What Is the Difference between a Parabola

and a Hyperbola?

1. Parabola and Hyperbola

The parabola is given by the equation

Y2 = X;
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we can parametrize it by

X=RandY = ¢.

Parabola
The hyperbola is given by
the equation
XY =1;
we can parametrize it by
X=tandY = H
- ran ot Hyperbola

Thus the parabola is a polynomial curve in the sense
that we can parametrize it by polynomial functions of
the parameter {. On the other hand, for the hyperbola
we need rational functions of ¢ that are not polyno-
mials; it can be shown that no polynomial parametri-
zation is possible. Thus the hyperbola is not a polyno-
mial curve, but it is a rational curve.

To find the reason behind this difference, let us note
that the highest degree term in the equation of the pa-
rabola is Y2, which has the only factor Y (repeated
twice), whereas the highest degree term in the equa-
tion of the hyperbola is XY which has the two factors
Xand Y.

* Supported by NSF and ONR grants.
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2. Circle and Ellipse

We can also note that the circle
is given by the equation

X2 +Y=1

we can parametrize it by

a
N

X=cosBand Y = sin 0.

t we

0
By substituting tan 3=

get the rational parametrization Circle
1 - ¢ 2t
=——and Y = ——n,
T+e 1+¢#
which is not a polynomial parametrization.
Similarly, the ellipse
is given by the equation
X2 + Y2
az bz \
Ellipse

and for it we can also obtain a rational parametrization
that is not a polynomial parametrization. I did not
start with the circle (or ellipse) because then the
highest degree terms X2 + Y? (respectively, (X%a?) +
(Y?/b?) do have two factors, but we need complex
numbers to find them.

3. Conics

In the above paragraph we have given the equations
of parabola, hyperbola, circle, and ellipse in their stan-
dard form. Given the general equation of a conic

aX? + 2hXY + bY? + 2fX + 29Y + ¢ = 0,

by a linear change of coordinates, we can bring it to
one of the above four standard forms, and then we
can tell whether the conic is a parabola, hyperbola, el-
lipse, or circle. Now, the nature of the factors of the
highest degree terms remains unchanged when we
make such a change of coordinates. Therefore we can
tell what kind of a conic we have, simply by factoring
the highest degree terms. Namely, if the highest de-
gree terms aX? + 2hXY + bY? have only one real
factor, then the conic is a parabola; if they have two
real factors, then it is a hyperbola; if they have two
complex factors, then it is an ellipse; and, finally, if

these two complex factors are the special factors X =
iY, then it is a circle. Here we are assuming that the
conic in question does not degenerate into one or two
lines.

4. Projective Plane

The geometric significance of the highest degree terms
is that they dominate when X and Y are large. In other
words, they give the behavior at infinity. To make this
more vivid we shall introduce certain fictitious points,
which are called the “points at infinity” on the given
curve and which correspond to factors of the highest
degree terms in the equation of the curve. These ficti-
tious points may be considered as “‘points” in the
“projective plane.” The concept of the projective plane
may be described in the following two ways.

A point in the affine (X, Y)-plane, i.e., in the ordinary
(X,Y)-plane, is given by a pair («,) where a is the X-
coordinate and B is the Y-coordinate. The idea of
points at infinity can be made clear by introducing ho-
mogeneous coordinates. In this setup, the old point («,8)
is represented by all triples (ko,kB,k) with k # 0, and
we call any such triple (ka,kB,k) homogeneous
(X,Y,Z)-coordinates of the point (a,f). This creates
room for “points” whose homogeneous Z-coordinate
is zero; we call these the points at infinity, and we call
their totality the line at infinity. This amounts to en-
larging the affine (X,Y)-plane to the projective (X,Y,Z)-
plane by adjoining the line at infinity.

