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1. Parabola and Hyperbola 

The parabola is given by the equation 

Y 2 = X ;  we can parametrize it by 

X = t 2 a n d Y  = t. 

f 

Parabola 

The hyperbola is given by 
the equation 

X Y  = 1; 

we xCan= parametrizet and y = _lit. by 

t Hyperbola 

Thus the parabola is a polynomial curve in the sense 
that we can parametrize it by polynomial functions of 
the parameter t. On the other hand, for the hyperbola 
we need rational functions of t that are not polyno- 
mials; it can be shown that no polynomial parametri- 
zation is possible. Thus the hyperbola is not a polyno- 
mial curve, but it is a rational curve. 

To find the reason behind this difference, let us note 
that the highest degree term in the equation of the pa- 
rabola is y2, which has the only factor Y (repeated 
twice), whereas the highest degree term in the equa- 
tion of the hyperbola is X Y  which has the two factors 
X and Y. 
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2. Circ le  and  E l l i p s e  

We can also note that the circle 
is given by the equation 

these two complex factors are the special factors X _+ 
iY, then it is a circle. Here we are assuming that the 
conic in question does not degenerate into one or two 
lines. 

X 2 +  Y2 = 1; 

we can parametrize it by 

X = c o s 0 a n d Y  = sin0. 

0 
By substituting tan ~ = t we 

get the rational parametrization Circle 

1 - t 2 2t 
X - and Y - 

l + t  2 l + t  2 '  

which is not a polynomial parametrization. 
Similarly, the ellipse 
is given by the equation 

X 2 y2 
a2 + ~  1 

Ellipse 

and for it we can also obtain a rational parametrization 
that is not a polynomial parametrization. I did not 
start with the circle (or ellipse) because then the 
highest degree terms X 2 + y2 (respectively, (X2/a 2) + 
(y2/b2)) do have two factors, but  we need complex 
numbers to find them. 

3. C o n i c s  

In the above paragraph we have given the equations 
of parabola, hyperbola, circle, and ellipse in their stan- 
dard form. Given the general equation of a conic 

aX 2 + 2hXY + bY 2 + 2fX + 2gY + c = 0, 

by a linear change of coordinates, we can bring it to 
one of the above four standard forms, and then we 
can tell whether the conic is a parabola, hyperbola, el- 
lipse, or circle. Now, the nature of the factors of the 
highest degree terms remains unchanged when we 
make such a change of coordinates. Therefore we can 
tell what  kind of a conic we have, simply by factoring 
the highest degree terms. Namely, if the highest de- 
gree terms aX 2 + 2hXY + bY 2 have only one real 
factor, then the conic is a parabola; if they have two 
real factors, then it is a hyperbola; if they have two 
complex factors, then it is an ellipse; and, finally, if 

4. Pro jec t ive  P lane  

The geometric significance of the highest degree terms 
is that they dominate when X and Y are large. In other 
words, they give the behavior at infinity. To make this 
more vivid we shall introduce certain fictitious points, 
which are called the "points at infinity" on the given 
curve and which correspond to factors of the highest 
degree terms in the equation of the curve. These ficti- 
tious points may be considered as "points" in the 
"projective plane." The concept of the projective plane 
may be described in the following two ways. 

A point in the affine (X,Y)-ptane, i.e., in the ordinary 
(X,Y)-plane, is given by a pair (~,~) where c~ is the X- 
coordinate and [3 is the Y-coordinate. The idea of 
points at infinity can be made clear by introducing ho- 
mogeneous coordinates. In this setup, the old point (o~,~) 
is represented by all triples (koL,k~,k) with k # 0, and 
we call any  such tr iple (koL,k~,k) h o m o g e n e o u s  
(X,Y,Z)-coordinates of the point (oL,f~). This creates 
room for "points" whose homogeneous Z-coordinate 
is zero; we call these the points at infinity, and we call 
their totality the line at infinity. This amounts to en- 
larging the affine (X,Y)-plane to the projective (X,Y,Z)- 
plane by adjoining the line at infinity. 

