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Abstract. We demonstrate the phenomenon stated in the title, using for illustration a two-
dimensional scalar-field model with a triple-well potential

, ~}»2¢z(2_m2>2
=5 (0=~ ).

At the classical level, this system supports static topological solitons with finite energy. Upon
quantisation, however, these solitons develop infinite energy, which cannot be renormalised
away. Thus this quantised model has no soliton sector, even though classical solitons exist.
Finally when the model is extended supersymmetrically by adding a Majorana field, finiteness
of the soliton energy is recovered.
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The procedure for quantising solitons is now well known (Jackiw 1977; Rajaraman
1982). In all the examples studied, whenever a model permits a static soliton solution at
the classical level, it also yields upon quantisation a whole soliton sector of states of
finite energy, of which the lowest energy state corresponds to the quantum soliton
particle at rest. Numerous examples of this phenomenon have been discussed in detail in
literature, especially among scalar field theories in (1 + 1) dimensions.

If, in this paper, we discuss solitons in yet another two-dimensional toy-model, it is
only because this example typifies a class of models which do not quite follow the
general pattern mentioned above. While at the classical level, perfectly respectable finite-
er.ergy static solitons exist, we shall see that at the quantum level, they develop infinite-
energy. This infinity is not of the ultraviolet sort, which one usually encounters in the
soliton-energy calculations and which is cancelled by counter-term contributions.
Rather, it is a divergence proportional to L, the infinite volume of the “box”, in which
the system is quantised. This divergence cannot be subtracted away, and is really there.
Consequently, there is no quantum soliton sector in the model, associated with the
classical soliton. However, when the model is extended supersymmetrically by adding
fermions, the finiteness of the quantum soliton’s energy is restored. The L-dependent
divergence produced by the zero-point energy of the Boson fluctuations is cancelled by a
similar divergence in the negative energy of the Fermi sea. Thus the supersymmetric
model does have a soliton sector.
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The model we shall use for illustration is described by the Lagrangian density

= 10,6/ - @] 0
with a potential
. 2
150) = V() = oy S —m7LIY, ®

where ¢(x, t) is a real scalar field in (1 + 1) dimensions. Later we will also consider the
supersymmetric extension:

L=3[0,6)@¢)—S*(®)+y(i#—S(®)¥] €

where Y¥(x, t) is a Majorana field.

Although we shall demonstrate the above mentioned results explicitly by computing
the quantum corrections to the soliton-energy, they can be quite easily anticipated by
considering the vacuum of this model (Rajaraman and Raj Lakshmi 1981). Notice that
the potential V' (¢) has three degenerate minima, ¢ = +m/ \/ Aand ¢ = 0. Two of these
are related to one another by the ¢<> — ¢ symmetry of the problem, but the third ¢
= 0 is not so related. At the classical level, the vacuum of this theory could be located
eitherat ¢ =0, orat ¢ = +m/ \/ /, the latter possibility amounting to spontaneous
breaking of ¢«<» — ¢ symmetry. But at the quantum level, the degeneracy between the
vacua at ¢ = +m/ \/l and that at ¢ = 0 is lifted. The curvature of the potential
(d2V/d¢?) at these is different:

[dz V/d(ﬁz]d, =tm/ Ji= 4m2, [d2 V/d(bz:ld, =0= m2. (4)
Thus the (bare) boson mass would be 2m if the vacuum were located around

¢ = +m/./4, while it would be smaller and equal to m, if the vacuum were at ¢ = 0.
Consequently, the zero point energy of the vacuum at ¢ = 0 will be lower than those of

the (now false) vacua at ¢ = +m/ /A In fact the difference of these energies, to O(h) is