More directly, the projective (X,Y,Z)-plane is ob-
tained by considering all triples (c,B,y), and identi-
fying proportional triples; in other words, (a,B,v) and
(a’,B',y') represent the same point if and only if
(o,B',v") = (ke kB,kvy) for some k # 0; here we exclude
the zero triple (0,0,0) from consideration. The line at
infinity is now given by Z = 0. To a point («,B,v) with
vy # 0, i.e., to a point not on the line at infinity, there
corresponds the point (a/y,B/y) in the affine plane. In
this correspondence, as <y tends to zero, a/y or B/y
tends to infinity; this explains why points whose ho-
mogeneous Z-coordinate is zero are called points at
infinity.

To find the points at infinity on the given conic, we
replace (X,Y) by (X/Z, Y/Z) and multiply throughout
by Z2 to get the homogeneous equation

aX? + 2hXY + bY? + 2fXZ + 2¢9YZ + ¢Z? = 0

of the projective conic. On the one hand, the points of
the original affine conic correspond to those points of
the projective conic for which Z # 0. On the other
hand, we put Z = 0 in the homogeneous equation and
for the remaining expression we write

aX? + 2hXY + bY? = (pX - gV)(p*X — q*Y)
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to get (4,p,0) and (9*,p*,0) as the points at infinity of
the conic that correspond to the factors (pX — qY) and
(P*X — q*Y) of the highest degree terms aX? + 2hXY
+ bY2

In the language of points at infinity, we may
rephrase the above observation by saying that if the
given conic has only one real point at infinity, then it
is a parabola; if it has two real points at infinity, then it
is a hyperbola; if it has two complex points at infinity,
then it is an ellipse; and, finally, if these two complex
points are the special points (1,,0) and (1, —1,0), then
it is a circle. At any rate, all the conics are rational
curves, and among them the parabola is the only poly-
nomial curve.

5. Polynomial Curves

The above information about parametrization suggests
the following result.

THEOREM. A rational curve is a polynomial curve if and
only if it has only one place at infinity.

Here place is a refinement of the idea of a point. At a
point there can be more than one place. To have only
one place at infinity means to have only one point at
infinity and to have only one place at that point. So
what are the places at a point? To explain this, and
having reviewed conics, let us briefly review cubics.

6. Cubics

The nodal cubic is given
by the equation

Y- X2 - X =0

It has a double point at the

origin because the

degree of the lowest degree

terms in its equation is two. More-
over, this double point at the origin
is a node, because at the origin the curve has the two
tangent lines

Nodal cubic

Y=XandY = —X

(we recall that the tangent
lines at the origin are given
by the factors of the lowest
degree terms). Likewise, the
cuspidal cubic is given by

the equation

Y2 - X3 =0.

It has a double point at the origin.

Moreover, this double point at the Cuspidal cubic
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origin is a cusp, because at the origin the curve has
the only tangent line

Y =20

A first approximation to places is provided by the
tangent lines. So the nodal cubic has two places at the
origin, whereas the cuspidal cubic has only one. More
precisely, the nodal cubic has two places at the origin
because, although its equation cannot be factored as a
polynomial, it does have two factors as a power series
in X and Y; namely, by solving the equation we get

Y2-X - X = (Y - X1+ XYY + X1+ X)1?),
and by the binomial theorem we have

+X2=1+ 12X + ...
N (1/2)[(172) - 1] . 2 [(1/2) —j + 1)

j!

X+ ... .

7. Places at the Origin

Thus the number of places at the origin is defined to
be equal to the number of distinct factors as power
series, and in general this number is greater than or
equal to the number of .
tangent lines. For ex-
ample, the tacnodal
quintic is given by

the equation

Y2 - X4 - X5 =0,

which we find by multi-
plying the two opposite pa- Tacnodal quintic
rabolas Y + X? = 0 and adding the extra term to make
it irreducible as a polynomial. The double point at the
origin is a tacnode because there is only one tangent
line Y = 0 but two power series factors

(Y — X2(1 + XY + XY(1 + X)'?).

