing out of the shell effects with
excitation energy and its implications on some of the observed fission features
are cxamined on the basis of a numerical study of the thermodynamic preperties
of excited nuclei. It is also shown that from a study of the thermodynamic pro-
properties of excited nuclei, the ground state shell correction energies of nuclei
can be determined.

2. Thermodynamics of excited nuclei

An important quantity describing the statistical thermodynamic properties of an
excited nucleus is its level density, expressed as a function of the various constants
of motion like number of particles, excitation energy, angular momentum,
parity, etc. In recent years, it has been possible to calculate numerically
nuclear level densities starting from shell model single particle states (Ramamurthy
et al 1970, Huizenga and Moretto 1972), and thereby include the nuclear shell
effects on the level densitics. This method of calculation of the entropy § versus
excitation energy of a specified nuclear system with known single particle states is
as follows:

For a system of non-interacting fermions, with total number of particles N and
total energy E, one can write the following relations.

N=2X Ny | (1)

E = 2 n,e | (2)
= —X {mInn, + (1 —n) In (1 —n,)} 3

Here ¢, are the energies of the single particle states and n, is the Fermi-Dirac
distribution function given by

1
1 texp(a—m/T

where 7 is the thermodynamic temperature and p is the chemical potential. If
the magnetic quantum numbers my of the single particle states are known, omne
can also obtain the spin cut-off parameter o2 which determines the width of the
distribution of the angular momentum projection M, from the relation

4

Hy

ot = 3 n, (1 — ng) o7t (5)

For a specified temperature 7T the calculation of various thermodynamic quanti-
ties, S, E and o2 can be carried out numerically on the basis of egs 1-5, starting
from a given set of single particle energies . The corresponding excitation
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energy E, is given by E, = E— ié,: ¢.. In applying the above relations for the

the contributions from both protons and neutrons are added.

It may be pointed out here that the level density p is related to the entropy.S
by the relation p = ce® where ¢ is a weakly energy depe.ndent pre—exponentmi_
factor. On the assumption that the density of single particle energy levels near
the Fermi-level is nearly constant, the above formalism leads to the well known
Bethe expression for the nuclear level densities given by p = c¢exp 2 (@B,
where E, is the excitation energy of the nucleus. The level density parameter @
being proportional to the density of single particle states near the Fermi level
increases nearly linearly with the mass number A4 of the nucleus. It is now known
that in a nucleus the density of single particle states near the Fermi level is not
constant but exhibits appreciable non-uniformities which can be correlated to
the well known shell effects on the nuclear masses and dcformation potential ener-
gies (Strutinsky 1966, 1967). It is therefore expected that for a nuclear system
with non-uniform distribution of single particle states, the actual entropy will
deviate from that given by the Bethe expression. The excitation energy dependence
of entropy for such a system with ground state shell effects can be studied through
egs 1-4 in the above formalism.

Let us first consider the shell correction to the ground state energy of a nucleus.
Since protons and neutrons are considered to be independent in the present for-
malism, we treat here only one kind of nucleons, say protons, the results and con-
clusions of the analysis being equally valid for the other kind of nucleons. Let
G () = £ 6(e—¢,) be the density of single particle states of protons in a
nucleus where ¢, are a set of single particle states given by the shell model. On
the basis of the Strutinsky-Swiatecki concept (Myers and Swiatecki 1965,
Strutinsky 1966) G(e) can be written as the sum of a smoothly varying part g (e)
and a local flucturation &g (¢). The shell correction A, to the total encrgy is, by
definition, equal to the difference between the ground state energies of the actual
system and that of a hypothetical smooth system having a density g (¢) of thc
single particle states, i.e.,

case of real nuclei,

DMn

\ _ o
ta=E,—E,= 3 ¢,— [ eg(e)de (6)

T

1

where E, and E, are the ground state energies for the actual and the correspond-
ing smoof;h. systems, and p is the Fermi energy for the smooth system. The
smooth -smgte particle level density g (e) corresponding to any level scheme can
be obtal'ned by a suitable smearing of the energy states ¢, as has been proposed
by Stfutmsky (1966). A number of calculations of the ground state shell correction
energies .of nuclei have been carried out in recent years using the Strutinsky method
(see Teviews by Nix etal 1973, Brack eral 1972).