(Evac)d) =+m/JiT (Evac)qS =0

= % dk/2m((k* +4m*)' 2 — (k2 + m?)112), )]
Notice that this difference carries, apart from a logarithmic uv divergence, also a factor
L which diverges since L — oo. Therefore, the states built around ¢ = +m/ J J have a
higher energy density per unit length, and the true vacuum of the model (1) is the
symmetric one at ¢ = 0. In fact, by explicitly calculating the effective potential up to
two-loop order, it can be shown that the symmetric vacuum at ¢ = 0 survives even when
the potential ¥'(¢) is so designed that the classical minimum at ¢ = 0 is slightly higher
than those at ¢ = +m/ \/ A (Rajaraman and Raj Lakshmi 1981). This mechanism of
symmetry restoration is different from the more familiar one related to the absence of
Goldstone bosons in (1 + 1) dimensions (Coleman 1973).
Equations resulting from (1) are easily integrated to obtain the following static
soliton solution (Khare 1979)

Ps(x) = m/\/ﬁ (1+tanhmx)'/3, : (62)

with finite classical energy

M, =m?/3], (6b)
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Three more degenerate solutions are trivially obtained by exchanging x <> — x and
¢ <> — ¢. These four solutions extrapolate between ¢ = 0and ¢ = +m/ \/ A. (Thereis
no static soliton connecting ¢ = m/ \/ Atogp = —m/ \/ 4, as these are not neighbouring
minima of the potential ¥ (¢)). The soliton (6a) rapidly approaches the true vacuum ¢
= 0 at one end, but approaches the false vacuum ¢ = + m/ \/ A at the other end. Since,
upon quantisation, the false vacuum has a higher energy density per unit length
compared to the true vacuum, we can anticipate that the quantum soliton will also have
a higher energy as compared to the vacuum by an amount that tends to infinity as L
— 0. On the other hand, in the supersymmetric extension (3), all the three vacua at ¢
=0, +m/ ﬁ continue to be degenerate and to have zero energy, even when quantum
corrections are included. This fact, related to the non-breaking of supersymmetry by
radiative corrections, in such models is well-known (Murphy and O’Raifaertaigh 1983;
D’Adda and Di Vecchia 1978). Correspondingly, in the supersymmetric case, we can
expect the quantum soliton to have only finite energy as L — oo, since the vacua it
approaches' at either end are now degenerate and carry zero energy. The detailed
analysis below demonstrates precisely these results.
The one-loop corrections to the soliton mass arise from two sources: (i) the energy of
the quantum fluctuations and (ii) the contribution from the counter terms (see for
example, Jackiw 1977; Rajaraman 1982),

M= -g(Zw-2&))+[AEc.t‘(sol)—AEc.t.(vacm- ™

sol vac

The fluctuation frequencies w, around the soliton function (6a), are governed by the
eigen-value equation

[—d?/dx? + V()] E(x) = w?E(x) ‘ ®)

V'(@,) = mT (15 tan h®mx + 6 tan hmx — 5) )

Notice that the potential ¥”(¢,) in this Schrédinger-like equation (8) approaches
different asymptotic values, namely m? and 4m? as x —» — o0 and + o respectively.
Besides one solution with discrete eigenvalue @ = 0, which anyway does not contribute
anything to (7), this second order differential equation admits of two sets of independent
- solutions with eigen-values in the continuum @? > m?. The asymptotic behaviour of
these solutions can be described as follows:

(i) EY(x > —o0) = exp(ikx)+ A exp(—ikx),

ED(x —» + o0) = Bexp(ik'x) (10)
(i) EP(x » —o0) = B exp(—ikx),
E@(x —» + o0) = exp(—ik'x)+ A’ exp(ik'x) (1

where 4, B, A’ and B, are functions only of k, and (k') +4m? = k* + m?.

