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Abstract

In this paper we show that the analysis of the dynamics in localized

regions, i.e., sub-systems can be used to characterize the chaotic dy-

namics and the synchronization ability of the spatiotemporal systems.

Using noisy scalar time-series data for driving along with simultaneous

self-adaptation of the control parameter representative control goals like

suppressing spatiotemporal chaos and synchronization of spatiotempo-

rally chaotic dynamics have been discussed.
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1 Introduction

Most physical, chemical and biological systems are high-dimensional

and exhibit complex spatiotemporal patterns including spatiotem-

poral chaos [1]. The synchronization and control of the spatiotem-

porally chaotic dynamics in these systems is currently being inves-

tigated and has been reviewed in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In

this paper we study the synchronization and regulation of the spa-

tiotemporal systems using time-series data from local regions. This

approach may help in specifying the requirements of time-series data

from the spatial domain for control. Since the phase space is large

for spatiotemporal systems it may be worthwhile to first show how

the conventional diagnostics for low dimensional systems may be ap-

propriately utilized to study the synchronization behavior of higher

dimensional spatiotemporally chaotic systems. The feasibility of the

approach may be seen by studying the behavior of the sub-system

invariant properties such as the Lyapunov dimension and K-S en-

tropy [12, 13, 14, 15, 16, 17, 18, 19] for increasing sub-system size.

Important and illustrative control goals, e.g., suppressing spatiotem-

poral chaos by directing the system to desired stable fixed point or

low-period states (servo-control), and dynamical synchronization of

the spatiotemporally chaotic systems using localized sub-system infor-

mation have been addressed in this context. The above aims have

been carried out for two prototype examples of coupled map lattices

(CMLs), viz., the diffusively coupled logistic map (LCML) and the

diffusively coupled Henon map (HCML).

The first CML studied is obtained by diffusively coupling N logistic maps

on a one-dimensional lattice [16] and is defined as

xn+1(i) = (1 − ǫ)f(xn(i)) +
ǫ

2
[f(xn(i − 1)) + f(xn(i + 1))], (1)

where, n is the discrete time; i the lattice site, i = 1, 2, . . . , N ; and ǫ the

diffusive coupling coefficient. The nonlinear function f(x) is given by the
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quadratic form

f(xn) ≡ xn+1 = 1 − αx2
n. (2)

Equation (1) exhibits a wide variety of spatiotemporal patterns, viz., periodic,

quasiperiodic, chaotic and complex frozen patterns depending on the choice

of parameters α and ǫ [16]. In Fig. 1(a) is shown the typical spatiotempo-

rally chaotic dynamics of the LCML (1) for periodic boundary conditions and

random initial conditions. This complex pattern arises due to interactions be-

tween the diffusion and nonlinear mechanisms in the LCML. The bifurcation

parameter α = 1.9 has been chosen such that the local map (2) exhibits tem-

poral chaos (Lyapunov exponent λ ∼ 0.55). The coupling strength chosen was

ǫ = 0.4.

The second CML considered is the diffusively coupled Henon map lattice

in 1-D :

xj,n+1(i) = (1 − ǫ)fj(xj,n(i) +
ǫ

2
[fj(xj,n(i − 1) + fj(xj,n(i + 1))], (3)

where,

x1,n+1 ≡ f1(x1,n, x2,n) = 1 − αx2
1,n + x2,n,

x2,n+1 ≡ f2(x1,n, x2,n) = βx1,n, (4)

j = 1, 2; i = 1, 2, . . . N . Again, the parameter values have been so chosen

that the local Henon map exhibits chaotic dynamics (α = 1.4 and β = 0.3

for which the maximum Lyapunov exponent, λmax ∼ 0.42) [20]. On assuming

identical initial conditions for xj,0(i), the HCML (3) exhibits spatially homo-

geneous but temporally chaotic dynamics (as seen in Fig. 1(b) for n < 100).