With the aboYe definition of the ground state shell correction energy one can
a.lso study qugntltatively the influence of shell effects on the thermodynamic proper-
ties of an excited nucleus. For example, a comparison of the calculated entrop
S of the actual system with the corresponding quantity § of the liypotlleticlza);
(simouth S)‘zstem evaluated at the same temperature will bring out the temperatui’e

ependence of shell effects on entropy. In the following, we present the results
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of calculations for the cases of two typical schemes of single particle energy states.
The first one was a model scheme with equidistant levels where each level was ten-
fold degenerate. The second one was a modified harmonic oscillator level scheme
(Seeger and Perisho 1967). For each of these systems, the corresponding smooth
density of states was obtained by the Strutinsky smearing procedure (Strutinsky
1965). The thermodynamic quantities S and £ were calculated from the set of
eqs 1 to 4, while the corresponding quantities S and E for the smooth reference
system were -obtained from equations analogue to egs 1 to 4, where summations
are replaced by integrations. Figure 1 shows plots of the calculated (S — S) and
(E — E) versus the temperature T for the equidistant level scheme for the cases
of a closed shell and mid-shell systems having 10 and § particles respectively in
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Figure I.ECalculared temperature dependence of the aifference in entropy and
excitation energy of a system of Fernions in a bunched level scheme and in th'e
corresponding smooth level scheme. The levels in the bunched scheme were equi-
spaced and had a degeneracy of 10. The two cases studied refer to the closed shlel
system with 10 particles in the last occupied level and the mid-shell system with

5 particles in the last occupied level,
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the last level. Figure 2 shows similar plots calculated with the modified harmonic
oscillator level scheme for the cases of the closed shell nucleus =%Pb (spherical
shape) and mid-shell nucleus Py (spherical shape). The following conclusions
can be readily drawn from figures 1 and 2:

(i) At low temperatures, the actual system and the smooth system behave
differently, as a result of the shell effects.

(ii) With increasing temperature, the differences in the calculated values of
the total energy and the entropy between the actual system and the reference
smooth system decrease and vanish completely at high temperatures.
Even for the case of the doubly closed shell nucleus *Ph a temperature
of about 2 MeV (E, ~ 100 MeV) is sufficient to nearly wipe out the s} ¢t

effects.
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The same conclusions have also been drawn by Jensen and Damgaard (1973)
on the basis of calculations carried out for various nuclcon numbers and defor-
mations.

An interesting consequence of the above temperature behaviour of the thermo-
dynamic properties of nuclei is as follows: For a sufficiently high temperature T
where the shell effects have disappeared we have § (T) = § (T)or S(E,) =S (E),
where E, and E, are the excitation energies of the actual and smooth systems at
temperature 7. Considering that at these temperatures we also have E = £ or
E,-+E,=FE,+E, it follows that at sufficiently high temperatures, S (E,) =
S(E, + A Consequently, at temperatures where shell cffects have disappeared,
the entropy of a nucleus can be obtained simply from LDM calculations of the _
entropy corresponding to an effective excitation energy obtained by measuring
the energy excess with respect to the LDM ground state. If one writes the usual
Bethe expression for the smooth system, it follows that in the asymptotic limit of
high temperatures, onc has S*(E,) = S2(E, -+ A,) = 4a (E; - A,), where @
is related to the average density g of the smooth system at the Fermi energy by ‘
the expression a — (#%/6) g, on the assumption that the temperature of disappear-
ance of shell effects is not so large as to require inclusion of higher derivatives
of g in the expression for a. Hence if one plots cither dS¥dE, or S}(E, + A,)
versus E,, one finds that these quantities asymptotically reach the same constant
value equal to 4a after the shell effects have disappeared. On the other hand, a
plot of S, versus [, never reaches a constant value which, however, should 5
not be interpreted io imply that shell effects persist at all excitation energies. 5
Plots of S*/(E, -I- A}, dS*/dE, and S¥YE, versus [, are shown in figure 3 for a
typical case of single particle level scheme of Nix (1972) for the outer barrier defor-
mation of *2Pu, which demonstrate the validity of the preceding remarks. From
the preceding discussion it 1s also apparent that in the phenomenological model,
the excitation energy dependence of shell cffects on level density can be taken
into account by a simple expression of the form §* = 4a (£, 4- 3), where § — A,
at high excitation energies, and « is a constant related to the single particle level
density of the smooth system, as defined earlier.