Formally, solutions of the form (10-11) hold not only for w? > 4m?, but also for
m? < »? < 4m?, with the understanding that for m*> < @? < 4m?, k' = iy = +i(4m?
~ w?)'72 is pure imaginary and for w? > 4m?, k' = (w* —4m?)!/2 is real. On the other
hand k = + (w* —m?)'/? is real for the whole range w? > m?. The various coefficients 4,
B, A', B’ arerelated by using the fact that Wronskians at x = + oo and x = —co for the
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sets of solutions (£, &), (£@F, g@) (F0F) @)y and (£D), £ are equal:
(i) For m* < w? < 4m?*:
1—|A> =0, ikB' = —yB, and ikA*B = —yB* (12)
(if) For w? > 4m?:
k(1—|A[) = K'|BJ, k(1 —|4'P) = k|B'|?
kB = k'B, kA*B = —k'A’'B* (13)
To evaluate the contribution of these continuum solutions to the soliton mass, we need
to know the density of the continuum eigen-values. We obtain this density of states by

putting the system in a “box” of length L (with L — o0), and imposing the usual second
order boundary conditions on any solution &(x):

S(=L/2) = &(+ L/2) and d&/dx(— L/2) = d&/dx(+ L/2). (14)

Neither {(x) nor ¢(x) has enough freedom to satisfy both conditions in (14). Buta
suitable linear combination &(x) = &"(x) + a&®(x) can satisfy (14) for some values of
and k, given by

exp(~ikL/2)+ (4 +aB)exp(kL/2) = (B+xd')exp(ik' L/2) + aexp(—ik' L2)
k[exp(—ikL/2)—(A+ aB')exp (kL/2)] = K'[(B+ ad’)exp(ik' L/2)— aexp(—ik'L/2)].
(15)

The coefficient « may be eliminated from these to obtain the following constraint which
discretizes the values of k:

1 = (44" — BB)exp(i(k+ k') L)+ 4k'B/ (k + k') exp(i (k +k')L/2)
+ (k—Kk)/(k+ k') (Aexp(ikL) — A’ exp(ik’L)), - (16)

where use has been made of relation kB’ = k'B.
It will be helpful to consider the domains, m? < w? < 4m? and w? > 4m? separately.

(A) m* < w® < 4m?

Here ik’ = —y is real and exp(—7yL) can be dropped in (16) for L — oo, to yield

exp(—ikL) = ((k —iy)/(k+iy)) A = Aexp(if) (17)
Since from (12), 1 - |A4[> =0, 4 is a pure phase. From this we obtain
~k,L+2nm=0—-iln4,n=0,1,2,... (18)

and therefore, the density of these boson fluctuations is given by
dng/dk = L/2n+1/2n (d6/dk) —i/2n (d/dk)In A (19)
and contribution to the one-loop soliton mass is ‘

S3m
g Y o= gf %’—i— (k* +m?)t/2 (L + d8/dk —i(d/dk)In A) (20)
0

w? < 4m?
(B) w? = 4m?

Here k' is real. Using the set of relations (13), one can easily show that 44'— BB is a
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pure phase. In fact writing B = | B|exp(i¢),

,_ —A*B
| A = B — A*exp(2ig) (21a)
and
AA' — BB = —exp(2ig) (21b)
Using these facts, (16) can be rewritten as
1= —exp(2ig)[1 —exp(—id)| X|] (22)

where ¢ = ¢+ (k+k)L/2 and |X| can be read directly from (16). Equation (22) is
satisfied by

|X| = 2cos ¢’ ' (23)
which admits two solutions
¢’=+cos"1|2’+2nn¢— o“|2|+2n2n
n,n,=012.... (24)
The corresponding densities of these fluctuations as L — oo can be written as ;
dny, 1 k\L d¢_d _1|X|
dk"zn[(1+k')2+dk+dk 2 (232)
Altogether, A
dng/dk = dn, /dk + dn,/dk (25b)
Therefore, the contribution to the soliton mass from these fluctuations is
h h( d¢
= W= K+mH)2| (14— >L+2—:' 26
2wzg‘4mz f\/,,, ( ™) [( kK dk (26)

Thus adding (20) and (26), we have the total contribution to the soliton’s fluctuation
energy as