So, more accurately, a cusp is a double point at
which there is only one place; at a cusp it is also re-
quired that the tangent line meet the curve with inter-
section multiplicity three; i.e., when we substitute the
equation of the tangent line into the equation of the
curve, the resulting equation should have zero as a
triple root. For example, by substituting the equation
of the tangent line Y = 0 into the equation of the cu-
spidal cubic Y2 ~ X3 = 0, we get the equation X3 = 0,
which has zero as a triple root.



8. Places at Other Points

To find the number of places at any finite point, trans-
late the coordinates to bring that point to the origin.

To find the number of places at a point at infinity,
homogenize and dehomogenize. For example, by homoge-
nizing the nodal cubic, i.e., by multiplying the various
terms by suitable powers of a new variable Z so that all
the terms acquire the same degree, we get

Y?Z - X*Z - X® = 0.

By putting Z = 0 we get X = 0; i.e., the line at infinity Z
= 0 meets the nodal cubic only in the point P for
which X = 0. By a suitable dehomogenization, i.e., by
putting Y = 1, we get

Z-X27Z-X=0.

Now, P is at the origin in the (X,Z)-plane; the left-
hand side of the above equation is analytically irreduc-
ible; i.e., it does not factor as a power series. Thus the
nodal cubic has only one place at P.

Consequently, in view of the above theorem, the
nodal cubic may be expected to be a polynomial curve.
To get an actual polynomial parametrization, substi-
tute Y = tX in the equation Y2 — X?> — X® = 0 to get

£PX2 - X2 -X=0

cancel the factor X2 to obtain X = # — 1 and then
substitute this into Y = tXtogetY = 3 — t. Thus

X=R—-landY =8 -1t

is the desired polynomial parametrization.

As a second example, recall that the nodal cubic Y2
— X2 — X3 = 0 has two places at the origin, and the
tangent line T given by Y = X meets this cubic only at
the origin. Therefore “by sending T to infinity” we
would get a new cubic having only one point but two
places at infinity; so it must be a rational curve that is
not a polynomial curve. To find the equation of the
new cubic, make the rotation X' = X — Yand Y’ = X
+ Ytoget —X'Y' — (118)(X' + Y')® = 0 as the equa-
tion of the nodal cubic and X' = 0 as the equation of
T. By homogenizing and multiplying by —8 we get
8X'Y'Z' + (X' + Y')® = 0 as the homogeneous equa-
tion of the nodal cubic and X' = 0 as the equation of
T. Labeling (Y',Z',X') as (X,Y,Z), we get 8ZXY +
(Z + X)® = 0 as the homogeneous equation of the new
cubic and T becomes the line at infinity Z = 0. Finally,
by putting Z = 1, we see that the new cubic is given
by the equation

8XY + (1 + X = 0.

By plotting the curve we see that one place at the point

at infinity X = Z = 0 corresponds to the parabola-like
structure indicated by the two single arrows, whereas
the second place at that point corresponds to the hy-
perbola-like structure indicated by the two double
arrows. Moreover, Z = 0 is the tangent to the pa-
rabola-like place, whereas X = 0 is the tangent to the
hyperbola-like place.
So this new cubic may
be called the para-hypal
cubic. To get a rational
parametrization for it,
we may simply take
the vertical projection.
In other words, by
substituting X = tin
the above equation, we
getY = —(1 + %8t
Thus

-1+t
8t

Para-h i
X=tandY = ara-hypal cubic

is the desired rational parametrization; it cannot be a
polynomial parametrization.

9. Desire for a Criterion

In view of the above theorem, it would be nice to have
an algorithmic criterion for a given curve to have only
one place at infinity or at a given point. Recently in [7]
I have worked out such a criterion. See [2] to [6] for
general information and [7] for details of proof; here I
shall explain the matter descriptively. As a first step let
us recall some basic facts about resultants.

10. Vanishing Subjects

In the above discussion I have often said “reviewing
this” and ‘“recalling that.” Unfortunately, reviewing
and recalling may not apply to the younger genera-
tion. Until about 30 years ago, people learned in high
school and college the two subjects called ““theory of
equations” and “analytic geometry.” Then these two
subjects gradually vanished from the syllabus. “Ana-
lytic geometry” first became a chapter, then a para-
graph, and finally only a footnote in books on cal-
culus.

