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Abstract

We show that any of the new knot invariants obtained from Chern-Simons theory

based on an arbitrary non-abelian gauge group do not distinguish isotopically inequivalent

mutant knots and links. In an attempt to distinguish these knots and links, we study

Murakami (symmetrized version) r-strand composite braids. Salient features of the theory

of such composite braids are presented. Representations of generators for these braids

are obtained by exploiting properties of Hilbert spaces associated with the correlators

of Wess-Zumino conformal field theories. The r-composite invariants for the knots are

given by the sum of elementary Chern-Simons invariants associated with the irreducible

representations in the product of r representations (allowed by the fusion rules of the

corresponding Wess-Zumino conformal field theory) placed on the r individual strands of

the composite braid. On the other hand, composite invariants for links are given by a

weighted sum of elementary multicoloured Chern-Simons invariants. Some mutant links

can be distinguished through the composite invariants, but mutant knots do not share

this property. The results, though developed in detail within the framework of SU(2)

Chern-Simons theory are valid for any other non-abelian gauge group.
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1 Introduction

Since the original work of Jones [1], there has been a lot of interest in polynomial invariants

associated with knots [2]-[6]. Following Witten’s pioneering work, numerous new knot

invariants have been obtained from Chern-Simons theory based on a compact semi-simple

gauge group [6]-[12]. The expectation values of the Wilson loops, which are the observables

of the Chern-Simons theory, give these new knot invariants. An alternative method of

obtaining these invariants involves study of N -state vertex models [13]. Representation

theory of quantum groups provides yet another framework in which these invariants can

be studied [14].

Two of the outstanding problems of knot theory are (i) detection of chirality of knots

and links and (ii) distinguishing isotopically distinct mutant knots and links through the

polynomial invariants. It is well known that Jones, HOMFLY and Kauffman/Akutsu-

Wadati polynomials do not detect chirality of some of the knots. Within Chern-Simons

field theoretic framework, Jones and Akutsu-Wadati polynomial correspond to SU(2) the-

ory with spin 1/2 and spin 1 representations respectively on the Wilson lines while HOM-

FLY and Kauffman polynomials correspond to N -dimensional representation of SU(N)

and SO(N) theories respectively. We have shown in our earlier work [15, 12] that the

link invariants obtained by putting spin 3/2 representation on the Wilson lines in SU(2)

Chern-Simons theory do detect chirality of knots upto at least 10 crossings. It appears

going higher in spin, yields more powerful invariants.

It is also known that a class of knots and links, called mutants, are not distinguished

by Jones, Kauffman/Akutsu-Wadati and HOMFLY polynomials. We shall demonstrate

that even more general Chern-Simons invariants associated with arbitrary representations

of any compact semi-simple gauge group are not powerful enough to distinguish mutants.

This result follows from the braiding properties of four-point correlators of the correspond-

ing Wess-Zumino conformal field theory on S2. In particular, the commonly referred class

of pretzel knots (related to each other by a sequence of mutations) are not distinguished

by any of these invariants.

To improve the classification scheme, we study the Murakami r-parallel version of
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braids [16] in SU(2) Chern-Simons theory. Instead of the original form of these compos-

ite braids, we shall develop our discussion for a symmetrized, though equivalent, version.

Representations of the composite braids (symmetrized version) will be obtained in the

basis of conformal blocks of SU(2)k Wess-Zumino theory. The link invariants constructed

from these composite representations will be referred to as r-composite invariants in con-

trast to the elementary Chern-Simons invariants. In fact the r-composite invariants for

knots are simply the sum of Chern-Simons invariants associated with the irreducible rep-

resentations (allowed by the fusion rules of the corresponding Wess-Zumino conformal

field theory) in the product of r representations living on the individual strands consti-

tuting the r-composite braid. The composite link invariants also turn out to be a weighted

sum of elementary multicolour Chern-Simons invariants with the weights given in terms

of the linking number and the colours of the links. We find that some mutant links are

distinguished by the invariants associated with the composite braids whereas all mutant

knots are not. The method is general enough to apply to Chern-Simons theory based on

any arbitrary gauge group.

In sec.2, after defining the operation of mutation, we present a general proof that

the field theoretic invariants do not distinguish mutants. This is done in the Chern-

Simons field theory based on any arbitrary non-abelian gauge group. In sec.3, we develop

the theory of r-composite braids. We present the representation theory of composite

braids for r = 2 explicitly in the bases associated with the Hilbert space of SU(2) Wess-

Zumino conformal blocks. The results are then generalized to r-composite braids. In sec.4,

the invariants obtained from the composite braid group representations are presented.

We show that some mutant links are distinguished by the invariants of their associated

composite links. In this context, pretzel links are studied as an example. In contrast, we

demonstrate that the mutant knots are not detected by the composite knot invariants.

