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Abstract

Upto ten crossing number, there are two knots, 94 and 107; whose chirality is not
detected by any of the known polynomials, namely, Jones invariants and their two variable
generalisations, HOMFLY and Kauffman invariants. We show that the generalised knot
invariants, obtained through SU(2) Chern-Simons topological field theory, which give the

known polynomials as special cases, are indeed sensitive to the chirality of these knots.
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1. Introduction

In knot theory, one associates a polynomial with each knot. These knot polynomials in
most cases are capable of distinguishing isotopically different knots. But there are examples
of distinct pairs of knots which have the same polynomial. An achiral knot is that which is
ambient isotopic to its mirror image. Alexander polynomial A (q) [l is the oldest known
polynomial but it does not detect chirality for any knot K. Jones polynomial [Jf] Vk(q) does
distinguish most chiral knots. If the knot(K) has polynomial Vi (gq), then the mirror image
knot (K*) has polynomial Vi«(q) = Vi(g™'). For achiral knots we have Vi (q) = Vi(¢™").
If Vk(q) # Vi(q!), then the knot K is chiral. However the converse is not true. There
are well known examples of chiral knots which have the polynomials symmetric under

the exchange of ¢ « ¢7'.

The two variable generalisation of Jones polynomial known as
HOMFLY polynomial Pk (l,m)[f] is a better invariant than Jones polynomial since it is
able to distinguish even those chiral knots which are not distinguished from their mirror
images by Jones polynomial[li]. For these polynomials the invariant for the mirror image is
obtained by replacing [ by [~!. For example the arborscent knot whose chirality is detected
by HOMFLY (i.e Px(l,m) # Pg+(l,m) = Pg(I"',;m)) but not by Jones polynomial.
Another two variable generalisation of Jones invariant known as Kauffman polynomial
(Fk(c,q)) [B)is shown to detect chirality of all those knots detected by HOMFLY[f]. This
polynomial in fact is more powerful. For example, while the HOMFLY invariant does not
detect chirality of knot 1045 (as listed in knot tables in Rolfsen’s book[]), but the Kauffman
invariant does [{], i.e., Fx(,q) # Fx(a™',q) but Py, (I, m) = P, (171, m).

Recently Chern-Simons field theory on arbitrary 3-manifolds has been used to study knot
invariants([§-[L7]). Specifically the expectation values of Wilson loop operators, which are
the observables of the theory, are topological invariants. Witten[f] has explicitly shown
that Wilson loop operators associated with skein related links (Vi,V_,Vj) in an SU(2)
Chern-Simons theory with doublet representation living on the knots satisfy the same skein

recursion relation as the Jones polynomials. Further the recursion relation for the two-



variable generalisation (HOMFLY) is obtained by considering N-dimensional representation
living on the Wilson lines in SU(N) Chern-Simons theory. Using SO(N) Chern-Simons
theory, Wu and Yamagishi[[J] obtained the skein relation for Kauffman polynomial by
placing the N dimensional representation of SO(N) on the Wilson lines. Another approach
for obtaining the link invariants involves statistical models and Yang-Baxter equations.
Using this approach Akutsu and Wadati[[J] obtained Jones polynomial and a class of
generalisation through N state vertex models. In fact Wu and Yamgishi showed that the
Kauffman polynomial for the group SO(3) is same as that of Akutsu-Wadati polynomial
obtained from 3 state vertex model.

Following Witten, we have developed techniques for obtaining new knot invariants by
placing arbitrary representations on the Wilson lines in the SU(2) or SU(N) Chern-Simons
theories[d]. When a 3-dimensional representation is placed on the lines of Wilson loops in
an SU(2) Chern-Simons theory, the polynomial coincides with Akutsu-Wadati polynomials
derived from 3-state model. This is so because 3 dimensional representation of SU(2) is
same as the fundamental representation for SO(3).