It is seen from the above discussion that as far as its thermodynamic properties
are concerned, the nucleus behaves like a liquid drop model nucleus at high tempe-
ratures, As is shown in the subsequent sections, the above conclusion ‘has
important implications in the interpretation of some of the aspects of fission of

excited nuclel.
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3. Shell effects on fission fransition state

The fission transition state, by definition, COII‘C‘SpOI?dS to that shape of the excited
fissioning nucleus along the fission path where minimum pumber gf open Chann'els
are encountered. In the absence of shell effects, the fission tra-ns1t10n state. co'm-
cides with the LDM saddle shape, since in this case, the ]?Vel density of the fissioning
nucleus at any deformation can be calculated on the basis of thfe usval Bethe expres-
sion S = 2 (aF ) for the entropy S, where £, is the cxcitation energy and a is
the level density parameter. Since for a given total energy, the excitation energy
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Figarz 3. Plots of the calculated level density parameter g Vversus temperature
for the nucleus 22Pu having the symmetric outer barrier deformation. Curves
(i), (ii) and (iiQ) are the results of calculations based on the three definitions of a.
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where A, is the ground state shell correction energy for that deformation.

is minimum at the LDM saddle point, the level density also shows a minimum
at the same shape which then becomes the fission transition state. If, however,
the shell effects are included, the above considerations are no longer valid and
the transition state shape needs to be determined directly from the level density
considerations. Just as the LDM saddle point is located by finding out the
maximum in the locus of conditional minima in the deformation energy surface,
the transition state shapes of excited nuclei should be determined by locating
minima in the locus of conditional maxima of level density for different nuclear
elongations. Interpretation of super-barrier fission data is, therefore, closely
linked to the calculation of level density as a function of nuclear shapes taking
into  account shell effects. Such calculations have been made possible in
recent vears with the availability of single particle energy levels for different
nuclear shapes and the application of numerical methods of calculation
of nuclear le_vel densities, as described in the previous section. In the present
u.ork". nume.r[cal calculations of the entropy of fissioning nuclei have been carried
out for various nuclear shapes starting from appropriate single particle level
schemes. The results qf these calculations are used to discuss the excitation energy
g:;u;rjif::e of the fission transition state shape and the relevant thermodynamic
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3.1. Influence of mass-asymmetric co-ordinate on the fission transition state of
excited nuclei.

Calculations (Nix 1973) of nuclear deformation potential energy surfaces have
shown that for actinide nuclei, the second fission barrier has a lower deformation
potential energy for mass-asymmetric shapes as compared to mass-symmetric
shapes. In the present work, we have carried out calculations of the entropy
surface near the outer fission barrier starting from the single particle level
scheme of Nix (1972), for the folded Yukawa potential whose shape is specified
by suitable parameters including mass-asymmetric co-ordinate a;. Results of these
calculations for a typical case of 2Py fissioning nucleus are shown in figure 4.

In these calculations the deformation potential energy was taken from the
microscopic-macroscopic calculations of Nix and co-workers (Bolsterli 1971).
Following conclusions can be directly drawn from the figure:

(1) At low excitation energies corresponding to near threshold fission, the
entropy is maximum for a, = 0-8 implying that the nucleus predominantly passes
through a mass-asymmetric shape at the second barrier.

(2) At excitation energies exceeding 25 MeV, the entropy is maximum for
as = 0, again implying that at these energies the nucleus predominantly passes
through a mass-symmetric shape at the second barrier. This result is a direct
consequence of the rapid washing out of shell effects on entropy, as discussed in
the earlier section.
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Figure 4. Plots of the calculated entropy difference (Sg, — Se) of the fissioning
nucleus 242Pu as a function of the compound nucleus excitation energy E,, where
Sa, and S, are the entropies for the mass-asymmetric shape spc?ciﬁed by the paramet'er
ayand for the mass-symmetric shape respectively corresponding to the outer barrier
deformation.
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If one makes the assumption that the probability P (ay) of the fissioming
nucleus going through a mass-asymmetric shape at the second barrier deforma?ion
is proportional to the total number of open channels for that configuration,
the following analysis can also be carried outl. Restricting oneself to the study
of super-barrier fission, where excitation energy of the compound nucleus is
above both the symmetric and asymmetric barriers, one can write

Be—k (&)
Plag) oo [ p(x)dx (7
]
where E (a.) is the deformation potential energy of the asymmetric shape rela-
tive to ground state and E, is the compound nucleus excitation energy.