More directly, the projective (X,Y,Z)-plane is ob- 
tained by considering all triples (a,~,~/), and identi- 
fying proportional triples; in other words, (a,~,~/) and 
(od,~',~/') represent  the same point  if and only if 
(el',f3',~') = (kc~,k~,k~/) for some k ~ 0; here we exclude 
the zero triple (0,0,0) from consideration. The line at 
infinity is now given by Z = 0. To a point (oL,~,~/) with 

# 0, i.e., to a point not on the line at infinity, there 
corresponds the point (od~,~/~/) in the affine plane. In 
this correspondence,  as ~/ tends to zero, od~/ or [3/"/ 
tends to infinity; this explains why  points whose ho- 
mogeneous Z-coordinate is zero are called points at 
infinity. 

To find the points at infinity on the given conic, we 
replace (X,Y) by (X/Z, Y/Z) and multiply throughout 
by Z 2 to get the homogeneous equation 

aX 2 + 2hXY + bY 2 + 2fXZ + 2gYZ + cZ 2 = 0 

of the projective conic. On the one hand, the points of 
the original affine conic correspond to those points of 
the projective conic for which Z # 0. On the other 
hand, we put  Z = 0 in the homogeneous equation and 
for the remaining expression we write 

aX 2 + 2hXY + bY 2 = (pX - qY)(p*X - q'Y) 
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to get (q,p,0) and (q*,p*,O) as the points at infinity of 
the conic that correspond to the factors (pX - qY) and 
(p*X - q'Y) of the highest degree terms aX 2 + 2hXY 
+ bY 2. 

In the l anguage  of points  at infinity,  we may 
rephrase the above observation by saying that if the 
given conic has only one real point at infinity, then it 
is a parabola; if it has two real points at infinity, then it 
is a hyperbola; if it has two complex points at infinity, 
then it is an ellipse; and, finally, if these two complex 
points are the special points (1,i,0) and (1 , -  i,0), then 
it is a circle. At any rate, all the conics are rational 
curves, and among them the parabola is the only poly- 
nomial curve. 

5. Po lynomia l  Curves 

The above information about parametrization suggests 
the following result. 

THEOREM. A rational curve is a polynomial curve if and 
only if it has only one place at infinity. 

Here place is a refinement of the idea of a point. At a 
point there can be more than one place. To have only 
one place at infinity means to have only one point at 
infinity and to have only one place at that point. So 
what  are the places at a point? To explain this, and 
having reviewed conics, let us briefly review cubics. 

6. Cubics 

The nodal cubic is given 
by the equation 

y 2 - -  X 2 -  X3 = 0. 

It has a double point at the 
origin because the 
degree of the lowest degree 
terms in its equation is two. cubic 
over, this double point at the origin 
is a node, because at the origin the curve has the two 
tangent lines 

Y = X a n d Y  = - X  

(we recall that the tangent 
lines at the origin are given 
by the factors of the lowest 
degree terms). Likewise, the 
cuspidal cubic is given by 
the equation 

y 2 -  X3 = 0. 

It has a double point at the origin. 
Moreover, this double point at the Cuspidal cubic 

origin is a cusp, because at the origin the curve has 
the only tangent line 

Y = 0 .  

A first approximation to places is provided by the 
tangent lines. So the nodal cubic has two places at the 
origin, whereas the cuspidal cubic has only one. More 
precisely, the nodal cubic has two places at the origin 
because, although its equation cannot be factored as a 
polynomial, it does have two factors as a power series 
in X and Y; namely, by solving the equation we get 

y2 _ x 2 _ X 3 = ( y  _ x ( 1  + X)I/2)(Y + X(1 + X)V2), 

and by the binomial theorem we have 

(1 + X) 1/2 = 1 + (1/2)X + . . .  

+ (1/2)[(1/2) - 1 ] . . .  [(1/2) - j + 1)] XJ + . . . .  
j! 