Though HOMFLY and Kauffman two-variable invariants are more powerful than those
of Jones, yet there are examples of isotopically distinct knots which have the same poly-
nomial. In particular, there are two knots, namely 945 and 1071, upto ten crossing number
whose chirality is not detected by any of the well known polynomials, namely, Jones, HOM-
FLY and Kauffman. Using our direct method of evaluation from SU(2) Chern-Simons the-
ory, we have explicitly derived the knot polynomial formulae for 94 and 107; for arbitrary
representations of SU(2). Using macsyma package, a general algorithm has been written
to compute these formulae. We have verified that the fundamental representation gives
Jones polynomials and the 3 dimensional representation gives Akutsu-Wadati /Kauffman
polynomials. The 4 dimensional representation gives polynomials which are not invariant
under the transformation of the variable ¢ «+» ¢~!. Hence these polynomials distinguish the

knots 940 and 107; from their mirror images.



In sec.2, we give a brief account of the known polynomials for the knot 940 and 107;. In
sec.3, we recapitulate the necessary ingredients of our direct method from SU(2) Chern-
Simons theory[f]] and do the evaluation for these specific knots in detail. In sec.4, we

summarize our results.

2. Known invariants for knots 94, and 107;.

As stated earlier, knots 940 and 107, are special knots whose chirality is not detected
by any of the known polynomials, Jones, HOMFLY and Kauffman. We now list these
polynomials for these knots.

We begin with the knot 945. This is a non-alternating knot with writhe —1. It has
signature 2 and thus is a chiral knot. This knot can be represented as the closure of a four
strand braid given in terms of the generators by, by, by as a word: b3 bs by' b3 by? by'.
This is drawn in fig.1a. An equivalent representation has been drawn in fig.1b. Jones
polynomial for this knot can be recursively obtained using the skein recursion relation [B]:
Ve — ¢V = (¢'? = ¢"/*)V,. Here V_, V., Vj denote the polynomials for the
skein-triplet. In the case here, V_ corresponds to 942, V. represents the unknot obtained by
changing the encircled undercrossing of fig.1b to overcrossing and Vj obtained by changing
the undercrossing to no crossing. The Jones polynomial for 94 with the normalisation for

unknot as Vi;(¢) = 1 can easily be worked out [J]:
Vo(@)=¢ ¢ +q ' = 1+q- ¢+’ (1)

Notice that Vj,,(q) = Vb,,(¢"') and hence this polynomial does not detect the chirality of

949.
In a similar fashion, we can use the skein relation for the 2-variable generalization of

Jones invariant referred to as HOMFLY polynomial to get[f]:
Py, (I,m) = (=2072 =3 =2) + (172 + 4 + *)m? —m* (2)
Clearly the polynomial is invariant under the transformation of I — [~! which relates the
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knot invariant to that of its mirror image. Hence this polynomial also does not distinguish
940 from its mirror image.
Kauffman has obtained another two-variable generalization of Jones invariant through

a new recursion relation for unoriented knots or links. This polynomial for knot 9,5 is [[]:
Fyo,(a,2) = (a+a 12"+ (' +a )% —5(a+a1)2° — 5(a* +a)%2?
+6(a+a M2+ (6a* +1246a2)2% —2(a+a M)zt — (2a® +3 +2a7%)2" (3)

Kauffman polynomials for mirror reflected knots are obtained by a <+ a=!. Clearly, the in-
variant in eqn(J) does not change under this transformation and hence even this polynomial
is not powerful enough.