Qualitatively, it follows from eq. (7) that in this case P (ay) is proportional ta
p {E, — E (a,)}, due to the fact that most of the contribution to the integral comes
from the upper limit. Also, since predominant energy dependence of the level
density is governed by the entropy, one can write

Play) o ' ®)

where S (a;) is the entropy of the nuclear configuration a, for a given compound
nucleus excitation energy £,.
Figure 5 shows the results of calculations of the probabilities for the same
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nucleus **2Pu and it can be seen that the points of the earlier qualitative discussion
are also brought out in this figure. Also shown in figure 5 is a plot of the calculated
variations of the ratio of the probabilities for the nucleus to go through asymmetric
and symmetric shapes as a function of the compound nucleus excitation energy.
This plot clearly brings out the rapid filling up of the valley in the mass distri-
bution with excitation energy resulting in a symmetric mass division at excitation
energies exceeding about 30 MeV. It may be pointed out here that the present
calculations of p (ay) versus excitation energy are based on a set of single particle
levels corresponding to the second barrier deformation. However, as is pointed
out in the next section, the fission transition state itself shifts from the second
barrier towards the LDM saddle point with increasing excitation energy. Inclusion
of this effect in the present calculations should lead to a more rapid filling up of
the valley than indicated in figure 5. For lower values of £, the plots in figure §
are expected to be quantitatively correct since at these values of E, the transition
state coincides with the second barrier. The relation between expected frag-
ment mass ratio and the asymmetry parameter a, on the assumption of a “ knife
cut > at the middle of the nuclear shape at the outer barrier is also indicated in
figure 5. Tt is seen that in the range of excitation energies where the mass distri-
butions are asymimetric, the calculated most probable mass ratio is surprisingly,
close to the experimental value. However, at the lowest excitation energy of 11
MeV for which the present calculations were carried out, the width of the calcu-
lated mass distribution is only about 5 mass units, which is considerably smaller
than the experimental value. This comparison therefore shows that considerable
broadening of the fragment mass distributions takes place during its descent from
the second barrier to scission. Considering that the present calculations do not
have any free parameter, it can be concluded that the experimental fragment mass
distribution cannot be quantitatively understood on the basis of the properties
of the transition state of the fissioning nucleus alone, without including the dynamics
during the descent from the transition state to scission.

3.2. Statistical interpretation of the fragment angular distributions

The washing out of shell effects with excitation energy introduces a new feature
which need to be taken into account in the statistical interpretation of the fission
fragment angular distributions at moderate excitation energies. According to
the statistical theory, (Halpern-Strutinsky 1958) the fragment angular distri-
butions are determined by the distribution of K quantum number of the levels
of the transition state nucleus, and can be characterized by a parameter K2 =
Jor. T/H? where T is the temperature and J, is the effective moment of inertia
of the transition state nucleus. For nuclei in the actinide region where the shell
effects result in a pronounced double-humped barrier, the question arises as to
which nuclear shape does the effective moment of inertia J, derived from the
analysis of the fragment anisotropics corres.popd. ‘ In near thrcshold‘ﬁ.ssion, the
anisotropy data show that the angular distributions are characteristic of the
stales on the top of the second barrier (Strutinsky and Pault 1969). However,
as pointed out earlicr, at excitation energies .where shell effects have completely
disappeared, the nucleus should thermodynamically behave as a LDM nucleus and
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therefore the transition state should coincide V‘Vi'th the LDM saddle shape.
Consequently, one would expect a shift of the t.ranSItlocn St.ate shape.from thfa Secoriféll
barrier shape to the LDM shape at intermediate excitation energies. This wou o
imply that J, becomes excitation energy dependent nf)t only because of the she
and pairing effects on the momeats of inertia for a given shape but also because
the shape itself changes with excitation energy. This feature then need'to.be
included in the interpretation of the parameter K2 (= Ju- T/ﬁ%) versus excitation
energy, derived from the statistical analysis of the fragment anisotropy data.

A calculation of the effective moment of inertia Jer (= Jy Jy/Jp — 1) at a
specified excitation energy consequently involves (i) determination f)_f the tral:lSl-
tion state shape relevant for fragment angular distributions and (ii) calcula‘ion
of J4¢ for that nuclear shape. The transition state shapes of the nucleus at a
specified excitation energy can be located from the map of entropy calculated
for different mass-asymmetric shapes for each elongation parameter yp, from the
criterion of minima in the locus of conditional maxima with respect to the coordi-
nate a, for different elongation parameter y. Having located the transition state
shape, microscopic calculation of J, can then be carried out starting with the
single particle levels for the appropriate nuclear shape. It is shown in the appendix
that numerical calculations of the moment of inertia starting from the shell model
scheme, should also incorporate a normalisation procedure.

