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Abstract

Utilisation of Thorium, by way of the 233U—Th cycle, is
of particular interest to the Indian Nuclear Power Programme
because of larée Thorium deposits and limited Uranium
reserves. Several schemes, such as fast and advanced heavy
water reactors, leading to Thorium utilisation, are under
study at this centre.

The present paper discusses a scheme for evolving a
practical accelerator driven sub critical 233U—Th system
with increased neutron multiplication and a consequent
reduced requirement of the accelerator current. It is shown
that the requirement of the accelerator current is
considerably reduced if a sub critical assembly with a given

Keff is composed of two partially coupled regions.
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1.0 INTRODUCTION

The accelerator driven sub critical system for power
production has evoked considerable interest in recent years
(Rubia et al, 1995). The scheme promises to burn Pu and
other actinides and long lived fission products, and produce
power with a high degree of inherent safety and at a
reasonable cost. The principal difficulty continues to be
the requirement of accelerator currents one order of
magnitude over the best achieved so far. For this reason
Daniel and Petrov (1996) have proposed a scheme for
enhancing the multiplication of the system by having a
central booster region having a K, - 1.2 and an outer region
having a K, ~ 0.975. The idea 1is to introduce source
neutrons in a region of high neutron importance and thereby
get enhanced multiplication.

In the present paper we show that it is possible to
achieve higher neutron multiplication if there is a one way
coupling between the two regions. Neutrons from the inner
region may leak out into the outer region. However the
probability for outer region neutrons to re-enter the inner
region is to be made as low as possible. For the purpose of
the K eigenvalue, such a system is effectively a decoupled
system and its K is determined by the larger of the two K.
Two practical ways of achieving such a coupling are
introduction of a sufficiently large gap between the two
systems and having an inner fast system driving an outer
thermal system with a thermal absorber in between them.

Our calculations indicate that such a scheme gives a
neutron multiplication about four to five times larger than
in the Energy Amplifier scheme described by Rubia et al
(1995) . This means that it should be possible to get the
desired power level of 1.5 GW (t) with a 1 Gev proton beam

current of as low as 2 mA.

2.0 SYSTEM DESCRIPTION AND COMPUTATIONAL MODEL
For simplicity of analysis we consider a system having

spherical symmetry. There is an inner system having a K, > 1



up to a radius R1 followed by a gap up to radius R2 and
finally an outer region having Kw < 1 in the region between
R, to R3. Two cases are considered. One in which both
regions are fast systems and the other in which the inner
region is a fast reactor, while the outer region is thermal.
In the latter case the inner booster is lined with a thermal
neutron absorber such as Cd which prevents thermal neutrons
from the outer reactor to enter the booster while allowing
fast neutrons from the booster to enter the outer reactor.

We present the following discussion by defining three
Keffs: one each for the isolated inner and outer systems and
the third for the combined system. In order to maintain
adequate sub criticality margins such a single combined Keff
is found to be appropriate.

The system, described above, could be treated by a
modification of the one or two group theory of a reflected
reactor. However, the presence of the gap and the absorber
lining, complicates matters. It is nevertheless possible to
use simple diffusion theory if suitable interface conditions
can be derived. It is then possible to write down analytical
expressions for the flux and fundamental mode distributions.
A simple numerical search yields the Ko¢er of the two
individual systems as well as the combined Keff (or one of
the radii for a given Keff)' The diffusion theory approach
is particularly useful for a quick search for a system with
the desired Keff'
in the Appendices I and ITI. The results of the diffusion

The details of this approach are discussed

theory calculations were also checked using an integral
transport theory program based on the collision probability
method. Good agreement between the two is found. The program
was also used for computing the flux distribution, and

amplification properties of the selected cases.