7. Places at the Origin 

Thus the number of places at the origin is defined to 
be equal to the number of distinct factors as power 
series, and in general this number is greater than or 
equal to the number of 
tangent lines. For ex- 
ample, the tacnodal 
quintic is given by 
the equation 

y2 - X 4 -  X5 = 0, 

which we find by multi- 
plying the two opposite pa- 

y \  
/ �9 

eo ~ 

j 
O O O  @ I O 

"x 
Q ~  

Tacnodal quintic 
rabolas Y + X 2 = 0 and adding the extra term to make 
it irreducible as a polynomial. The double point at the 
origin is a tacnode because there is only one tangent 
line Y = 0 but two power series factors 

(Y - X2(1 + X)I/2)(Y + X2(1 + X)V2). 

So, more accurately, a cusp is a double point at 
which there is only one place; at a cusp it is also re- 
quired that the tangent line meet the curve with inter- 
section multiplicity three; i.e., when we substitute the 
equation of the tangent line into the equation of the 
curve, the resulting equation should have zero as a 
triple root. For example, by substituting the equation 
of the tangent line Y = 0 into the equation of the cu- 
spidal cubic y2 _ X 3 = 0, we get the equation X 3 = 0, 
which has zero as a triple root. 

3 8  THE MATHEMATICAL INTELLIGENCER VOL. 10, NO. 4, 1988 



8. Places  at Other  Po int s  

To find the number  of places at any finite point, trans- 
late the coordinates to bring that point to the origin. 

To find the number  of places at a point  at infinity, 
homogenize and dehomogenize. For example, by homoge- 
nizing the nodal  cubic, i.e., by mult iplying the various 
terms by suitable powers  of a new variable Z so that all 
the terms acquire the same degree, we get 

Y 2 Z -  X 2 Z -  X 3 =  0. 

By putt ing Z = 0 we get X = 0; i.e., the line at infinity Z 
= 0 meets  the nodal  cubic only in the point  P for 
which X = 0. By a suitable dehomogenizat ion,  i.e., by 
put t ing Y = 1, we get 

Z -  X 2 Z -  X3 = 0. 

Now,  P is at the  origin in the (X,Z)-plane; the Ieft- 
hand  side of the above equation is analytically irreduc- 
ible; i.e., it does not  factor as a power series. Thus the 
nodal  cubic has only one place at P. 

Consequently,  in view of the above theorem, the 
nodal  cubic may  be expected to be a polynomial  curve. 
To get an actual polynomial  parametrizafion, substi- 
tute Y = t X i n  the equation y2 _ X 2 _ X 3 = 0 to get 

t2X 2 - X  2 - X  3 =  0; 

cancel the factor X 2 to obtain X = t 2 - 1 and  then 
substitute this into Y = tX to get Y = t 3 - t. Thus 

X = t 2 - 1 and Y = t 3 - t 

is the desired polynomial  parametrization. 
As a second example, recall that the nodal  cubic y2 

- X 2 - X 3 = 0 has two places at the origin, and the 
tangent  line T given by Y = X meets this cubic only at 
the origin. Therefore "by  sending T to infinity" we 
would  get a new cubic having only one point  but  two 
places at infinity; so it mus t  be a rational curve that is 
not  a polynomial  curve. To find the equation of the 
new cubic, make the rotation X' = X - Y and Y' = X 
+ Y to get - X ' Y '  - (1/8)(X' + y,)3 = 0 as the equa- 
tion of the nodal  cubic and X' = 0 as the equation of 
T. By homogeniz ing and  mult iplying by - 8  we get 
8X'Y 'Z '  + (X' + y,)3 = 0 as the homogeneous  equa- 
tion of the nodal  cubic and  X' = 0 as the equation of 
T. Labeling (Y ' ,Z ' ,X ' )  as (X,Y,Z),  we get 8ZXY + 
(Z + X) 3 = 0 as the homogeneous  equation of the new 
cubic and  T becomes the line at infinity Z = 0. Finally, 
by put t ing Z = 1, we see that the new cubic is given 
by the equation 

8XY + (1 + X) 3 = 0. 