Kinoshita-Terasaka and Conway knots are discussed as an example of a pair of mutant

knots. We summarize the results in sec. 5.
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2 Mutants and their Chern-Simons invariants

Let a link L1 be obtained from two rooms �

��
S

R 	

	R

and �

��
R

R 	

	R

with two strands going in and

two leaving in each of them as shown in Fig.1(a). The mutant links are obtained in the

following way: (i) Remove one of the rooms, say �

��
R

R 	

	R

from L1 and rotate it through π

about any one of the three orthogonal axes (γi) as shown in Fig.2. Clearly only two of

these rotations are independent: γ3 = γ1 ∗ γ2. (ii) Change the orientations of the lines

inside the rotated room ��
��
γiR

R 	

	 R

to match with the fixed orientations of the external legs

of the original room �

��
R

R 	

	R

. (iii) Then, replace this room back in L1. This yields mutant

links L2 and L3 as shown in Fig.1(b) and (c).

It is known that isotopically distinct mutants have same Jones, HOMFLY and Akutsu-

Wadati/Kauffman invariants. In fact, all the knot polynomials obtained in the Chern-

Simons theory do not distinguish these mutants. To show this, observe that the link L1

in S3 can be obtained by gluing a 3-ball containing room �

��
R

R 	

	R

as shown in Fig.3(a)

with another 3-ball with oppositely oriented boundary S2 containing room �

��
S

R 	

	R

as

shown in Fig.3(d). Similarly, gluing Fig.3(b) and Fig.3(c) with Fig.3(d) will give the the

corresponding mutant links L2 and L3. Further, consider an S3 with two balls removed

from it. We place four lines, connecting the two boundaries, in it without any twist and

with twists as shown in Fig.4(a), (b) and (c). Notice, gluing the three-ball of Fig.3(a) onto

the manifold in Fig.4(a) does not change the three-ball. On the other hand, gluing this

three-ball onto manifolds in Fig.4(b) and (c) yields the 3-balls shown in Fig.3(b) and (c)

respectively. Thus gluing the manifolds of Fig.4(b) and (c) onto the manifold of Fig.3(a)

is equivalent to introducing rotations γ1 and γ2 respectively.

To study the Chern-Simons invariants associated with mutants, we place the Wilson

line operator carrying representation R of gauge groupG on the strands. We are interested

in evaluating the Chern-Simons functional integral over the manifolds of Figs.3 and 4.

These functional integrals represent states in the Hilbert space of the 4-point correlator

conformal blocks associated with 4-punctured S2 boundaries [6]-[12]. In particular, the

functional integral over the three-manifold with two boundaries and four untwisted Wilson
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lines connecting these boundaries as shown in Fig.4(a) can be represented as [10]-[12]

ν1 =
∑

l

|φ
side (1)
l 〉|φ

side (2)
l 〉 . (1)

Here |φ
side (1)
l 〉 and |φ

side (2)
l 〉 are the basis vectors of the two Hilbert spaces associated

with two boundaries of the manifold respectively. Superscript “side” on the basis states

indicate that these basis vectors are eigen states of the braiding generator b1 and b3

introducing half-twists in the first two or the last two strands:

b1|φ
side
l 〉 = b3|φ

side
l 〉 = λ

(−)
l (R, R̄)|φside

l 〉 . (2)

Here the side two strands in Fig.4(a) are antiparallel and carry representation R and R̄,

the index l runs over all the irreducible representations in the fusion rule of R ⊗ R̄ of

the corresponding Wess-Zumino model. An equivalent basis |φcent
m 〉 is one where braid

generator b2, which introduces half-twists in the central two strands, is diagonal:

b2|φ
cent
m 〉 = λ(+)

m (R,R) |φcent
m 〉 . (3)

Since this refers to parallel strands in Fig.4(a) both carrying representation R, the index

m refers to the allowed irreducible representations in the fusion rule R ⊗ R of the corre-

sponding Wess-Zumino model. The eigenvalues λ
(−)
l (R, R̄) and λ(+)

m (R,R) for antiparallel

and parallel strands are respectively [10]:

λ
(−)
l (R, R̄) = (−1)ǫ qCl/2 ; λ(+)

m (R,R) = (−1)ǫ q2CR−Cm/2 , (4)

where CR, Cm and Cl are the quadratic Casimirs in the representations R, m and l re-

spectively. Depending upon the representation l (m) occuring symmetrically or antisym-

metrically in the tensor product R⊗ R̄ (R⊗R), ǫ = ±1. Further q = exp 2πi/(k + Cv),

where Cv is the quadratic Casimir in the adjoint representation and k is the Chern-Simons

coupling.