3.0 RESULTS
Let us consider first the scheme described by Daniel
and Petrov (1996) with an inner system with a K°° = 1.2 and

an outer system having Koo = 0.975. For the mixture of Pb,
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233 232

U and Th described by Rubia et al (199§)AMAthe \
‘migration length M would be approximately 10 cm and 11 cm %'

respectively for the inner and the outer regions. With the

outer system having Keff = Kw/(1+M2B2) = 0.97, it is clear}
that the buckling parameter B = 6.52><1O_3 crn-1 which gives}
T,~Ty = 288 cm leading to ré = 320 cm and ry = 32 cm. The)/

“results for this case are summarized in Tables 1 and 2.
Table 1 shows the Keff

sizes while Table 2 shows the energy amplification for a

for various inner and outer region

system with the above dimensions. Table 1 shows that there
exists an inverse relation between K1 and K2 for maintaining
the same value of K12. Table 2 shows the difference between
a distributed source and a point source.

We next consider the two sets of systems falling in our
scheme. The first consists of two fast regions separated by
a gap. The material properties are the same as in the
previous scheme. The sizes are adjusted to give overall sub
criticality of about 20 mK. Table 3 presents the Keff for
systems of various sizes. It clearly shows the effect of the
gap in maintaining a constant Keff = 0.953 of the inner
region for a given Keff = 0.980 of the combined system even
when the Keff

signature of the oneway coupling between the two systems.

of the outer region increases. This is a

Note that this is in contrast with Table 1 where constancy
of the overall Keff can be maintained only if K1 decreases
while K2 increases or vice versa. Table 4 shows the results
obtained for neutron multiplication, source importance So,
the overall energy gain and the required accelerator
current for the various cases described in Table 3. This
table clearly demonstrates the efficacy of the booster and
the decoupling concept for giving enhanced multiplication.
Table 5 shows the effectiveness of the gap and the
absorber lining in increasing the degree of decoupling for
the fast-thermal systems. When the gap and the thermal
absorbers are used the decoupling effect is stronger than

that for the fast system. For the subcritical system (case 3



2 = 210 cm

and R3 = 310 cm. The neutron multiplication obtained in this

in table 1) the parameters used are R1 = 60 cm, R

case is 310 corresponding to an energetic gain of 682 and an
accelerator current of about 1.1 mA for a 750 MW(th)
reactor. ’

Finally Table 6 shows a comparison of the diffusion and
transport theory values obtained for Keff‘ It is seen that
diffusion theory with appropriate internal boundary
conditions is reasonably good in predicting the Keff‘ Though
we have used the transport theory for computing the
energetic gain and multiplication, we could have used the
diffusion theory as well.

Figs.1-3 show respectively the volumetric power
density, the power density per unit radial interval and the
flux distribution for a typical fast-fast system. Likewise
Figs. 4-5 show the corresponding power distributions for a
typical fast-thermal system. The power is normalised to a
total power of 750 MW (th). Finally, Figs. 6-7 show the
fast and thermal flux distribution respectively.

The power distribution in the case of the fast-fast
system is strongly peaked in the inner region and the power
density is about an order of magnitude lower in the outer
region compared to that in the inner region and also falls
off towards the periphery. While the power density is
typical of fast reactors in the inner region, it is too low
in the outer regions. If the outer region is to have a power
density high enough to be economical, it is clear that a
special fuel or cooling would have to be used in the inner
region for withstanding the resultant high power density.
Moreover since a large fraction of the power (~ 35%) is
produced in the booster region, it will be necessary to have
a smaller inner region (possibly with a higher enrichment)
so as to reduce the fraction of power produced in it and the
consequent burnup of fissile fuel. Finally it would also be
necessary to flatten the power in the outer region by adding
a reflector or by some other means.

For the fast-thermal system the situation is much
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better. The outer region shows power densities typical of
thermal reactors while the ones 1in the inner region
correspond to those in fast reactors. The fraction of the
total power in the inner region is also smaller (15%) though
ideally we would want it to be a few percent in order to
minimise the burnup of fissile fuel. Power flattening in the

outer region would also be desirable.