By plotting the curve we see that one place at the point 

at infinity X = Z = 0 corresponds to the parabola-like 
structure indicated by the two single arrows, whereas 
the second place at that point corresponds to the hy- 
perbola-like structure indicated by the two double  
arrows.  Moreover ,  Z = 0 is the t angent  to the pa- 
rabola-like place, whereas X = 0 is the tangent  to the 
hyperbola-like place. 
So this new cubic may  
be called the para-hypal 
cubic. To get a rational 
parametrizat ion for it, 
we may  simply take 
the vertical projection. 
In other words,  by 
substi tut ing X = t in 
the above equation, we 
get Y = - ( 1  + t)3/8t. 
Thus 

X = t and Y - 
- (1 + t) 3 Para-hypal cubic 

8t 

is the desired rational parametrization; it cannot be a 
polynomial  parametrization. 

9. Des i re  for a Criterion 

In view of the above theorem, it would  be nice to have 
an algorithmic criterion for a given curve to have only 
one place at infinity or at a given point. Recently in [7] 
I have worked  out  such a criterion. See [2] to [6] for 
general information and  [7] for details of proof; here I 
shall explain the matter descriptively. As a first step let 
us recall some basic facts about resultants. 

10. V a n i s h i n g  Subjects  

In the above discussion I have often said "'reviewing 
this" and  "recalling that ."  Unfortunately,  reviewing 
and  recalling may  not  apply to the younger  genera- 
tion. Until about 30 years ago, people learned in high 
school and  college the two subjects called " theory  of 
equat ions"  and  "analytic geomet ry ."  Then these two 
subjects gradually vanished from the syllabus. "Ana-  
lytic geomet ry"  first became a chapter, then a para- 
graph,  and  finally only a footnote  in books on cal- 
culus. 

" T h e o r y  of e q u a t i o n s "  and  "ana ly t i c  g e o m e t r y "  
were synthesized into a subject called "algebraic ge- 
omet ry . "  Better still, they were collectively called "al- 
gebraic geome t ry . "  Then "algebraic geomet ry"  be- 
came more and  more abstract until  it was difficult to 
comprehend.  Thus classical algebraic geometry was 
forgotten by the s tudent  of mathematics.  

Engineers are now resurrecting classical algebraic 
geometry,  which has applications in computer-aided 
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design, geometric modeling, and robotics. Engineers 
have healthy attitudes; they want to solve equations 
concretely and algorithmically, an attitude not far from 
that of classical, or high-school, algebra. So let us join 
hands with engineers. 

11. Victim 

Vis-a-vis the " theory  of equat ions ,"  one principal 
victim of this vanishing act was the resultant. At any 
rate, the Y-resultant Resy(F,G) of two polynomials 

F = ao YN + a lY  N- I  + . . .  + a N 
G = bo YM + blY M-1 + . . .  + b M 

and 

is the determinant of the N + M by N + M matrix 

a0,al, . . . . . . . . .  , aN, O, . . . . . . . . . . . .  0 
O, a o . . . . . . . . . . . . . .  aN, O . . . . . . . . .  0 

bo, bl . . . . . . . . . .  , bM, O . . . . . . . . . . . . .  0 
0, b 0 . . . . . . . . . . . . . .  bM,0 . . . . . . . . . .  0 

with M rows of the a's followed by N rows of the b's. 
This concept was introduced by Sylvester in his 1840 
paper [10]. It can be shown that if a 0 # 0 # b 0 and 

N M 

F = a o [ I  ( Y -  ~j) a n d G  = bo 1-I ( Y -  ~k), 
j= l  k = l  

then 

Resy(F,G) = ao M I~ G(oq) = (-1)NMb~0 1-I F(f3k) 
j k 

j,k 

where al(X)  . . . . .  aN(X ) are polynomials in X. We 
want  to describe a criterion for C to have only one 
place at infinity. As a step toward this, given any posi- 
tive integer D such that N is divisible by D, we would 
like to find the Dth root of F. We may not always be 
able to do this, because we wish to stay within polyno- 
mials. So we do the best we can. Namely, we try to 
find 

G = G ( X , Y )  = yN/D + b l ( X ) y ( N / D ) - I  + . . .  