—2—2 _AL J dk (dng/dk)(k* + m?)' 12
ol

=%I: dk/2n (k2+m2)”2+£211j dk'/2m (k' + 4m?)! 12
0 1)

p [Vom
+3 f dk/2n (k2 4+ m2)!12 (d0/dk —i(d/dk) In 4)
0

h €0
J dk/2n (k* +m2)”2 (—i(d/dk)In (B/B*)) 27
2 Sim

Notice that in (27), the first two terms are propomonal to L, while the last two are L-
independent. Equation (27) gives the first term in (7). The remaining terms are easy to
obtain. We have, for the true vacuum which is at ¢ = 0,

—g Y@= ~hL ‘[ dk/2m (k2 +m?)!/ (28)
vac 0
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The one-loop renormalisation counter term, associated with the Lagrangian (1) has
the form

Lo =% (57455 29)
with

C= 2_115 f: dk/(k* + m?)!72 (30)
The contribution of (29) to the energy (7) is

AE, (sol) - AE, (vac)
L2
= —f dx[Let (@s(x)) = Ler (¢ = 0)]

~Lj2

3, 15 .
= (-—zm L+j4—m) hC (31)

Adding (27), (28) and (31), we obtain the one-loop radiative corrections to the soliton
mass as
2

_hL [®dk] , N2 g2, iz 3 m
M= 2 . 27t[(k +4m?) (k* +m?*) 2 (@t md)?
+ (L independent terms) (32)

The uv divergences in the first term in (32) go away due to the counter term (29). But the
finite piece is proportional to L and will diverge as L — co. The remaining L-
independent terms in (29) cannot remove this divergence. In other words, the quantum
soliton does not exist, even though classically it had finite energy.

Supersymmetric case

Now, let us turn to the other part of our claim, namely that, in the supersymmetric
version as described by the Lagrangian given in (3), the quantum soliton is revived. As is
well-known (Murphy and O’Raifaerfaigh 1983; D’Adda and Di Vecchia 1978), the
vacuum energy (including counter terms) vanishes exactly for the supersymmetric case.
Therefore the one-loop soliton mass requires no vacuum subtractions. We have,

M= M,+ (E Y wp _h y ﬂ)p)+ AMZ (sol) _ T (33)
2 sol 2 sol

where wp and wr are the frequencies of the Bose and Fermi fluctuations about the

solution. M can be calculated in the same manner as has been done for the soliton of

double-wall potential case earlier (Schonfeld 1979; Kaul and Rajaraman 1983). The

Bose fluctuations energy, governed by (8) has already been obtained. The Fermi

fluctuations are given by

[i? —S'(¢.)]¥ = 0.
Writing

Y(x, 1) = u(x)exp(—iwst) + u*(xjexp(icwrt), (34)
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- __L Uy (x)
U(x) \/2 l:u _ (x):|3

we obtain the linear coupled eigen-value equations for the Fermi-fluctuations:

[d/dx +§' () Ju_(x) = iwpu, (x) - (35a)
[d/dx —§' ()]t () = iwpu_ () (35b)
which leads to
| [-d?/dx? + (52 +57S)p, Jus (6] = wRu, (x) (362)
[—d2/dx? + (8% ~ §"S) Ju- (x) = wRu_(x) (36b)

Even though (36a) is the same equation as the Bose fluctuation equation (8) the state-
density dn./dk of Fermi fluctuations is not the same as dn,/dk. Rather, it is given by
(Schonfeld 1979; Kaul and Rajaraman 1983; Imbimbo and Mukhi 1984);

dng/dk = 4[dn, /dk +dn_/dk] (37)

where dn, /dk are the densities of states associated with the second order equations
(36a) and (36b). Of course,

dng/dk = dn, /dk _ (38)
and hence,

~Zw3——- Yo = —r dk[dn., /dk (k) —dn_/dk (k)] @ (k) (39)

sol sol

The densny dn, /dk = dng/dk has already been evaluated above (equation (19) for

m? < w? < 4m?and equation (25) for w? > 4m?). We are left with evaluating the density
dn_/dk(k).