4.0 CONCLUSIONS

We have presented calculations which indicate that a
booster region can be placed at the centre of an accelerator
driven reactor provided the main reactor is coupled only one
way with the booster so that the overall Keff does not
exceed unity. This could be achieved either by keeping a
sufficiently large gap between the two or by having a
thermal reactor coupled one way to a fast booster with a gap
and a thermal absorber such as Cd in between the two.
Neutron importance factors of about 5 to 10 can be achieved
in this way. our estimates show that an energy
amplification can be obtained which is about two times that
reported by Daniel and Petrov (1996) for the same Keff' With
such a system it should be possible to work with accelerator
currents as low as 2 mA for a 1500 MW (th) reactor. However,
this issue requires a detailed design of the two subsystems
constituting an overall subcritical reactor.

Another problem associated with such a system is the
strong power peaking in the booster region and adequate
cooling would have to be provided for this purpose. However,
this issue is similar to the problem of cooling a target
region producing a spallation source of the same strength,
since, in the latter, the energy per neutron is 30 to 40 Mev
while for fission neutrons it is 80 Mev which is about twice

as large.

REFERENCES
Daniel H. and Petrov Yu. V. (1996) Nucl. Instr. Meth. Phys.
Res. A 373, 131



Davison (1957) Neutron Transport Theory, Oxford University
Press, Oxford

Glasstone S. and Edlund (1952) The Elements of Nuclear
Reactor Theory, D. Van Nostrand, NJ

Newmarch D.A.(1955) J. Nucl. Energy 2, 52

Rubia C., Rubioc J.A., Buono S. Carmine F., Fieter N., Galvez
J., Geles C., Kadi Y., Klapisch R., Mandrillon P. Revol
J.P., and Roche C. (1995) Report CERN/AT/95-44 (ET)

>
3]
(U]



Appendix I

A 1.1 Diffusion Theory: Boundary Conditions at the Gap

For spherically symmetrical systems, Davison (1957) has
given the following physically obvious boundary condition at

the two faces of an annular gap:
R.” J. =R J (A.1)

where the subscripts i and o stand for the inner and outer.
To solve the diffusion equation one more interface condition
is required. The flux is not expected to be equal at the
inner and outer faces. Newmarch (1955) has given the correct
boundary conditions for a cylindrical system in the context
of computing the thermal utilisation factor when there is a
gap between the fuel and the moderator.

By using a method similar to that described in
elementary text books on reactor Physics (Glasstone and
Edlund, 1952) we can derive the following equations for gt
and J at the two faces for the spherically symmetrical

reactor under consideration

(A.2a)
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The subscripts o and i refer to the inner and outer faces of
the gap. Equation (1) can be easily seen to follow from (2)
by subtracting (2a) from (2b) and (2c¢) from (2d). The first



interface condition is obtained by replacing the currents by

their diffusion theoretic expressions viz:

R.D —F =R “D_—2° (A.3)
1 (o)

The second interface condition follows on subtracting (2c)

from (2d) and replacing the net Jo by its diffusion

R,)2)3/273¢
1 [e)
o T

(A.4)
For the fast-thermal system under consideration, we describe
it in terms of the fast inner flux ¢i1and the fast and
thermal outer fluxes ¢01 and ¢02. For the fast flux we use

the above boundary conditions. For the thermal flux the

theoretic value. We thus get

Ril2l1 . 9 8;] 1(Ri)?
ﬁ; 1930 |7 alg| %

N —

o

boundary condition cannot be used since it is not
permissible to replace Ji by its diffusion theoretic wvalue.
However the second one can be used after setting ¢i and its

derivative to zero. In other words we have,

if Ry )2 R, )2 3/2 8¢,
4 —R? ¢O + DO 1 + 1 - R: - = 0 (A.S)

ar
for the thermal flux.