On giving random perturbations to the central five lattice sites at n = 100,

a changeover from spatially homogeneous to an inhomogeneous spatiotem-

poral pattern is observed with the spread of perturbation to the boundaries

because of diffusive coupling [Fig. 1(b)]. The following section discusses the

analysis of spatiotemporally chaotic dynamics in terms of the sub-system in-

variant measures. In section 3 the dynamical synchronization and control of

spatiotemporal chaos in these CMLs is discussed for representative goals.
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2 Analysis of Spatiotemporal Dynamics

For a CML of size N , there are mN Lyapunov exponents (m being the number

of degrees of freedom in the corresponding single map, i.e., m = 1 for logistic

map and m = 2 for Henon map) and their computation can be taxing and

practically infeasible for large N . However, if attention is restricted to a local-

ized sub-system of size ns(<< N), the calculation of the Lyapunov exponents

is significantly reduced to mns. The calculation of these sub-system exponents

is similar to those of the full system, that is, by time-averaging the growth rate

of linearized orthonormal vectors δxl
n, within the sub-system, and is given by

λ
(s)
l = lim

n→∞

sup ln
| δxl

n+1 |

| δxl
0 |

, l = 1 . . .mns. (5)

While calculating these exponents, the flow of information at the sub-system

boundary sites k = 1 and k = ns, may be treated as a) noise effects, or,

b) explicitly corrected by evaluating the sub-system Lyapunov exponents only

for ns − 2 sites (i.e., excluding the boundary sites). Our calculations of the

sub-system Lyapunov exponents, λ
(s)
l for both treatments (a,b) were found

to be in quantitative agreement with open boundary conditions used for the

sub-system dynamics.

Now, from a knowledge of the spectrum of sub-system Lyapunov exponents,

λ
(s)
i , the effective sub-system Lyapunov dimension, d

(s)
L , may be obtained and

is defined as

d
(s)
L = j +

1

| λ
(s)
j+1 |

j∑

i=1

λ
(s)
i , (6)

on using the well-known Kaplan and Yorke (KY) conjecture [21]. Here j is

the largest integer for which the sum of the exponents, λ
(s)
1 + . . . + λ

(s)
j ≥ 0.

If λ1 < 0, then d
(s)
L = 0 and if j = mns, then d

(s)
L = mns [20]. The Lyapunov

dimension gives the effective dimensionality of the underlying attractor. The

corresponding intensive quantity, the sub-system dimension density, ρ
(s)
d , may

then be defined as

ρ
(s)
d =

d
(s)
L

ns

. (7)
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It gives an estimate of the number of degrees of freedom required to charac-

terize the dynamical behavior of the full spatiotemporal system.

Another important invariant measure is the Kolmogorov-Sinai (KS) en-

tropy and is defined as the sum of positive Lyapunov exponents λ+ [22]. It

quantifies the mean information production and growth of uncertainty in a sys-

tem subjected to small perturbations [21]. For regular predictable behavior,

the KS entropy is zero while for chaotic systems it takes a finite positive value,

and is infinite for continuous stochastic processes. The sub-system KS-entropy,

h(s), is defined as

h(s) =
∑

λ
(s)
+ . (8)

and the corresponding density function, the sub-system entropy density, ρ
(s)
h ,

is given by

ρ
(s)
h =

∑
λ

(s)
+ /ns. (9)