“Theory of equations” and “‘analytic geometry”
were synthesized into a subject called “algebraic ge-
ometry.” Better still, they were collectively called “al-
gebraic geometry.” Then “algebraic geometry” be-
came more and more abstract until it was difficult to
comprehend. Thus classical algebraic geometry was
forgotten by the student of mathematics.

Engineers are now resurrecting classical algebraic
geometry, which has applications in computer-aided
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design, geometric modeling, and robotics. Engineers
have healthy attitudes; they want to solve equations
concretely and algorithmically, an attitude not far from
that of classical, or high-school, algebra. So let us join
hands with engineers.

11. Victim

7

Vis-a-vis the ““theory of equations,” one principal
victim of this vanishing act was the resultant. At any
rate, the Y-resultant Res(F,G) of two polynomials
+ ay and
+ by

F = agYN + g, YN-1 + . .
G = bYM + pYM-1 + | .

is the determinant of the N + M by N + M matrix

Aoy « v v v e e san0, oo 0
0, a9, . -« ... ... N 0
bo,bl, ......... ’ bM,O, ............ O
0, by -« oo o0, 0

with M rows of the a’s followed by N rows of the b's.
This concept was introduced by Sylvester in his 1840
paper [10]. It can be shown that if 2, # 0 # b, and

M
o)and G = by [] (Y — By,

k=1

N
F=aol—[(Y_
j=1

then

Resy(F,G) = a} [ ] G(oy) = (=1)MBY [ F(By)
j 3

al'of H (o = By)-
ik

In particular, F and G have a common root if and only
if Resy(F,G) = 0.

12. Approximate Roots

Henceforth let us consider an algebraic plane curve C
defined by the equation

FX,Y) = 0,

where F(X,Y) is a monic polynomial in Y with coeffi-
cients that are polynomials in X, i.e.,
F=FXY)=YN 4+ a,(X)YN-1 + ... + ap(X),

40 THE MATHEMATICAL INTELLIGENCER VOL. 10, NO. 4, 1988

where a,(X), . .., ay(X) are polynomials in X. We
want to describe a criterion for C to have only one
place at infinity. As a step toward this, given any posi-
tive integer D such that N is divisible by D, we would
like to find the Dth root of F. We may not always be
able to do this, because we wish to stay within polyno-
mials. So we do the best we can. Namely, we try to
find

G = G(X,Y) = YND + p(X)YWND)-1 1 |
+ buip(X),

where b(X), . . ., byp(X) are polynomials in X, such
that GP is as close to F as possible. More precisely, we
try to minimize the Y-degree of F — GP. It turns out
that if we require

deg,(F — GP) < N — (N/D),

then G exists in a unique manner; we call this G the
approximate Dth root of F and we denote it by app(D, F).
In a moment, by generalizing the usual decimal ex-
pansion, we shall give an algorithm for finding
app(D,F). So let us revert from high-school algebra to
grade-school arithmetic and discuss decimal expan-
sion.

13. Decimal Expansion

We use decimal expansion to represent integers
without thinking. For example, in decimal expansion

423 = (4 times 100) + (2 times 10) + 3.

We can also use binary expansion, or expansion to the
base 12, and so on. Quite generally, given any integer
P >1, every nonnegative integer A has a unique P-adic
expansion, i.e., A can uniquely be expressed as

A = ZA;P/ with nonnegative integers A; < P,

where the summation is over a finite set of non-
negative integers j. We can also change bases contin-
uously. Namely, given any finite sequence n =
(n,1y,. . . ,1y,4q) of positive integers such that n, = 1
and n; ., is divisible by n, for 1 < j < k, every nonnega-
tive integer A has a unique n-adic expansion; i.e., A can
uniquely be expressed as

A= en;,
j=1

wheree = (e, . . ., €,,) is a sequence of nonnegative
integers such that e; < n;,/n;for1 <j <h.