For the special case of a = —q_% and z = q_i —i—qi this polynomial reduces to the Jones
polynomial. Also Kauffman invariants, in general reduce to Akutsu-Wadati polynomial for
a =iq¢®> and z = —i(q — ¢~'). In their original calculations obtained from 3-state vertex
model, Akutsu, Deguchi and Wadati[[4] have presented these polynomials for knots with
representation in terms of closure of three strand braids. The Knot 9,9, however, has a
representation in terms of closure of a four strand braid. Thus substituting a = i¢? and
z=—i(q—q ") in eqn(f) should yield us Akutsu-Wadati polynomial for this knot:

Foo(ig®,—ilg—q ") =¢ " —q¢ = +2¢ " —¢ ¢ +2¢" ¢+ ¢!
—1+¢' =42~ "+ 20" —* — " +¢" (4)

Now let us list the known polynomials for the other chiral knot we study here, 107;. This

is an alternating knot with writhe number zero and also signature zero. Its knot diagram

as given in Rolfsen’s book[[] is drawn in fig.2. Its Jones polynomial is [J]:
Vior, (4) = =" +3¢” = 6¢° + 10¢° — 12g + 13 = 12¢"' +10¢"* —6g " +3¢ "' —¢~* ()

The Kauffman two-variable polynomial for this knot can be obtained readily from Kauftf-

man’s recursion relations. Such an exercise leads us to:
Fion(a,2) = (a+a")2"+(3a® +6+3a7%)2% + (4a® +8a + 8a™' +4a™?)z"
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+(3a* +2a* =2+ 2a7 +3a™")2% + (¢° — 5a® — 15a — 15a™ — 5a™* + a7°)2°
—(6a* +12a* + 12 + 12472 4 6a~*)2* + (—2a7° + Ta™' + Ta™ — 2a7°)2*

+(4a* +10a® + 12 + 100 % +4a )2+ (a® +a®* —a—a ' +a® +a7%)2*
—(a*+3a®>+3+3a 2 +a )2 (6)
Again, when we substitute a = i¢?, z = —i(¢—q~ '), we obtain the Akutsu-Wadati invariant:
Fio,, (ig*, —i(g —¢7")) = 4" =3¢" +¢" +9¢" = 17¢"" + ¢'° + 37¢" — 47¢" — 12¢"
+89¢° — 77¢° — 42¢* + 140¢® — 87¢* — 73q + 161 — 73¢™*
—87¢72 +140¢2 — 42¢~* — 77¢7 > +89¢™ % — 12¢7 — 47478
4370 40 17 4 9 2 B 3 M O (7)

Clearly, none of these invariants distinguishes 107, from its mirror image.
All these invariants can also be obtained from Chern-Simons theories. Such theories,
besides these yield a whole variety of new invariants which are powerful enough to detect

the chirality of knots 945 and 10;.

3. Invariants through Chern-Simons theory.
To evaluate new Chern-Simons invariants of knots 945 and 1071, we shall now describe
briefly the necessary aspects of the method[f, fj.

The metric independent action of Chern-Simons theory in a 3-manifold is given by
ks = / tr(AdA + 2 4% (8)
C Am 3

where A is matrix valued gauge connection of the gauge group G which for our present
discussion is SU(2). The gauge invariant operators of this topological field theory are given

in terms of Wilson loop(knot) operator:
Wg[C] = trgP expyéA
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for an oriented knot C' carrying representation R of the group G. The vacuum expectation
value for this operator is given in terms of the functional integral:

[[dAJWR[C] expikS

VRIC] = (WilC]) = = o ©)

Being obtained from a topological field theory this quantity depends only on the topological
properties of the knot and not on the geometric properties.

The knot invariants in eqn.(f) can be calculated by using a close relationship between
Chern-Simons theories on a three-manifold with boundary and the corresponding Wess-
Zumino conformal field theory on that boundary[§-[[[1]. The Chern-Simons functional
integral over a manifold is represented as a vector in the Hilbert space of the conformal
blocks associated with the boundary. For example, for a three-ball containing two Wilson
lines as shown in fig.3a, the functional integral is a vector |¢y) in the Hilbert space H
associated with boundary, four-punctured S?. Functional integral over the same ball but
with opposite orientation of its boundary (fig.3b) is represented by the state (¢| in the dual
Hilbert space H. The dimension of the space is given by the number of 4-point conformal
blocks on S?. For our purpose where spin % (n + 1 dimensional representation) live on
the punctures, the dimensionality of the Hilbert space is min(n,k —n) + 1. These states
can be expanded in terms of a complete set of basis. Two convenient choices of these
bases are those in which the braid matrix for side two strands or central two strands is
diagonal, |¢fi) or |¢¢t), 1 = 0,1,---,min(n,k —n). These basis vectors correspond to
two equivalent sets of conformal blocks for four-point correlators in SU(2); Wess-Zumino