It has been shown in the earlier section that at E, > 25 MeV, the fissioning
nucleus predominantly goes through mass-symmetric shapes at the second barrier.
Therefore at these excitation energies, the transition state can be located from
the calculated entropy S versus excitation energy E, considering only the symmetric
deformation parameter y. The results of these calculations for the typical case
of the fissioning nucleus 2¢2Py are shown in figure 6. For these calculations the
deformation potential energy as a function of symmetric deformation parameter
» was obtained with the use of the LDM parameters of Pauli-Ledergerber (1971)
for the smooth part and the shell corrections calculated by Bolsterli e af (1971).
For this nucleus the fissionability parameter x = 0-805 and therefore the LDM
saddle point is at the deformation y = 1 —x = 0-195. It can be seen from the
figure and the insert that with increasing excitation cnergy the transition state
point (minimum entropy point) gradually shifts from the second barrier to the
LDM saddle point and at E, ~ 40 MeV, the transition state point coincides with
the LDM saddle point.

It should be pointed out here that the excitation energy at which the transition
state shape coincides with the LDM saddle shape depends on the shape of the
LDM potential energy surface and thereby on the LDM parameters used. Some
recent calculatiops for the same nucleus by Vandenbosch (1973) show that the.
LDM saddle point is reached only at E, 3> 65 MeV, but this appears to be due
to the use of LDM parameters which are different from the more reliable Pauli-
Ledéfgﬂrbef parameters since these latter parameters were extracted from fission
barrier SyStf:maFics. There is, however, one feature of the results shown in
figure 6 which is somewhat disturbing. Itis seen that as the excitation energy is

further increased, the minimum entropy point further shifts at excitation energy

of about 90 MeV to a deformation ~ 0-18 which remains the minimum entropy
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Figure 6. Plots of calculated entropy S for the nucleus *2Pu as a function of the
compound nucleus excitatior energy E, for different values of the symmetric
deformation parameter y. The insert shows entiopy S versus deformation parameter
y, for specified values of E,.

point even at higher excitation energies. This small further shift of the minimum
entropy point towards a lower deformation (y = 0-18) at these excitation energies
appears to arise due to small errors of about 0-5 MeV in the relative values of
the shell corrections for the deformations y = 0-18 and 0-20 and uncertainties
of this order are known to be present in the shell correction values given by the
Strutinsky smearing procedure. It should also be pointed out here that this
feature of figure 6 cannot be understood on the basis of any other known
mechanism such as a complicated excitation energy dependence of shell effects
since, by definition, in the limit of high excitation energies where shell effects are
completely wiped out, the minimum entropy point must coincide with the LDM
saddle point shape. It is further shown below that the experimental results of
fragment anisotropies for a wide variety of nuclei in the actinide region at exci-
tation energies E, ~ 37 MeV present evidence that for these fissioning nuclei the
transition state shape coincides very nearly with the LDM saddle point shape
at these energies. ' :
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e anisotropy values for a 11u‘mber, of actinide 'm.lcif; ‘lzjvgsgze;
obtained by Reising et «/ (1960) for the case o.i‘ 42-8 MeY ‘alpl‘mKlg uce ‘he b'isi*:;

anisotropy values were used to determine the paramecter Ko ON fre L 0‘[.
Zfl'] isilee ds?z:bt(i)stical theory (Halpern and Strutinslf.y 1958) n‘egle'ct}ng uu-]evil;(:s of
target spin. From the values of K3 thus obtained for cach ‘case, orresponding
J g\verc determined. The values of temperature r u§0d w¢.1c. those co: 1f, 1bt' one
¥ he excitation energy at the LDM saddle point deformation and were obathed
g)om th;: numerical thermodynamic calculation with single particle level schemes