The dependence of these invariant measures as a function of the sub-system

size, ns is discussed below. In Fig. 2(a) is shown the plot of the sub-system

dimension, d
(s)
L , as a function of its size ns (solid line corresponds to LCML and

the dashed line to HCML). The sub-system dimension d
(s)
L is seen to linearly

increase with the sub-system size ns for both the CMLs. This suggests that it

may be possible to determine the effective dimensionality of the whole system

from sub-system analysis. Further, the saturating behavior of the sub-system

dimension density, ρ(s) [Fig. 2(b)] helps in determining the critical sub-system

size, nsc, required to predict the dimensionality of the full system. Similar

behavior was observed in the sub-system KS entropy, h(s) and the entropy

density, ρ
(s)
h , for increasing sub-system size [Fig. 2(c) and 2(d)]. This implies

that though the entropy increases linearly with the sub-system size, the average

rate of information loss/gain levels off for ns > nsc. The above relationships

were also observed for logistic maps diffusively coupled on a 2-dimensional

square lattice of size N × N (results not shown). These results indicate that

it may be possible to analyze the dynamical behavior of reaction-diffusion

systems from an analysis of relatively smaller sub-systems. This feature may
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prove to be computationally very advantageous, especially in higher spatial

dimensions.

3 Synchronization and Control of Spatiotem-

poral Chaos

In this section, we discuss the synchronization and control of spatiotempo-

rally chaotic dynamics for different goals with the following important factors

considered, viz., 1) a mechanism by which a control parameter may be self-

adapted so that synchronization in the system and the desirable dynamics

becomes possible; 2) allow for restrictions in the availability of scalar time-

series signals in the spatial domain; and 3) negate the effects of noise in the

time-series data. From recent studies on the dynamical synchronization of

low-dimensional chaotic systems it is known that a given system (called the

response) can be made to follow the dynamics of another system by driving the

former with scalar time-series signals from the latter [23, 24, 25, 26, 27, 28, 29].

The condition for the synchronization to occur is that the response system

should possess negative conditional Lyapunov exponents. Following the re-

sults of Section 3, we would now like to see whether sub-system data may

suffice in assessing the synchronization ability of the spatiotemporal system.

Before discussing the results, we present the methodology adopted to syn-

chronize the dynamics of spatiotemporal systems governed by different attrac-

tors. For clarity we define the driving system by

xn+1(i) = F[xn(i),xn(i ± 1), α, β], (10)

where xn(i) = xj,n(i), j = 1, . . . , m (m denotes the number of degrees of

freedom in the local map), and i = 1, . . . , N . To incorporate the effects of

noise arising due to measurement errors, the sub-system driving signals are

assumed to be given by

x′

1,n(k) = x1,n(k) + γηn(k), k = 1, . . . , ns, (11)
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where ηn(k) denotes the random noise in the interval (-.5,.5) of strength γ.

The response system, written in a different notation from eq. (10), is given by

x̂n+1(i) = F[x̂n(i), x̂n(i ± 1),x′

n(k), α̂, β̂], (12)

where x̂n(i) are the corresponding variables, α̂ and β̂ the response parameters,

and x′

n(k), the driving variables. To study the ability of the response system

to synchronize its dynamics with that of the driving system (10), we analyzed

the conditional Lyapunov exponents for a localized sub-system (ns > nsc).

These exponents were calculated by monitoring the growth rate of (m − 1)ns

sets of linearized orthonormal vectors obtained on excluding the variables used

for driving. For the HCML, the calculations showed that the maximum sub-

system conditional exponent is negative on using x1,n(i) as the driving signals

indicating possible synchronization. On the other hand, if x2,n(i) were used

for driving, the maximum conditional exponent was found to be positive and

synchronization is not guaranteed. A synchronization study on HCMLs with

different initial conditions but same parameter values (i.e., α̂ = α, β̂ = β) did

confirm the above results. It may be also noted that in the case of LCML,

the local map being governed by a single variable (i.e., m = 1) precludes the

observance of negative conditional Lyapunov exponents and synchronization

in their dynamics is difficult.