+ bN/D(X), 

where bl(X ) . . . . .  bN/D(X) are polynomials in X, such 
that G D is as close to F as possible. More precisely, we 
try to minimize the Y-degree of F - G D. It turns out 
that if we require 

degy(F - G D) < N - (N/D), 

then G exists in a unique manner; we call this G the 
approximate Dth root of F and we denote it by app(D,F). 
In a moment,  by generalizing the usual decimal ex- 
pans ion,  we shall give an algori thm for f inding 
app(D,F). So let us revert from high-school algebra to 
grade-school arithmetic and discuss decimal expan- 
sion. 

13. Decimal  Expansion 

We use decimal expansion to represent  integers 
without thinking. For example, in decimal expansion 

423 = (4 times 100) + (2 times 10) + 3. 

We can also use binary expansion, or expansion to the 
base 12, and so on. Quite generally, given any integer 
P > 1, every nonnegative integer A has a unique P-adic 
expansion, i.e., A can uniquely be expressed as 

A = Y, AjPJ with nonnegative integers Aj < P, 

In particular, F and G have a common root if and only 
if Resy(F,G) = O. 

12. Approximate Roots 

Henceforth let us consider an algebraic plane curve C 
defined by the equation 

F(x,Y) = 0, 

where F(X,Y)  is a monic polynomial in Y with coeffi- 
cients that are polynomials in X, i.e., 

F = F(X,Y)  = yN + ax(X)yN-1 + . . .  + aN(X), 

where the summat ion  is over a finite set of non- 
negative integers j. We can also change bases contin- 
uously .  Namely ,  given any  finite sequence n = 
(nl,n2 . . . . .  nh+l) of positive integers such that n 1 = 1 
and nj+ 1 is divisible by nj for I ~ j ~ h, every nonnega- 
tive integer A has a unique n-adic expansion; i.e., A can 
uniquely be expressed as 

h + l  

A = E ejnj, 
j= l  

where e = (e 1 . . . . .  eh+ 1) is a sequence of nonnegative 
integers such that ej < nj+Jnj  for 1 ~ j ~ h. 

In analogy with P-adic expansions of integers, given 
any 
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G = G ( X , Y )  = yM + b l ( X ) y M - 1  + . . .  + bM(X), 

where  bl(X ) . . . . .  bM(X ) are polynomials  in X, every  
polynomial  H = H ( X , Y )  in X and Y has a unique G- 
adic expansion 

H =  HjGJ, 

where  the summat ion  is over a finite set of nonnega-  
five integers j and  where  Hj is a polynomial  in X and Y 
whose  Y-degree is less than M. In particular, if N / M  
equals a positive integer  D, then as G-adic expansion 
of F we have 

and 

and  

d2 = GCD(ro, rl), g2 = app(d2,F), 
r 2 = d e g x R e s y ( F ,  g2) 

d3 = GCD(ro,  rl,r2), g3 = app(d3,F), 
r 3 = d e g x R e s y ( F ,  g3) 

and  so on, where  we agree to pu t  

d eg xRes y (F ,g i )  = -Go if Resy(F,gi)  = 0 

and  

F = G ~ + B~G ~  + . . .  + B D, 

where  B 1 . . . . .  B o are polynomials  in X and  Y whose  
Y-degree is less than  N / D .  Now clearly, 

degy(F - G D) < N - (N/D)  if and only if B 1 = O. 