The first chanc

isati o Fp= 116/, The
of Bolsterli et af (1971) after normalisation to correspond to To Ji.f e
pairing effect were approximately taken into account by substracting a conc L‘,n:.sa
energy equal to 3g £.5 — Ao from the excitation energy, where & - -  [or cven
-~ Py )

puclei and 1 tor odd mass nuclei, /.o = L1/~ 4 McV‘ ad 'Lll}lcssmglc ~l"cltl g;’ltnfﬁ:i:
density g is that corresponding to the level sclxcme us.ed. ‘ 1166, }1'101231? o
J, for the spherical shape was also calculated with »y = | j 'bb‘l_llln % 5
the transition state shape corresponds to 'tl.le LDM saddli: 1301an, ea,‘ci 1 va ueuo1
Jold e was converted to give the ﬁSSiO.llZ:lblhl.y parameter X of’ the n'uc. e{us on ‘ 1‘(,
basis of the liquid drop model calculations (Hassc 1272) '»_v‘fthout curvature (.»01:
rection. Figure 7 shows the values of the parameter £ (£3/A)/X derived “{Fh“’
manner yversus the isospin parameter /* = {(NW:Z)/A}".‘ It can be scen fl.om
figure 7 that the values of ¢ derived in this manncr from‘ anilsotropy dala uppecu to
brine out even such details as the isospin dependeice oi' surfacc energy. it should
be ;;oimcd out that part of the scatter in the data points can bc‘uscrlbclc‘[ to the
effect of turget spin which was not included in the above analysis. In fact, the
points showing muximum deviation from the average trend L%(_) C(__)rrcspond to
targets with spins of 5/2 and 7/2. The curves based on the PauhTLedergcrber
(1971) and Myer-Swiatecki (1967) LDM parameters are also shown in tl}e figure
for the sake of comparison, where it is seen that the anisotropy data is in better
agreement with the Pauli-Ledergerber LDM parameters. It should be pointed
out that if, in fact, at excitation eunergies of about 37 MeV encountered in these
experiments, the transition state was eitlier at the second barrier or between the
second barrier and the LDM saddle point, the above analysis should lead to
values of ¢ significantly higher than the LDM prediction, whereas it in fact leads
to values of & which are smaller than those shown in figure 7 if the temperature
T is evaluated at the second barrier deformation. Considering that the experi-
mental points are well below the Myer-Swiatecki curve and lie almost on the
Pauli-Ledergerber curve, it can be concluded that even at compound nucleus
excitation energies of about 37 MeV, the fission transition state relevant for frag-
ment angular distributions indeed coincides almost with the LDM saddle point
shape. The same conclusions were reached on the basis of the results of figurc 6

where at £; ~ 40 MeV the transition state point (minimum entropy point) is
found to coincide with the LDM saddle point.

4. Evaluation of relative shell correction energies of nuclei

It was shown iIn section 2 that at high temperatures, the influence of nuclear shell
effects on the thermodynamic properties of nuclei disappear.

In vparticular it
was shown that the calculated entropies and the total energies asymptotically
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Figure 7. The valucs of { = (Z%/A4)/X versus the square of /= (N — Z)/(N + 2Z)
for a number of ruclei in the actinide region derived from the first chance aniso-
tropy values given by Reising efal (1966) The open points refer to nuclei with
non-zero target spin. ‘The expected iso-spin dependence of [ based on Pauli-
Lederger (1971) and Myers—-Swiatecki (1967) liguid drop parameter: are also
shown in the figure

become independent of the magnitude of the ground state shell correction ener- ;
gies (see figures (1) and (2)). An important implication of this result is that the ;
entropics and the total energies calculated for any two single particle level schemes

G (e) and G* (e) having the same smooth components g (¢) but different local
fluctuations 3g (e) and therefore different ground state shell correction energies,

will become identical in the asymptotic high temperature region. That is, if E?!

and E£? are the total energies for the two level schemes, calculated at any given
temperature in the asymptotic high temperature region, one has

Fl = E2
Ly + Ly = ES + E;

E2

El = E} —E?
= (EZ"'"Ea)_(E: "'"Ea)
= A, — Al | (9)

Here E; and E? are the ground state energies for the two level schemes, A! and
/N2 are the respective ground state shell correction energies and E, is the ground
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state energy of the hypothetical smooth system, assumed to be the same for
both the level schemes. It is therefore seen that a plot of the calculated difference
in excitation energies (F2 — E}) versus temperature will approach an asymptotic
constant value at high temperatures which is equal to the difference in the ground
state shell correction energies for the two level schemes.