However, if driving is carried out on a response system with a different

setting of the control parameter, i.e., α̂ 6= α, then synchronization of the

response system dynamics cannot be brought about by driving alone. In this

situation, the control parameter α̂ needs to be altered appropriately so that

synchronization becomes possible. Self-adaptive mechanisms for parametric

estimations have been studied in the context of temporal chaotic systems [30,

31, 32, 33, 34]. For spatiotemporal systems, the self-adaptation of the control

parameter may be carried out as follows. We begin by introducing a space-

time dependence in the response control parameter, i.e., α̂n(i). Initially, the

same value of α̂ is assumed at all the lattice sites, but different from that

of the driving system, i.e., α̂0(i) = α̂ 6= α. For the sub-system lattice sites

where the signals are available, the parametric corrections, ∆α̂n+1(k) may be
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dynamically evaluated as

∆α̂n+1(k) = ∆α̂n(k) + µ[x̂1,n(k) − x′

1,n(k)], k = 1, . . . , ns, (13)

where µ is the stiffness coefficient for adaptation and ∆α̂0(i) = 0. For the

lattice sites outside the sub-system an average adaptation,
∑

k ∆α̂n+1(k)/ns,

was employed. The response parameter then self-adapts to the desired value

α via

α̂n+1(i) = α̂0(i) + ∆α̂n+1(i), i = 1, 2, . . .N. (14)

The linear functional form for adaptation considered in eq. (13) is only repre-

sentative and other functional forms of adaptation, e.g., cubic, history-linear,

sign, etc., [30, 33] may be attempted. Further, the choice of µ may be ratio-

nalized by studying the stability characteristics of the response and adapter

dynamics. As long as the combined system has negative eigenvalues synchro-

nization should be possible. A range of µ values can satisfy this requirement

and within this range the specific value of µ will determine the rapidity with

which synchronization occurs.

Using the above methodology, we discuss representative cases pertaining

to controlling spatiotemporal chaos. Our first aim was to suppress chaos in

a spatiotemporal system and direct it to a desired stable fixed point state

via self-adaptation of the control parameter along with simultaneous driving.

Noisy time-series signals (shown in Fig. 3(a)) from a sub-system of size ns = 21

localized in the central region of the lattice of the driving system (α = 0.3) were

used to drive the spatiotemporally chaotic dynamics of the response system

(α̂0(i) = 1.9). A rapid space-time synchronization in the dynamics of the

response and the driving system is depicted by plotting the error signals en(i) =

x̂n(i) − x′

n(i) in Fig. 3(b). The space-time convergent behavior of ∆α̂n(i) to a

value of −1.6 (the initial difference in the control parameter) by self-adaptation

is shown in Fig. 3(c). The fluctuations in ∆α̂n(i) is due to the presence of noise

in the driving signals which is constantly filtered by the adapter eqs. (13).

Thus, the simple form of self-adaptation given in eq. (13) can be effectively

used even in the presence of reasonable extents of noise to suppress chaos in the

dynamics. The implementation of the driving signals along with the adapter
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mechanism leads to a faster convergence to the desired stable state. Further,

because the final state is a stable one, the system continues to operate in this

state even after the driving and self-adaptive mechanism have been switched

off. Similar results were also obtained for HCML using scalar sub-system

time-series signals (results not shown). These results suggest that it may be

possible to suppress chaos in real experimental situations by using scalar time-

series signals from a local sub-system with spatial self-adaptation of the control

parameter.

Next we considered controlling the spatiotemporally chaotic dynamics to a

temporally 2-period state. The sub-system time-series data from an HCML ex-

hibiting spatially homogeneous and temporally periodic oscillations were used

to drive the chaotic dynamics of the response [shown in Fig. 4(a)]. On using

the self-adaptive mechanism [eq. (13)] along with driving, the desired spa-

tially homogeneous and temporally periodic pattern is observed only within

the sub-system [Fig. 4(b)]. Outside the sub-system, the dynamics is not phase

synchronized, though oscillating periodically in time. On using driving signals

from every 5th lattice site, we were able to obtain complete synchronization

with phase locking in the response and the desired system dynamics [Fig. 4(c)].