model. These bases are related to each other by orthogonal duality matrices as depicted

below. The duality matrices aj, are given in terms of quantum Racah coefficients as [f]:

SIS
|3
SIS
N3
N3
SIS
SIS
|3




where

, n/2 n/2 j
ajez(—)“J‘”ﬂ2j+1][2€+1](/ / j)

n/2 n/2 {

and the quantum Racah coefficients are given by
Juo 2 iz
( ) ) ) ) = A(]la]27]12)A(,]37.747.]12)A(.]17J47j23)A(j37j27.]23)
J3 Ja  J23
> ()" m+ 10 [m — 5 — o — !
m2>0
[m — js — Ja — Jr2)![m — j1 — Ja — Jos)!
[m — js — jo — jos)![j1 + j2 + J3 + ja — m]!

. . . . . . . . -1
1+ Js + Jiz + Jos — m)W g2 + Ja + Jr2 + Jos — m]!}

and

| [ra+b+clfa—b+clla+b— (]
A(a’b’c>_$ [a+b+c+1]

—

Here [a]! = [a][a — 1][a — 2]...[2][1]. The SU(2) spins are related as 71 + jo+ 73 =

74, 71 + 72 = 712, 72 + 73 = 723 subject to the fusion rules of SU(2); conformal field
theory. Here the number in square bracket is the g-number defined as [n] = %.

The parameter ¢ is related to the coupling constant k of the Chern-Simons theory as :

q = exp(5).

The state [1)g) and its dual ()| corresponding to the fig.3a and fig.3b respectively can

be written in the eigen basis discussed above as follows:

|tho) = Z\/ [20 +1]67") = [n + 1]|¢6™™) (10)
(Y] = Z\/ [20+ 1] = [n + 1(g5™] (11)

Now, glueing these two figures along their oppositely oriented boundaries gives two disjoint
unknots and the link invariant given in eqn.(f]) is represented by the inner product (1o|t).

This gives the unknot polynomial for the Wilson lines carrying spin 3 representation to be:

VolU] = [n+1].



Another building block for our calculation is the functional integral over an S® from
which two three-balls have been carved out. The two boundaries so formed are connected
by four Wilson lines as shown in fig.4. The Chern-Simons functional integral over this
three-manifold operates like an identity and is given in terms of the basis vectors |¢§1)) and

\¢§2’) refering to the two boundaries as[f]:

ve =" 16")0”) (12)

Here the summation runs from 0 to minimum of n and k£ —n for spin 7 representation living
on the Wilson lines. In eqn.(IJ) the basis vectors [¢\") and |¢®) can both refer to either
the side strands or the central strands.

Yet another useful functional integral is over an S® with three three-balls removed from
it. The consequent three boundaries (each an S?) are connected by Wilson lines as shown

in fig.5. The Chern-Simons functional integral over this manifold is given by[{]:

1 cen cen cen
= Y im0y S 61 (13)
ijtm=0 1/ [2m + 1]
1 . . .
— Z ‘(ﬁ%)szde) |¢g)szde> |¢g)szde> (14>
m=0 1/ [2m + 1]

where superscripts 1, 2,3 refers to the conformal block bases on the three S? boundaries
1,2,3.