The density dn_/dk is evaluated similarly as was done for dn .. /dk = dng/dk, but with
(36a) = (8), replaced by (36b). The solutions of (36b) analogous to (10) and (11) may be

written as
u)(x = — o0) = exp(ikx) + Cexp(— ikx)

ul(x - + oo) Dexp(:k x) (40)
and :

u® (x - — o0) = D'exp(ikx)
u® (x = + o0) = exp(—ik'x) + C'exp(ik'x) (41)

Proceeding exactly as before, we have, analogous to (27),
g J‘dlc(dn_/dk)(k2 +m?)t/?

-%L dk/2n (k2+m2)”2+%li j ak'/2m (k' + 4m?)1 12
0

0

3m
+g f dk/2m (K* +m?)1/2 (d8/dk —i(d/dk) In C)

0

hJ dk/2n (k2+m )12 (~i(d/dk)In (D/D*)) 42)
+3 Jom
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However, C and D are related to A and B, due to the Dirac equation (35), which relates
the u!+? to the u}* 2. These u}+? are the same set of solution as 2 given in (10-11). It
is easy to see that

C = Aexp(id,); D = Bexp(iA) 43)
where

A = tan~! (k/m)+tan~ ! (k'/2m)
and

8, = 2tan~"! (k/m) . (44)

Notice that the undesirable L-dependent pieces in (42) are the same as in (27), and will
cancel each other in (39). Using, (39), (27) and (42-44) we have

(Zws ZCOF)

sol

Im '
= -g j dk/2n (k? +m?)2dé, /dk
0

h o]

- dk/2n (k% +m?)'/22(dA/dk).
4

3hm

=] 1
- P — 4
2 |, dk/2n ) (45)

The L-dependent divergence is no longer there, but the uv divergence in (45) still needs
to be removed. This is done as usual by the counter term, which for the supersymmetric
case is

hC

L=~ 58" (46)

instead of (29). Here again C is as given in (30). This gives the counter-term contribution
to the soliton mass as

AMESY = -—-»J dx(S8")g, = Eth 47)

Here again, unlike in (31) for the non-supersymmetric case, there are no L-dependent
pieces.

Finally adding (45) and (47), we obtain the one- loop soliton mass for the
supersymmetric system as

M =M, =m3/3) (48)

It would appear that not only is the quantum correction to the mass free of all
divergences, but is in fact zero. However, the result (48)is in terms of bare parameters m
and A. If (48) were re-expressed in terms of one-loop corrected boson mass and coupling
constant, the mass would not have the classical form, but would carry finite corrections
(Schonfeld 1979; Kaul and Rajaraman 1983).

Equation (45) involving the difference between the densities dn,/dk and dn_/dk
could have been obtained directly by involving the Callias-Bott-Seeley trace theorem
(Calias 1978; Bott and Seeley 1978, Imbimbo and Mukhi 1984; Kaul 1984). We have
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chosen instead to explicitly derive these densities separately, so that the L-dependence
of the soliton energy and their cancellation may be made transparent.

It is evident from the principles used in our derivation, that this phenomenon—
whereby a finite-energy classical soliton does not lead to a finite energy soliton sector
upon quantising the Bose field—will happen not only for the triple-well case we have
studied, but also for any potential ¥'(¢) which has

(i) degenerateabsolute minima, so that a static finite-energy classical soliton will exist in
the first place; and
(ii) unequal curvatures at neighbouring absolute minima.

Indeed, among the full set of all possible potentials ¥ (¢) having degenerate minima,
this behaviour will be more the rule than the exception. The more familiar examples like
the kink [ ¥(@) ~ (¢* —1)*] or the sine-Gordon soliton (¥ (¢) ~ 1 —cos ¢), where a
finite-energy quantum soliton does emerge, are really special cases, enjoying some
symmetry relating the different minima of V(¢). Of course, once the theory is
supersymmetrised as per (3), quantum solitons regain finite energies in all the cases. This
is yet another minor triumph for supersymmetry!
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