Thus, though local sub-system data is sufficient to suppress chaos and direct

the system to a stable periodic state, for phase synchronization, time-series

measurements from the full spatial domain is required (which may be spaced

out depending on the complexity of the desired state). The space-time evolu-

tion of the parametric correction is shown in Fig. 4(d).

The above studies were focused on directing the system to stable states.

Now we discuss the more difficult case of directing a spatiotemporal system

from one chaotic state to another. The results in this study are presented

for the HCML [eqs. (3,4)] with sub-system driving signals used to evaluate

parametric corrections ∆β̂ in the alternate control parameter β̂. This was

carried out in a procedure identical to evaluating ∆α̂ and α̂ [eqs. (13,14)]

in Figs. 3,4. In this case, synchronization was possible only within the sub-

system [Fig.5(a)], even though the response system control parameter had been
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appropriately self-adapted [Fig. 5(b)]. The asynchronous behavior outside

the sub-system is because of the sensitive dependence of the chaotic dynamics

to initial conditions and suggests that driving signals from the entire spatial

domain will be required for complete synchronization in this case and was

confirmed (results not shown).

Apart from estimating a control parameter, in many situations, it would

be desirable to accurately estimate other intrinsic system parameters. Such

a situation can arise when the other parameters of the response system are

not known a-priori [35, 33, 34]. Here we show that self-adaptation of two

parameters is simultaneously possible on using time-series signals only from a

sub-system. In this study both the response system parameters α̂0 and β̂0 were

set differently from the driving system (α = 1.1, β = 0.3, α̂0 = 1.4, β̂0 = 0.28).

The parametric corrections ∆α̂ and ∆β̂ were then simultaneously estimated

by using the following two sets of adapter equations within the sub-system

∆α̂n+1(k) = ∆α̂n(k) + µ1[x̂1,n(k) − x1,n(k)],

∆β̂n+1(k) = ∆β̂n(k) + µ2[x̂2,n(k) − x2,n(k)]. (15)

with µ1 and µ2 the stiffness coefficients for adaptation, and k = 1, . . . , ns. As

before, average corrections,
∑

k ∆α̂n+1(k)/ns and
∑

k ∆β̂n+1(k)/ns were imple-

mented outside the sub-system. The simultaneous convergence of ∆α̂n → −0.3

and ∆β̂n → 0.02 in Figs. 6(a), 6(b) suggest that multiparameter estimation

may be possible in high-dimensional chaotic systems. Although driving sig-

nals in both the variables in the sub- system were necessary for accuracy, there

exists a range of µ1 and µ2 values wherein multiparameter self-adaptation was

successful. Considerable potential exists in applying this technique in accu-

rately characterizing available mathematical models of an experimental sys-

tem. Using experimental time-series data from a sub-system, the parameter

values in the mathematical model (now the response system) can thus be as-

certained.
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4 Conclusion

To summarize, the interesting scaling relationships that exist in the sub-system

invariant properties as a function of increasing sub-system size have been used

to study the synchronization properties of high-dimensional spatiotemporal

chaotic systems in a simpler fashion. Our results show that suppressing spa-

tiotemporal chaos and controlling the system in desired stable fixed or low-

period states is possible using only sub-system data via self-tuning of a control

parameter. Simultaneous adaptation of more than one parameters using only

sub-system information is also possible. These results allow for relaxation in

the monitoring of time-series data from the spatial domain for control purposes.

On the other hand, the synchronization studies with chaotic spatiotemporal

dynamics suggest that synchronization may be possible only in regions from

which time-series data is available.

Acknowledgments We gratefully acknowledge the financial support of

the Department of Science and Technology, New Delhi, India, in carrying out

this work. One of the authors, NP would like to acknowledge CSIR, India for

financial support.

11



References

[1] M.C. Cross, and P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

[2] T. Shinbrot, Adv. in Phys. 44, 73 (1995).

[3] T. Shinbrot, C. Grebogi, E. Ott and J.A. Yorke, Nature 363, 411 (1993).