In gene ra l ,  in a n a l o g y  w i th  S h r e e d h a r a c h a r y a ' s  
m e t h o d  of solving quadratic equat ions by  complet ing 
the square, for which  reference may  be made  to [8] 

( a n d  assuming that  in our  situation 1/D makes  sense), 
we may  "comple te  the Dth power"  by put t ing G' = G 
+ (B~/D) and by  consider ing the G'-adic expansion 

F = G '~  + B'~G ' ~  + . . .  + B' o, 

w h e r e  B' I  . . . . .  B ' o  are po lynomia l s  in X and  Y 
whose  Y-degree is less than N/D.  We can easily see 
that  if B 1 # 0 then  degyB' 1 < degyB 1. It follows that by 
starting with any  G and  repeat ing this procedure  D 
times we get the approximate  Dth root of F. 

Again, in analogy with n-adic expansion,  given any 
sequence  g = ( g l  . . . . .  gh+l), whe re  gj is a monic 
polynomial  of degree  nj in Y with coefficients that are 
polynomials  in X, every  polynomial  H in X and Y has 
a un ique  g-adic expansion 

h + l  

H = E H  e I-[ g~J where  H e is a polynomial  in X 
j=l 

and  w h e r e  the s u m m a t i o n  is over  all sequences  of 
nonnegat ive  integers e = (e 1 . . . . .  eh+l) such that ej < 
nj+ 1/nj for 1 ~< j ~< h. 

14. Places at Infinity 

As the next  s tep t oward  the cri terion,  we  associate 
several sequences  wi th  F as follows. The case w h e n  Y 
divides F being trivial, we assume the contrary.  No w 
let 

d I = r o = N ,  gl  = Y,  rl = d e g x R e s y ( F , g l )  

I GCD(ro, rl . . . . .  r/) = GCD(ro, r 1 . . . . .  rj) 
if r o, r 1 . . . . .  rj are integers and j < i and 

rj+ 1 = rj+ 2 = . . .  = r i = -oo. 

Since d 2 /> d 3 i> d 4 i> . . . are positive integers, there  
exists a un ique  positive integer  h such that d 2 > d 3 > 
. . .  > dh+ 1 = dh+ 2. Thus we have  def ined the two 
sequences  of in tegers  r = (ro, r I . . . . .  rh) and d = 
(d l , d  2 . . . . .  dh+l )  a n d  a t h i r d  s e q u e n c e  g = 
(gl,g2 . . . . .  gh+l), where  gj is a monic polynomial  of 
degree  nj = dl/d j in Y with coefficients that are polyno-  
mials in X. Now,  for the curve C def ined by  F(X ,Y )  = 
0, we are r eady  to state the criterion. 

CRITERION for having only one place at infinity. C 
has only  one place at inf ini ty if and only  if dh+ 1 = 1 and 
rid 1 > r2d 2 > . . . > rhd h and gj+l is degreewise straight 
relative to (r,g,gj) for I <~ j <~ h (in the sense we  shall define 
in a moment ) .  

To spell out  the definit ion of degreewise  straight- 
ness,  for every  polynomial  H in X and Y we consider 
the g-adic expansion 

h + l  

H = EHr l~  g~J, where  H e is a polynomial  in X 
j = l  

and  w h e r e  the su mmat i o n  is over  all sequences  of 
nonnega t ive  integers e = (e 1 . . . . .  eh+l) such that ej < 
nj + 1/nj for 1 ~< j ~< h. We define 

f i n g ( r , g ,H)  = max ejrj with e o = degxHe, 
\ j  = 0 

where  the max is taken over  all e for which H e ~ 0 = 
eh+l; here  ring is supposed  to be an abbreviation of the 
phrase  "degreewise  formal intersection multiplicity," 
which  in turn  is meant  to suggest  some sort of analogy 
wi th  intersect ion multiplicity of plane curves. 

