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Black Hole Entropy from a Highly Excited Elementary String ∗

Romesh K. Kaul †

The Institute of Mathematical Sciences, Taramani, Chennai 600 113, India.

Suggested correspondence between a black hole and a highly excited elementary string is ex-
plored. Black hole entropy is calculated by computing the density of states for an open excited
string. We identify the square root of oscillator number of the excited string with Rindler energy
of black hole to obtain an entropy formula which, not only agrees at the leading order with the
Bekenstein-Hawking entropy, but also reproduces the logarithmic correction obtained for black hole
entropy in the quantum geometry framework. This provides an additional supporting evidence for
correspondence between black holes and strings.

It is now more than a decade since ’t Hooft suggested a complementarity between black holes and strings [1]. Black
hole horizon is governed by some conformal operator algebra on a two-dimensional surface. So is a string. These two
may be equally fundamental pictures, related by a complementarity. As emphasized by ’t Hooft, it may be possible to
provide a black hole interpretation of strings. Also conversely, black holes will have a string representation. This idea
is substantially further developed by Susskind’s suggestion that the spectrum of a Schwarzschild black hole is described
by the states of a highly excited (uncharged) string at Hagedorn temperature [2]. This allows a determination of the
black hole entropy by counting the number of states of an excited string. Thus we have a statistical interpretation
of the black hole entropy. More evidence of this correspondence has been subsequently presented in refs. [3–6] and
many others, where a variety of cases of black holes, non-rotating and rotating, uncharged and charged, in different
dimensions are studied from this perspective. In particular, Bekenstein-Hawking entropy of a Schwarzschild black
hole in four and also arbitrary dimensions is reproduced from the density of states of an excited string.

The correspondence principle for the two spectra, of a black hole and a highly excited elementary string, may be
understood as follows. As the string coupling gst (g2

st = (ℓP /ℓS)d−2 in d dimensions, ℓP is the Planck length and ℓS is
the string length scale) increases, the Compton wave length of a high mass and low angular momentum string state
shrinks to less than its Schwarzschild radius to become a black hole. On the other hand, as the coupling is reduced,
the black hole eventually becomes smaller than the string size. The metric near the horizon then loses its meaning
and instead of being a black hole such a system is better described as a string state. But at some intermediate size,
when the black hole size and string size are equal, either description is admissible. This would imply a one-to-one
correspondence between the spectra of black holes and strings [2].

At first this correspondence between the two sets of states appears to be beset with a difficulty. As functions
of mass, there is an apparent striking difference between the black hole density of states and the density of string
states. The latter in any dimensions grows exponentially in the first power of mass M of the excited string [7]. This

implies string entropy as linearly proportional to mass M , Sst ∼
√
α′ M∼

√
N , where α′ is the inverse of the string

tension and N is oscillator occupation number of the excited string state. In contrast, the density of states of a
black hole grows exponentially with the second power of mass in four dimensions (and in general as M (d−2)/(d−3)

in d dimensions). The corresponding entropy then is proportional to square of the mass in four dimensions (or to
M (d−2)/(d−3) in arbitrary d dimensions). As suggested by Susskind [2], this apparent discrepancy can be cured by a
proper identification that takes in to account a large mass-renormalization, a gravitational redshift. To do this use is
made of the fact that the near horizon geometry of a Schwarzschild black hole is a Rindler space with a dimensionless
time τR and a dimensionless energy ER. The Rindler mass and ADM mass of a black hole are related by a huge
redshift between the stretched horizon and asymptotic infinity. In d dimensions (d ≥ 4) the dimensionless Rindler
energy associated with a Schwarzschild black hole is given by [2,3]

ER =

(

2

d− 2

)

M (d−2)/(d−3)

(

16πG

(d− 2) Ad−2

)1/(d−3)

=

(

2

d− 2

)

M rBH , (1)

where Ad−2 is the area of a unit sphere of d− 2 dimensions, G is the Newton’s constant and rBH is the Schwarzschild
radius associated with mass M . In terms of Rindler energy, the horizon ‘area’ AH and Bekenstein-Hawking entropy
SBH of a Schwarzschild black hole in any arbitrary dimensions is given by
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AH = 8πGER, SBH = 2πER . (2)