[4] G. Chen and X. Dong, Int. J. Bifur. Chaos 3, 1363 (1993).

[5] J.F. Lindner, B.K. Meadows, W.L. Ditto, M.E. Inchiosa, and A.R. Bul-

sara, Phys. Rev. Lett. 75, 3 (1995).

[6] Y.C. Lai and C. Grebogi, Phys. Rev. E 52, 1894 (1994).

[7] C.B. Muratov, Phys. Rev. E 55, 1463 (1997).

[8] M.N. Lorenzo, I.P. Marino, V. Perez-Munuzuri, M.A. Matias, and V.

Perez-Villar, Phys. Rev. E 54, R3094 (1997).

[9] I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. Lett. 72, 2561 (1994).

[10] J.H. Peng, E.J. Ding, M. Ding, and W. Yang, Phys. Rev. Lett. 76, 904

(1996).

[11] D. Auerbach, Phys. Rev. Lett. 72, 1184 (1994).

[12] M.C. Cross and P.C. Hohenberg, Science 263, 1569 (1994).

[13] M. Bauer, H. Heng, and W. Martienssen, Phys. Rev. Lett. 71, 521 (1993).

[14] J. Argyris, G. Faust, M. Haase, An Exploration of Chaos Elsevier Science

B.V., Amsterdam (1994).

[15] H.D.I. Abarbanel, R. Brown, J.J. Sidorowich, and L. Tsimring, Rev. Mod.

Phys. 65, 1331 (1993).

[16] K. Kaneko, Prog. Theor. Phys. 72, 480 (1984); Physica D 23, 436 (1986);

Physica D 34, 1 (1989); Chaos, 2, No. 3 (1992) (special issue on coupled

map lattices) and references therein.

12



[17] P. Grassberger, Phys. Scr. 40, 346 (1989).

[18] G. Mayer-Kress and K. Kaneko, J. Stat. Phys. 54, 1489 (1989).

[19] J. Warncke, M. Bauer, and W. Martienssen, Europhys. Lett. 25, 323

(1994).

[20] S.N. Rasband, Chaotic Dynamics of Nonlinear Systems Wiley-

Interscience (1989).

[21] J.L. Kaplan, and J.A. Yorke, Lecture Notes in Mathematics 730, 204

(1979).

[22] Y.B. Pesin, Russ. Math. Sur. 32, 55 (1977).

[23] H. Fujisaka, and T. Yamada, Prog. Theor. Phys. 69, 32 (1983).

[24] L.M. Pecora, and T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990); Phys.

Rev. A 44 2374 (1991).

[25] R. He and P.G. Vaidya, Phys. Rev. A 46, 7387 (1992).

[26] M. Ding, and E. Ott, Phys. Rev. E 49, R945 (1994).

[27] K.M. Cuomo, and A.V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993).

[28] C.W. Wu, and L.O. Chua, Int. J. Bifur. Chaos 4, 979 (1994).

[29] J.F. Heagy, T.L. Carroll, and L.M. Pecora, Phys. Rev. E. 50, 1874 (1994).

[30] B.A. Huberman, and E. Lumer, IEEE Trans. Circuits Syst. 37, 547 (1990);

S. Sinha, and R. Ramaswamy, Physica D 43, 118 (1990).

[31] V. Ravi Kumar, B.D. Kulkarni, and P.B. Deshpande, Proc. R. Soc. Lon-

don Ser. A 433, 711 (1991); J.K. Bandyopadhyay, V. Ravi Kumar, B.D.

Kulkarni, and P. Bhattacharya, Chem. Eng. Sci. 48, 3545 (1993).

[32] H.K. Qammer, F. Mossayebi, and L. Murphy, Phys. Lett. A 178, 279

(1993).

[33] D. Vassiliadis, Physica D 71, 319 (1994).

13



[34] U. Parlitz, Phys. Rev. Lett. 76, 1232 (1996); Int. J. Bifur. Chaos, 6, 581

(1996).