In analogy with P-adic expansions of integers, given
any



G=GXY) =Y+ h(X)YM-1 + . .. + by(X),
where b(X), . . ., by(X) are polynomials in X, every
polynomial H = H(X,Y) in X and Y has a unique G-
adic expansion

H = SHG),

where the summation is over a finite set of nonnega-
tive integers j and where H; is a polynomial in X and Y
whose Y-degree is less than M. In particular, if N/'M
equals a positive integer D, then as G-adic expansion
of F we have
F=GP+ BGP1+ ...+ Bp,

where By, . . ., Bp are polynomials in X and Y whose
Y-degree is less than N/D. Now clearly,

degy(F — GP) < N — (N/D) if and only if B; = 0.

In general, in analogy with Shreedharacharya’s
method of solving quadratic equations by completing
the square, for which reference may be made to [8]
“(and assuming that in our situation 1/D makes sense),
we may “‘complete the Dth power” by putting G’ = G
+ (By/D) and by considering the G'-adic expansion
F=GP+B,GP1+ ...+ Bp,
where By, ..., B'p are polynomials in X and Y
whose Y-degree is less than N/D. We can easily see
that if B; # 0 then degyB’; < degyB,. It follows that by
starting with any G and repeating this procedure D
times we get the approximate Dth root of F.

Again, in analogy with n-adic expansion, given any
sequence § = (g1, - . ., §x+1), where g; is a monic
polynomial of degree n; in Y with coefficients that are
polynomials in X, every polynomial H in X and Y has
a unique g-adic expansion

h+1
H = ZH, [] g% where H, is a polynomial in X
j=1

and where the summation is over all sequences of
nonnegative integers e = (e;, . . . , €,,1) such thate; <
nig/nforl<js<nh.

14. Places at Infinity

As the next step toward the criterion, we associate
several sequences with F as follows. The case when Y
divides F being trivial, we assume the contrary. Now
let

dy =10=N, g =Y, rn = degxResy(F )

and

[ d, = GCD(ro,1)), g, = app(dy,F),
r, = degxResy(F,g,)

and

[ dy = GCD(ro,7,15), 85 = app(ds,F),
r3 = degxResy(F,g3)

and so on, where we agree to put
degxResy(F,g) = —x if Resy(F,g;) = 0

and

ifrg, 14,0 - ., r; are integers and j < iand

Tiv1 = Tj42 =

I: GCD(ro,rl, “ ey ri) = GCD(TO,T‘I, e ey r])
.= ri = —00,

Since d, = dy = dy = . . . are positive integers, there
exists a unique positive integer k such that d, > d; >

. > dy,, = dy,n. Thus we have defined the two
sequences of integers r = (ro,7y, ..., 1,) and d =
(d1,dy, . .., dy,1) and a third sequence g =
(81/82 - - - + 8w +1), where g; is a monic polynomial of
degree n; = dy/d; in Y with coefficients that are polyno-
mials in X. Now, for the curve C defined by F(X,Y) =
0, we are ready to state the criterion.

CRITERION for having only one place at infinity. C
has only one place at infinity if and only if d, ., = 1 and
rdy > 1d, > o > ndy and g is degreewise straight
relative to (1,8,8;) for 1 < j < h (in the sense we shall define
in a moment).

To spell out the definition of degreewise straight-
ness, for every polynomial H in X and Y we consider
the g-adic expansion

h+1
H = 2H, [] g where H, is a polynomial in X
j=1

and where the summation is over all sequences of

nonnegative integerse = (ey, . . ., €,,1) such thate; <
ni,1/n; for 1 < j < h. We define

h
fing(r,g, H) = max(z e]-rj) with e; = degyH,,
j=0

where the max is taken over all e for which H, # 0 =
e, +1; here fing is supposed to be an abbreviation of the
phrase “degreewise formal intersection multiplicity,”
which in turn is meant to suggest some sort of analogy
with intersection multiplicity of plane curves.