That is, black hole density of states grows exponentially with Rindler energy in any dimensions. The string⇔black-hole

correspondence is then obtained when Rindler energy ER is identified with the square root of the oscillator number√
N of the highly excited string in any dimension. In particular, in four dimensions, N ∼ E2

R ∼ G2M4. This
identification, then gives the same leading order expression for the density of black hole states and that for the string
states allowing equality of Bekenstein-Hawking entropy of a black hole with that of an excited string in the leading
order. Further support for this correspondence is the consequent identification of Hawking temperature of the black
hole with red-shifted Hagedorn temperature associated with the excited string. Equivalently, the black hole size rBH

will get identified with the string length scale lS .
If the correspondence black-hole⇔string, with the identification of Rindler energy (ER) with the square root of the

oscillator occupation number (
√
N) of highly excited string, is strictly true, all other features of black holes must get

reflected in the string description too. In this context, ln(area) corrections to the Bekenstein-Hawking entropy, first
discovered in the quantum geometry framework, is of interest. In this framework, boundary degrees of freedom of a
black hole in four dimensional gravity are described by an SU(2) Chern-Simons theory on the horizon, with coupling
k proportional to the horizon area. The dimensionality of boundary Hilbert space can thus be readily computed by
counting the conformal blocks of SU(2)k conformal field theory on a two-sphere (spatial slice of the horizon) with a
number of punctures carrying SU(2) spin representations on them [8]. Then for large horizon area AH , the black hole
entropy Sbh has been found to be [9,10]

Sbh =
AH

4G
− 3

2
ln

(

AH

4G

)

+ · · · · · · (3)

There have also been other subsequent derivations of this ln(area) correction with the same coefficient −3/2 [11–14].
It appears to be universal in the sense that it obtains for a variety of black holes and also in different dimensions.

Thus, if black-hole⇔string correspondence is indeed true, the same correction as in eqn.(3) should be reflected in
the entropy of a highly excited string also. Over years, the counting of string states has been done in many places. In
the following, we shall recalculate the level density of a highly excited open string beyond the leading order carefully

taking into account contribution of the zero modes. It will be demonstrated that the string entropy does indeed receive
a correction −3/2 ln

√
N beyond the leading value proportional to

√
N . This may then be taken as an additional

evidence in support of the black-hole⇔string correspondence.
An open string moving in a d dimensional space-time is described by d two-dimensional fields Xµ(σ, τ), µ =

0, 1, 2, ....(d − 1) with 0 ≤ σ ≤ π, satisfying the string equation ∂2Xµ(σ, τ) − ∂2Xµ(σ, τ) = 0 subject to boundary
conditions reflecting no flow of momentum from the string ends: ∂σX

µ(σ, τ) = 0 at σ = 0 and σ = π. The string
equation is satisfied by

Xµ = xµ + ℓ2S pµ τ + iℓS
∑

n6=0

1

n
αµ

n e−inτ cosnσ

where ℓS =
√

2α′ = 1/
√
πT is the fundamental string length (our units are h̄ = c = 1), T is string tension. The

center of mass coordinate is xµ and string momentum is pµ. The commutation relations satisfied by the various
operators are

[ xµ , pµ ] = iηµν , [αµ
m , αν

n ] = m δm+n,0 η
µν ,

where ηµν is the flat metric in d dimensional space-time. This theory has a reparametrization invariance (σ, τ) →
(σ′, τ ′) generated by Virasoro constraints: (∂τX

µ ± ∂σX
µ)2 = 0. This may be fixed by a gauge choice, in particular

by light-cone gauge introducing a preferred longitudinal direction in space: X+ = x+ + ℓ2S p+ τ , where the light-cone

coordinates are X± = (X0 ±Xd−1)/
√

2. In this gauge all the oscillators α+
n = 0 (n 6= 0) and also the coordinates

X−(σ, τ) and hence p− and α−
n are not independent. Only independent variables are transverse coordinates, momenta

and oscillators: xi, pi, αi
n (n 6= 0) with i = 1, 2, 3, ....d− 2. The τ -translation generating Hamiltonian is given by

H = ℓ2S p+p− =
1

2
ℓ2S (pi)2 + N − a (4)

where a = (d − 2)/24 is the normal ordering constant and N =
∑d−2

i=1

∑∞
m=1 α

i
−m αi

m is the oscillator number
operator whose eigenvalues are the occupation number of the state, N | ψN >= N | ψN >.