[35] E. Baake, M. Baake, H.G. Bock, and K.M. Briggs, Phys. Rev. A 45, 5524

(1992).

14



Figure 1:
Spatiotemporal chaos in CMLs for lattice size N = 100 (every 10th iteration is
plotted) : (a) Spatiotemporal dynamics of LCML for α = 1.9, ǫ = 0.4. Random
initial conditions were assumed at n = 0. (b) Spatiotemporal dynamics of
HCML for α = 1.4, β = 0.3, ǫ = 0.3. At n = 0 identical initial conditions
were assumed. A finite random perturbation given to the central five lattice
sites, at n = 100 results in the complex spatiotemporal behavior because of
coupling.

Figure 2:
Behavior of the sub-system invariants as a function of sub-system size ns for
LCML (solid line) and HCML (dashed line) : (a) Lyapunov dimension, d

(s)
L ;

(b) dimension density, ρ
(s)
d ; (c) entropy, h(s); (d) normalized entropy, ρ

(s)
h .

Parameters and lattice size identical to fig. 1.

Figure 3:
Stabilization of the spatiotemporally chaotic dynamics with noise reduction
for the LCML. The response system (α̂ = 1.9) was assumed to be driven by
noisy time-series signals, x′

1,n(k), from a sub-system (ns = 21) of the process
(α = 0.3). (a) Measurement noise, γηn(k) = x′

1,n(k)−x1,n(k), introduced in the
monitored sub-system process variables. (b) Space-time behavior of the error
signals, e1(i) = x̂1,n(i)− x1,n(i), i = 1, . . . , N . e1(i) is seen to fall to zero at all
the lattice sites indicating complete synchronization of the response dynamics
with the process. (c) Space-time plot of the adapter signals, ∆α̂ implemented;
stiffness coefficient for adaptation, µ = 0.01. Note that at n = 0, the adapter
∆α̂ = 0.0 which then eventually assumes an average value of −1.6 (the initial
difference between α and α̂). The adapter signals continuously filter the noise
shown in (a) to achieve the dynamical synchronization seen in (b).

Figure 4:
Controlling the spatiotemporally chaotic dynamics of a response system (α̂ =
1.4, β̂ = 0.3) to temporally 2-period state (α = 0.8, β = 0.3). The results
are shown for HCML. (a) Spatiotemporally chaotic dynamics of the response
system (α = 1.4, ǫ = 0.4). (b) Spatiotemporal dynamics of the response sys-
tem on driving it with sub-system time-series signals x′

1,n(k), k = 41, . . . , 60.
Self-adaptive mechanism was simultaneously implemented. (c) Oscillatory be-
havior with phase locking in the spatial domain exhibited by the response
system on driving it with time-series signals x1,n(j), j = 5, 10, . . . , 100. (d)
Space-time convergence of ∆α̂ to −0.6 for µ = 0.001.
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Figure 5:
On using scalar time-series signals, x1,n(k), from a sub-system of HCML ex-
hibiting chaotic dynamics (α = 1.4, β = 0.3) to drive the response system
(α̂ = 1.4, β̂ = 0.28) operating on a different chaotic attractor. (a) Till
n < 500, the error between the non-monitored process and response variables,
e2 = x2,n(i) − x̂2,n(i), i = 1, . . . , N , is shown without driving or adaptation.
Synchronization is obtained only within the sub-system. (b) Space-time be-
havior of the adapter signals converging to ∆β̂ = 0.02 (the initial difference
between β and β̂).

Figure 6:
Simultaneous estimation of both the parameters in HCML using only sub-
system time-series signals. The average parametric corrections, ∆α̂av and ∆β̂av

implemented over the entire spatial domain are shown. These values, respec-
tively, converge to −0.3 ± 0.01 and 0.02 ± 0.001 for µ1 = 1.0 and µ2 = −0.1.
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