In the functional integral corresponding to fig.3, fig.4 and fig.5 we can introduce any
number of braids in various strands through the braiding matrix. The braiding matrix that
introduces half-twist in the side two strands is diagonal in the basis |¢{**). On the other
hand braid matrix that twists the central two strands is diagonal in the basis |¢f*™*). The
eigenvalues for these braiding matrices depend on the relative orientation of the strands
they twist. These eigenvalues are obtained from conformal field theory and are given for

right handed half-twists in parallely and antiparallely oriented strands respectively by [P]:

AP = (—1)nl gt -1+ D) 2



)\l(—) = (=1)!¢"™V2 1 = 0,1, -, min(n, k —n)

The properties of Chern-Simons functional integrals listed above can now be directly
used to compute the invariants for knot 94 and 107;. We begin with knot 945. Split the
knot as represented in fig.1b at marked points 1 to 4 by vertical planes. This breaks the
manifold into five pieces as shown in fig.6a-6e. The functional integral over each one of
them can now be readily computed. For example, the functional integral over the manifold
with one boundary in fig.6a, can be obtained by half-twisting the side two strands of fig.3a
three times to yield:

vi(P) = 3 /(20 + (1) igm sl gl (1)
=0
Similarly, the functional integral over the manifold in fig.6e, again with one boundary is:
vi(Py) = 3 (1) teg At Dl ) (16)
I5=0
The rest of the three manifolds have two boundaries. These can be evaluated from fig.4
and fig.5 and using the duality relationship between the two sets of bases [{]. The state
corresponding to fig.6b is

Z ApyrQjyrQAlor [2l2 + 1]

Vz(Pl; P2) =
11,51,l2,7=0 \V [QT + 1]

e e)y (A7)

The functional integral corresponding to fig.6¢ is
va(Py; Py) = 3 q**V]gp)) 1)) (18)
13=0
Similarly the fig.6d corresponds to
(P P) = Y (~1)q D aya,,000)1605) (19)
i2,j2,l4=0
Glueing these five pieces (fig.6a-6e) along the appropriate oppositely oriented boundaries
gets us back to knot 949 in S3. The final result is :



V9o = (—1)"g 20+ S~ oy 10/ [20, + 10/ [25 + 1]

r,l1,l2,51,j2=0

allralzrajlrajljz (_1)l1q3/2l1(l1+1)q3/2j1 (j1+1)q—lg(lg—l-l)qu(jz—l-l) (20)

n

for spin % representation living on the Wilson lines. In obtaining the final result (0), the

following identity involving the ¢-Racah coefficient has been used[d]:

Z(_ 1)n—l4q(n(n+2)—l4(l4+1))/

ly

25,0051, = (—1)71H2qULUHD+RGAD)2, (21)

The invariant (P0) can be evaluated explicitly for definite values of spin . This has

been done on computer by using macsyma package. The results are:
a) For n = 1, we get

Vil9s] = ¢ + ¢
This is same as eq.([) when divided by the unknot polynomial V;i[U] = ¢2 + ¢~2.
b) For n = 2, we get

Va9l =¢"' =+ +1+q¢7°—q 7 +q¢"

This is same as Akutsu-Wadati/Kaufmann polynomial (f]) when divided by the unknot
polynomial Va[U] = ¢~ + 1 +q.

¢) For n = 3, the polynomial is

‘/}’[942] — q45/2 _ q41/2 _ q39/2 + q35/2 + q23/2 + q21/2 _ q19/2 _ q17/2 + q13/2 _ q9/2

4 q5/2 4 q3/2 + q—3/2 4 q—5/2 . q—13/2 . q—15/2 4 q—21/2 + 2q—23/2
. q—27/2 + 2q—31/2 . 3q—35/2 . q—37/2 + q—39/2 + q—41/2 (22)

Let us now study the knot 107;. The Chern-Simons functional integral for this knot can
be obtained from the functional integrals over four 3-manifolds I, I1, I11 and IV as shown
in fig.7. The three 3-manifolds I, IT and I1] are three-balls with one boundary each (S5?).