It is convenient to introduce the standard oscillators:
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ai
m

†
=

1√
m
αi
−m, ai

m =
1√
m
αi

m m > 0

which satisfy the standard oscillator commutation relations:

[ ai
m, a

j
n

†
] = δmn δij .

The occupation number operator in terms of number operators Nm for these standard oscillators is

N =

∞
∑

m=1

m Nm ≡
∞
∑

m=1

d−2
∑

i=1

m ai
m

†
ai

m, (5)

where Nm has the standard oscillator eigenvalues 0, 1, 2, 3......
The mass of an excited string of level N is given by ℓ2SM

2
N = 2(N − a). To count the quantum states of such a

string, we write the partition function as a function of a complex parameter τ as (we set ℓS = 1 in the following):

Z(τ) = Tr e2πiHτ = Tr exp

[

2πiτ

(

(pi)2

2
+ N − a

) ]

. (6)

Here Tr represents integration over the transverse string momentum pi and trace over the oscillator states. That is,

Z(τ) =

∫

(

dd−2pi
)

eπiτ(pi)2tr exp [2πiτ (N − a)] =

(

1

−iτ

)(d−2)/2

e−2πiτa tr exp [2πiτN ] , (7)

where now tr represents trace over the oscillator states only. Notice that

tr e2πiτN =
∞
∑

m=1

e2πimτNm =

(

∞
∑

N=1

p(N)e2πiNτ

)d−2

where p(N) is the number of partitions of N in terms of positive integers. Now there is a standard formula in number
theory:

f−1(τ) ≡
∞
∑

N=1

p(N) e2πiNτ =

∞
∏

n=1

(

1 − e2πinτ
)−1

.

The function f(τ) is related to Dedekind eta function as: η(τ) = exp(iπτ/12) f(τ). Thus the partition function is

Z(τ) =

(

1

−iτ

)(d−2)/2
1

[η(τ)]
d−2

.

Next note Dedekind eta function has the property: η(−1/τ) = (−iτ)1/2 η(τ). Using this, the partition function can
be written as

Z(τ) =
1

[η(−1/τ)]
d−2

=
e2πia/τ

[f(−1/τ)]
d−2

(8)

To find the density d(N) of string states with occupation number N , we write

Z(τ) =

∞
∑

N=0

d(N) e2πi(N − a)τ . (9)

Equating the two expressions in eqns.(8) and (9) and inverting for the level density, we have

d(N) =

∫

dτ
exp [−2πi ( (N − a)τ − (a/τ))]

[f(−1/τ)]
d−2

. (10)

For large N , this can now be approximately evaluated by the saddle point method. The saddle point is at τ0 =
i
√

a/(N − a). Expanding around this point τ = τ0 + u and performing the Gaussian integration over u yields the
level density as
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d(N) ≃
(

a1/2

2(N − a)3/2

)1/2

exp
(

4π
√

a(N − a)
)

,

where f(−1/τ0) → 1 for large N has been used. Finally density of string states for large occupation number N can
be asymptotically written as:

d(N) ≃ C
a exp

(

4π
√
aN
)

(aN)3/4
+ · · · · · · , (11)

where C is an N independent irrelevant constant and a = (d − 2)/24. This is the same formula as that obtained by
Carlip for density of states with eigenvalues of Virasoro operator L0 as ∆ = N − a in a general rational conformal
field theory of central charge c = 24a [11]. The asymptotic level density of string states has been calculated in many
places, the earliest computation for a string in d = 26 dimensions was done in refs. [7] where the rapidly growing

exponential dependence on
√
N was correctly obtained. However, there is now an additional factor of N−3/4. This

introduces a logarithmic correction to the entropy Sst of a highly excited string:

Sst = ln d(N) ≃ 4π
√
aN − 3

2
ln
√
aN + lna − · · · · · · (12)

Finally following Susskind we identify Rindler energy of the black hole with
√
N as ER = 2

√
aN , and rewrite the

entropy of a highly excited string as

Sst = 2πER − 3

2
lnER − · · · · · · (13)

Clearly this entropy has same logarithmic correction beyond the Bekenstein-Hawking area law as that obtained for the
black hole entropy in quantum geometry framework [9]. This correction exits not only for excited strings describing
Schwarzschild black holes in any arbitrary dimensions as above, but also all other cases discussed in refs. [3,4,6]. We
emphasize that this thus provides an additional evidence in favour of the excited-string⇔black-hole correspondence.