For 1 ~< j ~< h let u(j) = nj+l/n j and consider the gj- 
adic expans ion  

u03 

k = l  
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where  gjk is a polynomia l  in X and Y whose  Y-degree is 
less than nj. We say that  gj+l  is degreewise straight  rela- 
t ive to (r,g,gj) if 

(u( j) /k) f ing(r ,g,gjk)  ~ f ing(r ,g ,g j ,  o3) = u(j)[ f ing(r ,g,gj)]  

for 1 ~< k <~ u(j); the adjective straight is meant  to sug- 
gest  that  we are consider ing some kind of generaliza- 
t ion of Newton  Polygon (for Newton  Polygon,  see [9], 
Part II, pp. 382-397, where  it is called N e w t o n  Paral- 
lelogram). 

15. Places at a Given Point 

To discuss places of the curve C def ined by  F ( X , Y )  = 0 
at a given finite point ,  we may  suppose  that  the point  
has been  b rough t  to the origin by a translation and 
rotat ion of coordinates  and  that nei ther  X nor  Y di- 
vides F. By the Weierstrass Preparat ion Theorem (see 
[1], p. 74), we can write 

F ( x , Y )  = 

where  8(X,Y) is a power  series in X and Y with 8(0,0) 
0 and F* is a dis t inguished polynomial;  i.e., 

F* = F*(X,Y) = y n ,  + a ~ ( X ) y ~ - i  + . . .  + a , n , ( X  ) 

and  a~(X) . . . .  , a*n,(X) are power  series in X that are 
zero at zero. By ord  x of a power  series in X we mean  
the degree  of the lowest  degree term presen t  in that 
power  series. We also note  that in the present  situa- 
tion, the approximate  roots of F* are monic  polyno-  
mials in Y whose  coefficients are power  series in X. 
N o w  let 

d 1 = r o = IV*, g l  = Y,  rl = o r d x R e s y ( F * , g l )  

and  

and  

I d2 = GCD(ro, rl), g2 = app(d2,F*), 
r 2 = ordxResy (F* ,g2)  

d3 = GCD(ro ,  rl,r2), g3 = app(d3,F*), 
r 3 = ordxResy (F* ,g3)  

and  so on, where  we  agree to put  

ordxResy (F* ,g i )  = oo if Resy(F*,gi)  = 0 

and  

exists a un ique  positive integer  h such that d 2 > d 3 > 
�9 . . > dh+ 1 = dh+ 2. Thus we have def ined the two 
sequences  of integers  r = (ro,r 1 . . . . .  rh) and  d = 
( d l , d  2 . . . .  , d h + l )  a n d  a t h i r d  s e q u e n c e  g = 
(gl, g2 . . . . .  gh+l), where  gj is a monic polynomial  of 
degree  nj = d l / d / i n  Y with coefficients that are power  
series in X. For the curve C def ined by F ( X , Y )  = 0, we 
are r eady  to state the main resul t  of this section. 

C R I T E R I O N  for having only one place at the or- 
igin. C has only  one place at the origin if and only  if dh + 1 
= 1 and  rid l < r2d z < . . . < rhd h and gj+l  is s traight  
relative to (r,g,gj)  for I ~ j ~ h (in the sense which we  shall 
define in a moment ) .  

To spell out  the definit ion of straightness, first note  
that in the present  situation, the coefficients of a g-adic 
expans ion  are power  series in X. N o w  for every  poly- 
nomial  H in Y with coefficients that are power  series in 
X, we consider  the g-adic expansion 

h + l  

H = E H  e I-[ g~J' where  H e is a power  series in X 
j=l 

and  w h e r e  the s u m m a t i o n  is over  all sequences  of 
nonnega t ive  integers e = (e 1 . . . .  , eh+l) such that  ej < 
n j+l /n  j for I <~ j ~ h. We define 

f i n t ( r , g , H )  = min ejr/ with eo = ordxH~, 
' , j  = 0 

where  the rain is taken over  all e for which H e ~a 0 = 
eh + 1; here  fint is supposed  to be an abbreviation of the 
ph ra se  " 'formal in tersect ion mul t ip l ic i ty ,"  which  in 
tu rn  is mean t  to suggest  some sort of analogy with in- 
tersect ion multiplicity of plane curves. 