The manifold IV has three boundaries, each an S?. Glueing these pieces together along
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their appropriate boundaries as shown in fig.7 yields knot 107; in S3. The rules of obtaining
Chern-Simons functional integrals stated above can now readily be applied to obtain these

functional integrals. The final answer for the knot invariant is:

imAmsQrm Qiy

B n n02) [2r + 1][25 + 1][2u + 1]
Va[1071] = (=1)"q Z \J 2m + 1]

,1,8,u,m=0

(_1)5 q—i(i-l-l)qm(m-l-l)q_r(r-i—l)qu(u-l-l)q%s(s-i-l) (23)

Here the identity given in eqn.(21)) has again been used.

This invariant has been evaluated for specific values of the spin § by macsyma package.
For n = 1 and n = 2, it reduces to the Jones and Akutsu-Wadati/Kauffman polynomials
(eqn.fl and []) upto the normalisation factor V;[U] = ¢ + ¢ and WU =q+1+q"!

respectively. For n=3, we have the polynomial:

%[1071] _ q63/2 4 2q61/2 + q59/2 . 3q57/2 . 4q55/2 + 7q53/2 4 10q51/2 . 15q49/2
_21q47/2 + 22q45/2 + 44q43/2 _ 25(_141/2 . 79q39/2 + 17q37/2 + 119q35/2
+8q33/2 _ 150q31/2 _ 54q29/2 + 172q27/2 + 99q25/2 _ 166q23/2 _ 144q21/2
+137¢"% + 174¢"7/% — 95¢"°/* — 180¢"/% 4 46¢"/* + 167¢"* + T7¢"/*
—138¢"* = 56¢** + 101¢'/? + 101¢7"/* — 56¢~*/* — 138¢ />
—|—7q_7/2 + 168q_9/2 + 46q—11/2 _ 182q_13/2 _ 96q—15/2 + 175q—17/2
+138q_19/2 _ 144q—21/2 o 165q_23/2 + 99q—25/2 + 171q—27/2 o 54q—29/2
—148q_31/2 + 8q—33/2 + 115q_35/2 + 16q—37/2 . 77q—39/2 . 23q—41/2

+44q—43/2 + 21q—45/2 o 21q—47/2 o 15q—49/2 + 10q—51/2 + 7q—53/2

_ 4q—55/2 _ 3q—57/2 4 q—59/2 4 Qq—6l/2 _ q—63/2 (24)

Clearly, unlike Jones, HOMFLY and Kauffman/Akutsu-Wadati polynomials for knot
940 and 1071, the spin % polynomials for these knots (eqns. PR3 and P4 respectively) do

indeed change under chirality tranformation q < ¢!

11



4. Concluding Remarks

3.
’ 20

It appears that spin %, 1 -+ polynomials are progressively more powerful. Upto
ten crossing, there are six chiral knots (942, 1048, 1071,109;, 10194 and 10;95) which are
not distinguished from their mirror images by Jones or its two-variable generalisation,
HOMFLY polynomial. Kauffman /Akutsu-Wadati polynomial is more powerful. It does
detect chirality of the knots 1045, 1091, 10194 and 10125, but not of knots 94 and 107;. We
have demonstrated that the new polynomials obtained from SU(2) Chern-Simons theory
corresponding to spin % living on the knot is powerful enough to distinguish even these
knots from their mirror images.
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Figure Captions:

Fig.1 Knot 945 as (a) the closure of a four-strand braid and (b) an equivalent

representation.
Fig.2 Knot 107,

Fig.3 Diagrammatic representation of (a) state |¢p) and (b) its dual (1| in terms of
three-balls.

Fig.4 Diagrammatic representation of the functional integral v, for a manifold with two

boundaries.

Fig.5 Diagrammatic representation of the functional integral v3 for a manifold with three

boundaries.

Fig.6 Knot 94 obtained by glueing five building blocks, (a)—(e), with suitable

entanglements.

Fig.7 Knot 107; obtained by glueing four building blocks, (I)~(IV), with suitable braidings.
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