In the derivation of level density above, it is important to take account of the zero modes carefully. This has been
done by including the integration over pi in the partition function in eqn.(7). If this were not included, then non-
exponential part of level density formula (11) above would have changed from dimension independent factor N−3/4

to N−(d+1)/4 as has been found in some of the early calculations of level density (for example, see ref. [15] for the
case of d = 26).

Our discussion here has been for generic black holes, say, Schwarzschild black holes in any dimensions. Though
level density above has been calculated for an open string, the asymptotic formula (11) is valid in general in any
string theory. In particular, this also obtains for the level density of BPS elementary string states of the superstring
theories. For extremal black holes of these superstring theories for which no mass renormalization takes place, the
correspondence between strings and black holes sharing the same macroscopic quantum numbers may be applied
directly. This allows a counting of weakly coupled BPS string states which can be directly related to degeneracy of
these extremal black holes reproducing the Bekeintein-Hawking entropy in the leading order [16,17]. The correction
beyond Bekenstein-Hawking entropy obtained here holds for the Bogomol’nyi saturated elementary string states too
[11].

Like black holes, entropy of de Sitter space can also be given a string interpretation [18]. Here also geometry near
the cosmological horizon is given by a Rindler space. Thus de Sitter space may well be described by a string on the
stretched horizon through the same identification of Rindler energy with square root of the oscillator number. The
entropy so calculated, beyond the usual area law would also have the same logarithmic correction as discussed above.
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[1] G. ’t Hooft, Nucl. Phys. B335 (1990) 138.
[2] L. Susskind, Some Speculations about Black Hole Entropy in String Theories, hep-th/9309145.
[3] E. Halyo, A. Rajaraman and L. Susskind, Phys. Letts. B392 (1997) 319; E. Halyo, B. Kol, A. Rajaraman and L. Susskind,

Phys. Letts. B401 (1997) 15.

4



[4] G.T. Horowitz and J. Polchinski, Phys. Rev. D55 (1997) 6189.
[5] T. Damour and G. Veneziano, Nucl. Phys. B568 (2000) 93.
[6] E. Halyo, Jour. High Energy Physics 0112 (2001) 005.
[7] S. Fubini and G. Veneziano, Nuovo Cim. A64 (1969)811; K. Huang and S. Weinberg, Phys. Rev. Letts. 25 (1970) 895.
[8] R. K. Kaul and P. Majumdar, Phys. Lett. B439 (1998)267.
[9] R. K. Kaul and P. Majumdar, Phys. Rev. Lett. 84 (2000) 5255.

[10] S. Das, R. K. Kaul, and P. Majumdar, Phys. Rev. D63 (2001) 044019.
[11] S. Carlip, Class. Quant. Grav. 17 (2000) 4175.
[12] T. R. Govindarajan, R. K. Kaul, and V. Suneeta, Class. Quant. Grav. 18 (2001) 2877.
[13] D. Birmingham and S. Sen, Phys. Rev. D63 (2001) 047501; K. S. Gupta and S. Sen, Phys. Lett. B526 (2002) 121; K. S.

Gupta, Near Horizon Conformal Structure and Entropy of Schwarzschild Black Holes, hep-th/0204137.
[14] G. Gour, Phys. Rev. D66 (2002) 104022.
[15] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, vol 1, page 118, Cambridge University Press, 1987.
[16] A. Sen, Mod. Phys. Lett A10 (1995) 2081.
[17] A. Strominger and C. Vafa, Phys. Letts. B379 (1996) 99.
[18] E. Halyo, De Sitter Entropy and Strings, hep-th/0107169.

5