If however, small differences exist in the smooth component g (e) of the two
level schemes, the above simple relation between the calculated (E2—E;) and
(AL — A?) is somewhat modified. It has been shown (Ramamurthy and
Kapoor 1972, 1973) that in the asymptotic region of high temperatures, one can,
in general, write

S= X aT* (10)

el

Eo=— 0+ ) prqad™ (11

{==l

for any level scheme where the coefficients ¢; are characteristic of the overall beha-
viour of the level scheme. Therefore, for two level schemes, which have nearly
the same overall behaviour,

§2—S'= ¥ 84T (12)
Ei—Ei=—(01— AD+ )| s saT (13)

where 8a; are small. The value of (A% — A') can therefore be obtained from
either eq. (13) alone or a combination of eqs (12) and (13). The uniqueness of

the value of (A% — Al) is determined by the fact that this is independent of

the temperature range used in evaluating (A% — A!) provided all the coefficients
8a; which are important in that temperature range are included.

In earlier work (Ramamurthy and Kapoor 1972) it was shown that the ground
state shell correction energies of nuclei can be obtained from an equation of the
form of eq. (11), where the coefficients a; are obtained by studying the asymptotic
high temperature behaviour of the calculated entropy S of the nucleus, which
was shown to be of the form of eq. (10). The equivalence of this thermodynamic
method of determining the shell corrections with the Strutinsky smearing proce-
dure has been discussed by several workers (Bhaduri and Das Gupta 1973, Das
Gupta and Radhakant 1973). Here, we further point out that a calculation of
the deformation potential energy surface where only relative shell correction
energies with respect to deformation are of significance gets simplified with the
use of eqs (12) and (13), where the temperature dependent terms appear only as
small corrections. Figure 8 shows plots of the calculated excitation encrgy E
versus temperature 7  for the two typical values of the deformation paramete;
y= 0-0 and 0-14. Also shown in the figure is a plot of the differences in exci-
tation energy versus temperature for the same two shapes. It can be seen that
while E, is strongly temperature dependent, the differénce E,(y=0-14) —FE

&

(y = 0-0) shows a weak dependence on the temperature, thus enabling a more
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Figure 8, (@) Plots of the calculated
excitation energy versus temperature for
proton- in 2%Pu for two values of the
symmetric deformation parameter y. The
sigle particle level scheme used for the
calculations are those genersted by Nix
et al (1972) for a reelistic folded Yukawa
potential. (b)) Plot of the calculated
difference in excitation energies versus
temperature for protons in *0Pu for the
0C  same two values of the symmetric
deformation parameter y as in (a).
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accurate estimate of the zero temperature intercept which is equal to the relative
shell correction energy A,(y =0-14) — A, (y = 0). Figure 9 shows the results
of the shell correction energy for protons versus the deformation parameter y
relative to spherical shape for the nucleus 2°Pu. The corresponding values
obtained by the Strutinky smearing procedure with the smearing parameter
y» = 7 MeV and the order of Hermite polynomial p = 6 are also shown for com-
parison. It should be remarked here that the disagreement of the values obtained
by the Strutinsky procedure with p = 6 and y = 7 MeV with the present values,
is found to be due to the non fulfilment of the plateau condition in the Strutinsky
method for higher deformations. Further details of these calculations and
results will be discussed elsewhere our aim here was mainly to illustrate the
principle of this method based on the washing out of the shell effects at high

excitation energies.

5. Concluding remarks

An important conclusion arising from the present study of the washing out of
shell effects with excitation energy and its implication on the fission of excited

nuclei is as follows:
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Figure 9. Calculated relative shell correction energies as a functior of the symmetric
d_eformanon parameter y, by the temperature smearing method. The same guanti-
ties as calculated by the Strutinsky prescription are also shown for comparison.

Several recently discovered features arising from single particle corrections
to ?he LDM potential energy surfaces, such as the existence of a double-humped
fission barrier and an energetically preferred mass asymmetric cuter barrier shape
are shown to be of no relevance in the case of fission of a sufficiently excited nucleus
dug to the disappearance of shell effects. For example, it is shown that due to
exc.xtgtxon energy dependence of sheil effects a typical fissioning nucleus in the
actinide region like Py which goes predominantly through a mass-asymmetric
shape at the outer barrier in near threshold fission, goes over rapidly to a 1nass-
symmetric shape with increasing excitation energy—a fact well known -i"rom
expenmenta} mass distribution studies. Similarly, the fragment angular aniso-
tr%%yl' datg in medium energy fission are shown to be characteristic of the LDM
saddle point shapes. It is also shown as to how this excitation energy dependence

of shel} effects h.as lfxeen used to formulate a new method to determine the shell
correction energies in the nuclear ground state.
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Appendix