Ny —

A 1.2 Solution of the Two Group Equations

The inner system has K00 > 1 and is essentially fast.

Hence its solution is given by

ol = az(r) = a%inlMD) (A.6)
where,
(K ./ K _-1)
R =
L.

1
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The superscripts f and t refer to fast and thermal
guantities while the subscripts (i) and (o) stand for the
inner and the outer region quantities respectively. The
outer system has a KOoo < 1 and if we assume further that K12
> Kmo, the flux would be a decaying function. With the
boundary condition that the fluxes go to zero at R3 the
outer most boundary of the system, we can write the two

group fluxes as follows:

(5 sinhvi(R3—r) sinhvz(R3—r)
¢, = CX(r) + EY(r) = C——F—— + E———F>—— (A.8)
¢(‘3” = CS,X(r) + ES,Y(r) (A.9)

where —VTZ and —V22 are the roots (both negative in this

case) of the critical equation

K (o)
K, = 2 (A.10)

12 (1+L(”2B2)(1+L(UZBZ)
o) o

given by
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We note here that Lét)

the slowing down length. S1 and 82 are obtained by

for the thermal system is essentially

substituting these solutions in the two group equations and

are given by

z
ro
S, = (A.12a)
1 s _ v 2
ao o 1
Zro
S = (A.12b)
2 s () D(nVZ
ao o "2
Imposing the three interface conditions, we get the



following homogeneous system of equations for A, C and E:

C11A + C12C + C13E = 0 (A.13a)
C21A + CZZC + C23E = (A.13b)
C32C + C33E =0 (A.13c)

This system has a non trivial solution only if

C1q

@]

€12

13
Chy Gy Chy | =0 (A.14)
0 C3p  Cz3
The coefficients are given by:
Ciq = Ry ZDi‘”z' (R,) (A.15a)
Ciy = RzzDé“x'(Rz) (A.15b)
C.. = - R2DOY (R (A.15¢)
13 2 7o 2 i
Ri 2 (0,’
C21 = jg;» {0.25 Z(R1) - ).50 DO Z (R1)] (A.154d)
Ri 2 . Ri 2)3/271 ,
sz = 0.25 T X(RZ) - 0.50 DO T + 41 - g X (R2)
o (@]
(A.15e)
Ri 2 . Ri 2)3/27 .
C23 = 0.25 5 Y(RZ) - 0.50 DO T 4+ 31 - B Y (R2)
(o] (@]
(A.15f)
Ri 2 . Ri 2Y3/2 ,
Cyy = 0.25|5=| S;X(R,) - 0.50 D" |1+{1-|= 5,X (R,)
(@] o
(A.159g)



R;)2 - R.})2 3/2 .
Cyy = 0.250x= S,Y(R,) - 0.50 D" |1+4{1- R—o S,Y (R,)

o

(A.15h)

Any desired value of K,, can be given as input and a
search made for the outer radius R, once, R., R, K ., K

3 1 2 Tl w00

are given. K, and K, individually are also easily

determined. The case of two fast systems appears as special

case.
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Appendix II

A 2.1 Derivation of the Partial Currents

To derive Egs(2) we use a modified version of the
technique described by Glasstone and Edlund (1957). Consider
three concentric spherical regions having radii R1, R2 and
R3 and having material 1 in the innermost sphere, vacuum in
the region between R1 and R2 and material 2 in the region
between R2 and R3 and vacuum outside R3. We also assume that
the radii R and R,-R

1 31
mean free path and that the absorption is sufficiently weak

are sufficiently large compared to a

so that diffusion theory is valid.