For 1 < j < hletu(j) = n;,,/n; and consider the g
adic expansion

U
giv1 = 810 + X &gk
k=1
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where g; is a polynomial in X and Y whose Y-degree is
less than n;. We say that g;, is degreewise straight rela-
tive to (r,8,8;) if

(u(G)k)fing(r.g.85) < fing(r,8.8uy) = u(fing(r.g.8)]

for 1 < k < u(j); the adjective straight is meant to sug-
gest that we are considering some kind of generaliza-
tion of Newton Polygon (for Newton Polygon, see [9],
Part II, pp. 382-397, where it is called Newton Paral-
lelogram).

15. Places at a Given Point

To discuss places of the curve C defined by F(X,Y) = 0
at a given finite point, we may suppose that the point
has been brought to the origin by a translation and
rotation of coordinates and that neither X nor Y di-
vides F. By the Weierstrass Preparation Theorem (see
[1], p. 74), we can write

EX,Y) = 3(X,NF(X)Y),

where 3(X,Y) is a power series in X and Y with §(0,0)
# 0 and F* is a distinguished polynomial; i.e.,

+ @'\ (X)

and aj(X), . . . , a*\»(X) are power series in X that are
zero at zero. By ordy of a power series in X we mean
the degree of the lowest degree term present in that
power series. We also note that in the present situa-
tion, the approximate roots of F* are monic polyno-
mials in Y whose coefficients are power series in X.
Now let

Ff = FXY) = Y™ + ai(X)OYN-1 + ...

dy =15 = N* g =Y, r, = ordyRes(F*,g;)
and

dy = GCD(ry,11), §2 = app(dy,FY),
r, = ordyResy(F*,g,)

and

dy = GCD(ro,71,7), &5 = app(ds,F*),
r3 = ordXReSy(F*/g3)

and so on, where we agree to put

ordyRes,(F*,g;) = « if Resy(F*,g;) = 0

and
GCD(ro,rl, v ey r,-) = GCD(?‘O,I’I, e e vy ])
ifrory, ..., r; are integers and j < iand
Tiv1 = Tje2 = SELR =%

Since d, = d; = d, = . . . are positive integers, there
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exists a unique positive integer k such that d, > d; >

. > dyyq = dy,,. Thus we have defined the two
sequences of integers r = (ry,ry, ..., 1) and d =
(dy,dy, . . ., dypyq) and a third sequence g =
(81 82/ - - -, 8n+1), where g; is a monic polynomial of
degree n; = dy/d; in Y with coefficients that are power
series in X. For the curve C defined by F(X,Y) = 0, we
are ready to state the main result of this section.

CRITERION for having only one place at the or-
igin. C has only one place at the origin if and only if d,, ,
= 1and ridy < rgd, < ... <rgd,and g, is straight
relative to (r,8,8;) for 1 < j < h (in the sense which we shall
define in a moment).

To spell out the definition of straightness, first note
that in the present situation, the coefficients of a g-adic
expansion are power series in X. Now for every poly-
nomial H in Y with coefficients that are power series in
X, we consider the g-adic expansion

K1
H = ZH, [] g%, where H, is a power series in X
j=1

and where the summation is over all sequences of
nonnegative integerse = (e, . . . , ,4¢) such that ¢; <
n;,q/n; for 1 < j < h. We define

"
fint(r,g,H) = min(E e}-r,-> with e, = ordyH,,
j=0

where the min is taken over all e for which H, # 0 =
en+1 here fint is supposed to be an abbreviation of the
phrase “formal intersection multiplicity,” which in
turn is meant to suggest some sort of analogy with in-
tersection multiplicity of plane curves.

For 1 < j < hlet u(j) = n,;,4/n; and consider the g
adic expansion

u()
Si+1 = gD + D gugtdk,
k=1
where we note that in the present situation, the coeffi-
cients g; are polynomials of degree less than n; in Y
whose coefficients are power series in X. We say that

8j+1 18 straight relative to (r,g,g;) if

(uG)ofint(r,g,8z) = fint(r,8,8.q) = u(lfint(r,g,8))
for 1 < k < u(j); again, the adjective straight is meant to

suggest that we are considering some kind of general-
ization of Newton Polygon.