For a given single particle level scheme the quantity Jy/%? versus excitation energy
can be calculated numerically with egs (1)-(4). Figure 10 shows the results
of such calculations of the moment of inertia JolR* versus excitation energy for
a typical case of a spherical shape of 2Py, It is seen that, after the disappearance
of shell effects, J /%2 asymptotically reaches a constant value which should be
identified with the rigid body value. It is found that this asymptotic value in the
present calculation corresponds to a radius parameter ro = 1-27 fm which is also
nearly equal to the sharp surface radius parameter of the potential used to gene-
rate the input single particle levels. This value of r,, however, differs from the
value 1-16 fm which is known to represent better the spatial properties of nuclei
(Myers 1970). The above discrepancy arising from the non-self consistent nature
of the shell model calculations of single particle levels shows that reliable calculat; ons
of moments of inertia based on shell model level schemes should incorporate a
normalization procedure to ensure that the asymptotic values of JIh* correspond
to the rigid body values corresponding to the radius parameter r, = 1-16 fm.

2&2 i ~ culat P H
Pu(sprERICAL SHAPE) Microszopic Celeulction a.:t.‘i Nix Levels
ve----- Rigid body values (Mo =115t}
300+ '
-
% 200}
z
St
<
100-
, !
0 100 ' 200

Ex (MeV) ]
Figure 10. Resulis of the numerical calculations of thc.; monicnt off igng;tia J(')r/?
versus -the extitation energy for a tygical case of spherical slyl'agc. ov . ;.fm f:
dotted line represents the corresponding rigid body value with ry = 0

the radius parameter.
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However, such a normalization procedure is useful onlylif hthe Itlli)rmahzleitlo;}
'is i deformation. Figure 11 shows the results
constant is independent of nuclear : ! s o
i 2 i f deformation for the same nucleus
calculations of J,/A2 as a function o ' o o b for
i i i d co-workers (Bolsterli ez al ) an .
the single particle levels of Nix an o o
¥ i i erisho (1967) along with
dified harmonic oscillator levels of Seeger an
:E: glgoid body values for r, = 1-16 fm. [t can be se-en that, for both .the level
schemes, the quantity Ji/#* exceeds the rigid body e;sxmates a.nd these QIﬂ"er.en::lfs
can be Ziirectly traced to the different ( r )2 of the single particle potentials in the
two cases. However, it is seen that the normalization factor C = (J))/(J) rigia

2£2Pu 20
ZOO—N}x Levels rmucioscopic Latculations
..... Rigid body values
(’(o=116f)
\ r____.—-——- J-“
_ — ~ O rigro
—I% 100k \s‘\\\ \ { 04
= T~ ~~ . \
o> -~
1 1
0 N 2 i
= Symm:iric Deformation y T
Modified Harmcnic Oscillator Levels
200\ 204
- ' " Ju
'E ileiore
= P~
- S.
FIOO»— \‘\\ 104
1 1
0 05 10 15

Symmetric Deformation®
‘ . S eY Vi

Figure 11. Result< of calculations of JyIh2
nucleus **?Pu. The calculations have been c

of Nix (1972) and for the modified harmonic oscillator levels of Seeger and Perisho
(1967). The dotted lines represent the co

rresponding  rigid body values with
ro = 1-16 fm. Also shown in the figure is

the ratio Jy/(J}) ;114 as a function of
the deformation for both the level schemes. :

as a function of deformation for the
arried out for the single particle levels
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1s almost independent of the deformation, although the magnitude of C is itself
different in the two cases. The calculated values of Jy/A% versus the excitation
energy E, for any deformation should therefore be divided by the factor C to
ensure the correct asymptotic value of the quantity J,/A%.  Similar renormalization

will also be required in the calculations of moments of inertia, Jy/A2, perpendicular
to the nuclear symmetry axis,

For the same reasons as mentioned above, the level density parameter a derived
from the asymptotic values of the calculated thermodynamic quantities needs to
be normalized to a value corresponding to the radius parameter ro =116 fm
which can be done on the basis that ¢ is proportional to (r2). Since the para:
meter K characterizing fragment anisotropies is given by

Ko = et B?) T = (J /3% (B, )}

it follows that a microscopic calculation of K% will be nearly proportional to
the input radius parameter (r?) of the potential used to generate the single
particle levels, and therefore needs to be normalized to the radius parameter r,
of the actual nucleon density distribution. Without incorporating the above
normalization procedure, then microscopic calculations could lead to a significant
overestimate of K3, which when compared with “experimental” values of K 2,
might result in misleading conclusions regarding the transition state shape.
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