We see immediately that the first and last of the
equations for the partial currents are the usual equations
for these currents and follow from the assumptions made. So
we only need to derive Egs. (2b,2c). For the first of these
for Ji_ we refer to Fig. la. By solving the triangles OPQ
and OPR we can write down the following relation between x
and S8R correct to the lowest order in &R:

(A.16)

172
2. Rizsinzﬁ]

The expression for Ji_ can be now written down as follows:

/2
. E
i T2

O ey 3

[+¢]
dd Jdr exp(—Zox) sindcos® ¢(RO+SR) (A.17)
Y

Expanding ¢ around RO to the lowest order in S8R and using
Eq. (A1) the integrals are easily evaluated to give us the
desired result.

To get an expression for Jo+ we note (Figs. 1b and 1c¢)
that this current has two components coming from the inner

and the outer regions. Thus we have
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+___(_)_ _ . _
JO = J ds J dr exp( Zox1) sindcos® ¢(Ri 8R2)
0 Y,
n/2 o
Zo
o ds Jdr exp(—Zoxz) sindcosd ¢(RO+6R2) (A.18)

Lo -1 Y
sin (Ri/Ro) 2
The relations between x and 8R to the lowest order in S8R can
be written down by solving the triangles OPQ and OPR in the
two figures. We get

-1/2
) (A.19)

X, = R.S8R
i

[R.Z—R 2sin 3
1 i o

1

X, = 8R2/cosé (A.20)
Employing these relations and expanding ¢ to the lowest
order in 6R1 and 3R2 we get can carry out the integrations

to yield the desired result.



Two fast concentric spherical regions in close contact: Keff

Table 1

Amplification results for a booster-reactor combination in

Ry Ry R3 Ky K K3

48 48 74 0.858 0.598 0.980

40 40 110 0.768 0.866 0.980

36.3 36.3 347 0.716 0.965 0.980
Table 2

close contact with one another (last case of Table 1)

Source Multiplication|Importance Energetic
description factor factor gain
Uniform source in 180 3.6 396

a 25 cm radius
Point Source at 244 4.9 537
the centre
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Table 3

Effect of gap on the Keff of fast concentric spheres

S.No. R1 R2 R3 K1 K2 K3
ta 60 60 67 0.953 0.125 0.980
1o 60 160 200 0.953 0.794 0.980
1c 60 210 284 0.953 0.910 0.980
1d 60 250 370 0.953 0.947 0.980
2a 52.5 52.5 69.5 0.900 0.421 0.980
2b 52.5 75.0 112 0.900 0.748 0.980
2c 52.5 100.0 175.0 0.900 0.900 0.980
2d 52.5 125.0 296.0 0.900 0.956 0.980

Table 4
Energy amplification and accelerator current requirements
for a 750 MW (t) reactor driven by a 1Gev proton beam

(Uniform source in the inner region up to a radius of 25 cm)

S.No. R, R2 R3 Multpl. |Import.| Energy Accl.
(cm) | (cm) | (cm) | factor |{factor gain current (mA)

la. 60 60 67 93 1.9 205 3.7
b 60 161 200 152 3.0 334 2.2
Te. 60 210 284 216 4.3 475 1.6
1d. 60 250 370 318 6.3 699 1.1
2a. 53 53 70 89 1.8 196 3.8
2b. 53 75| 112 119 2.4 262 .9
2c. 53 100 175 178 3.6 396 1.9
2d. 53 125 296 230 4.6 512 1.5

(93]
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Table 5
Effect of Gap and Thermal Absorber Lining on the Degree of

Coupling between Inner (Fast) and Outer (Thermal) Regions
Case 1 Case 2 Case 3
Gap (cm) 0 0 150
Absorber Absent Present Present
K1 0.953 0.953 0.953
K2 0.962 0.962 0.963
K3 1.052 1+.010 0.976
Table 6

Comparison of Diffusion and Transport Theory Results

System R, R2 R3 K(Diff) K(Trans)
Fast (1Grp) 60 160 200 0.9800 0.9792
Fast (1Grp) 36 36 350 0.9792 0.9776
Fast (1Grp) 52.5 125 296 0.9800 0.9796

(V5]
(98
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