For 1 ~ j ~ h let u(j) = nj+l /n  j and consider the gF 
adic expans ion  

g j + ,  = + 

k = l  

where  we note  that in the presen t  situation, the coeffi- 
cients gjk are polynomials  of degree  less than nj in Y 
wh o se  coefficients are p o wer  series in X. We say that  
gj+ i is s traight  relative to (r,g,gj)  if 

(u( j ) /k) f int(r ,g ,gjk)  >I f int(r,g,gjuo) ) = u(j)I f int(r ,g,gj)]  

for 1 ~ k ~< u(j); again, the adjective straight is mean t  to 
suggest  that  we are consider ing some kind of general- 
ization of N e w t o n  Polygon.  

GCD(ro, rl . . . . .  ri) = GCD(ro, rl . . . . .  rj) 
if ro, r 1 . . . . .  1) are integers and j < i and  

rj+l = rj+2 = . . .  = ri = o0. 

Since d 2 /> d 3 i> d 4 ~ . . . are positive integers,  there 

16. Problem 

General ize  the above criterion by  f inding a finitistic al- 
gor i thm to count  the n u m b e r  of places at infinity or at 
a g iven point.  
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17. Example 

To il lustrate the  cr i ter ion for h a v i n g  o n l y  one  place at 
the  origin,  let us  take 

F = F(X,Y)  = (y2 _ X3)2 + XPY - X 7, 

w h e r e  p is a pos i t ive  in teger  to be chosen .  N o w  

F* = F a n d d l  = r0 = N* = N = 4 a n d g l  = Y 

a n d  h e n c e  

Resy(F, gl) = F(X,O) = X 6 - X 7 a n d  

r 1 = ordxResy(F,gl)  = 6. 

Therefore ,  

d 2 = GCD(ro, r~) = GCD(4,6)  = 2 

a n d  h e n c e  

g2 = app(d2,F) = ),2 _ X3 = ( y  _ X3/2)(y + X3/2) .  

C o n s e q u e n t l y ,  

Resy(F,g2) = F(X, X3/2)F(X, - X 3/2) 
= ( X p + ( 3 / 2 )  - X 7 ) ( - X p + ( 3 / 2 )  _ X 7) 

= _ X 2 p + 3  + X14  

a n d  h e n c e  

14 if p > 5 
r2 = ordxResy(F,g2) = 2p + 3 if p ~ 5. 

There fore ,  

d3 = [ 2 i f p > 5  and  h = [ l i f p > 5  
l i f p ~ 5  I_ 2 i f p ~ 5  [ 

a n d  

V 
] 24 < 26 = (2p + 3)d 2 = r2d 2 if p = 5 

rldl [ 24 I> 22 i> (2p + 3)d 2 = r2d 2 i f  p < 5 .  

N o w ,  if p = 5, t h e n  

gl l  = 0, andg21 = 0 

a n d  

a n d  

g12 = X3 a n d  f int( r ,g ,X 3) = 3r 0 = 12 = 2r 1 

g22 = X s Y  - X7 a n d  
fint(r,g, XSY - X 7) = 5r0 + rl = 26 = 2r 2 

a n d  h e n c e  gj+l is s t ra ight  relat ive to (r,g,gj) for I ~< j ~< 
2. 

T h u s  w e  see tha t  if p > 5, t h e n  h = 1 a n d  d h + 1 - 2, 
w h e r e a s  if p < 5, t h e n  h = 2 a n d  dh+ 1 = 1 and  rid 1 > 
r2d2; finally,  if p = 5, t h e n  h = 2 a n d  d h+ 1 = 1 a n d  rid 1 
< r2d 2 a n d  gj+l is s t ra igh t  relat ive to (r,g,gj) for I <~ j ~< 
2. There fo re ,  by  the  cr i ter ion w e  conc lude  that  C has  
o n l y  one  place at the  or ig in  if a n d  on ly  if p = 5. 
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