16. Problem

Generalize the above criterion by finding a finitistic al-
gorithm to count the number of places at infinity or at
a given point.



17. Example

To illustrate the criterion for having only one place at

the origin, let us take
F=FXY)=(-X@+ XY - X,
where p is a positive integer to be chosen. Now
F*=Fandd, =ry=N*=N=4andg, =Y
and hence

Resy(F,g;) = F(X,0) = X6 — X7 and
r, = ordyResy(F,g;) = 6.

Therefore,
d, = GCD(rg,1,) = GCD(4,6) = 2

and hence

g = appdy,F) = Y2 — X3 = (Y — X*?)(Y + X3?).

Consequently,

F(X,X3)F(X, — X%2)
(XP+O2) — X7)(—XpP+ED) — X7)
— X243 4 Xl

Resy(F,g,)

and hence

14 ifp>5
r2 —t ordXRESy(F,gZ) = l: 2p + 3 if;’; $ 5

Therefore,

_| 2ifp>5 _| tifp>5
d3‘[1ifps5"‘“dh‘[2ifp<5

and

4o | 24<26=0p+ 3, = rdyifp =5
T 24222 2p + 3)d, = rd, if p<5.

Now, if p = 5, then
gun=0and g, =0
and
212 = X3 and fint(r,g,X3) = 3ry = 12 = 2n
and

g2 = X°Y — X7 and
ﬁnt(r,g,XSY - X7) = 5r0 + 7‘1 = 26 = 27‘2

and hence g, is straight relative to (r,g,g) for 1 < j <

2

Thus we see thatif p > 5, then h = 1and d,,, = 2,
whereas if p <5, thenh = 2and d,,; = 1 and r,d, >
rody; finally, if p = 5, thenh = 2and d,,; = 1and rd,
< rd, and g; ., is straight relative to (r,g,¢;) for 1 <j <
2. Therefore, by the criterion we conclude that C has
only one place at the origin if and only if p = 5.

Re

ferences

1.
2.

S. S. Abhyankar, Local Analytic Geometry, New York: Ac-
ademic Press (1965).

A Glimpse of Algebraic Geometry, Lokamanya
Tilak Memorial Lectures, University of Poona, Pune, India
(1969).

Singularities of algebraic curves, Analytic Methods
in Mathematical Physics, Conference Proceedings (Gordon
and Breach, eds.) (1970), 3-14.

Historical ramblings in algebraic geometry and
related algebra, American Mathematical Monthly 83 (1976),
409-440.

On the semigroup of a meromorphic curve (Part
1), Proceedings of the (Kyoto) International Symposium on Al-
gebraic Geometry, Tokyo: Kinokuniya Book-Store (1977),
249-414.

Generalizations of ancient Indian mathematics
and applications (in Hindi), Second Anniversary Souvenir
of Bhaskaracharya Pratishthana, Pune, India (1978), 3-13.
Irreducibility criterion for germs of analytic func-
tions of two complex variables, forthcoming in Advances
in Mathematics.

. Bhaskaracharya: Beejganita (algebra) (in Sanskrit), India,

1150.

. G. Chrystal, Algebra, Parts I and II, Edinburgh (1886).
. ]. ]. Sylvester, On a general method of determining by

mere inspection the derivations from two equations of
any degree, Philosophical Magazine 16 (1840), 132-135.

Mathematics Department
Purdue University
West Lafayette, IN 47907 USA

and

Mathematics Department

Poo

na University

Pune 411007 India
Bhaskaracharya Pratishthana, Pune 411004 India

Mathematics is the science that yields the best
opportunity to observe the working of the mind

. and has the advantage that by cultivating it,
we may acquire the habit of a method of rea-
soning which can be applied afterwards to the
study of any subject and can guide us in the pur-
suit of life’s object.
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