The two bases are related by q-Racah coefficient of the quantum group Gq[17, 10]:

|φside
l 〉 =

∑

m

alm





R̄ R

R R̄



 |φcent
m 〉 . (5)

The Chern-Simons functional integral ν2 over the 3-manifold shown in Fig.4(b) is

generated by applying braid generators b1 and b−1
3 on the identity braid of Fig.4(a). Since
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b1 and b3 commute and hence are diagonal in the same basis |φside
l 〉 and also have the

same eigenvalues (2), the functional integral ν2 for manifold of Fig.4(b) is same as that

for the manifold in Fig.4(a):

ν2 =
∑

l

|φ
(1)
l 〉b1b

−1
3 |φ

(2)
l 〉 = ν1 . (6)

Though as a braid Fig.4(a) is isotopically different from Fig.4(b), the properties of the

braid representations in terms of four-point conformal blocks are responsible for ν1 to be

equal to ν2. Such statements will not hold if we increase the number of Wilson lines in

these manifolds.

In order to obtain the action of a γ2-mutation on any state, let us consider the Chern-

Simons functional integral ν3 corresponding to Fig.4(c). This can be obtained from the

state ν1 representing the functional integral on the manifold of Fig.4(a) by applying

b1b2b1b3b2b1 on it:

ν3 =
∑

l

|φ
side(1)
l 〉b1b2b1b3b2b1|φ

side(2)
l 〉 . (7)

Now we use the fact that in this Hilbert space associated with four-punctured S2, b1 = b3

(2). Further, for an n-strand braid on S2, there is an identity b1b2....bn−2b
2
n−1bn−2.....b2b1 =

1. This in our case n = 4, reduces to b1b2b
2
3b2b1 = 1. This makes the functional integral

ν3 to be equal to ν1. Hence,

ν3 = ν1 = ν2 . (8)

Now let us turn to the Chern-Simons functional integrals for one-boundary manifolds

shown in Fig.3. We shall represent them by vectors |ψ1〉, |ψ2〉 and |ψ3〉 respectively. These

are related to each other through the functional integrals ν2 and ν3. As stated earlier,

gluing the manifold of Fig.4(a) onto that of Fig.3(a) along an oppositely oriented boundary

does not change the manifold. However, gluing the manifolds of Fig.4(b) and (c) onto

that of Fig.3(a) changes them to the mutants depicted in Fig.3(b) and (c) respectively.

These imply the following relations for the respective functional integrals:

|ψ1〉 = ν1|ψ1〉 , |ψ2〉 = ν2|ψ1〉 , |ψ3〉 = ν3|ψ1〉 . (9)

where the functional integrals ν1, ν2 and ν3 now refer to manifolds in Fig.4(a), (b) and
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(c) with opposite orientations on the two boundaries. Thus eqn.(8) yields:

|ψ1〉 = |ψ2〉 = |ψ3〉 . (10)

Now the Chern-Simons functional integrals over S3 containing links L1, L2 and L3

(Fig.1), VR[L1], VR[L2] and VR[L3], are given by the products of vector 〈Φ| representing

the functional integral over the manifold shown in Fig.3(d) containing room �

��
S

R 	

	R

and

|ψ1〉, |ψ2〉 and |ψ3〉 representing Figs.3(a), (b) and (c) respectively:

VR(L1) = 〈Φ|ψ1〉, VR(L2) = 〈Φ|ψ2〉, VR(L3) = 〈Φ|ψ3〉. (11)

Equation(10) then implies

VR[L1] = VR[L2] = VR[L3]. (12)

Thus we have shown that invariants of a link and its mutants are identical for every

representation R of a compact semi-simple gauge group, placed on all the Wilson lines

constituting the links.

As mentioned earlier, the well-known invariants viz., Jones, HOMFLY and Kauff-

man polynomials are obtained from SU(2), SU(N) and SO(N) Chern-Simons theories

respectively. Also Akutsu-Wadati polynomials [13] obtained from N state vertex models

correspond to SU(2) with spin N/2 representation being placed on the knot/link. Hence

the fact that all these polynomials do not distinguish mutants is a special case of the

above result.

As an example, we now discuss the class of pretzel links obtained by stacking m vertical

braids with arbitrary number of half-twists (a1, a2, ...am) as shown in Fig.5. All possible

permutations P of these vertical braids with different half-twists P(a1, a2, ...am) can be

treated as a product of mutations of the vertical braids in pair. HOMFLY invariants for

these links are shown to be same by Lickorish and Millett [18]. Our arguments above

demonstrate that even other Chern-Simons invariants with same representation on the

component knots are identical for these links:

VR(L[a1, a2, ...am]) = VR(L[P(a1, a2, ...am)]).

It is appropriate at this point to mention that some mutant links can be distinguished

through multicolour link invariants Ref.[10, 11] by placing different representations on the
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component knots. These mutant links are those related by mutations (γ1, γ2 or γ3) in

rooms containing strands carrying different representations.

3 Theory of composite braids

We saw in the last section that interesting identities of four point conformal blocks were

responsible for the inability of any polynomial invariant defined from Chern-Simons theory

to distinguish the mutant knots and links. Such identities are not valid for higher point

conformal blocks. Composite braids when placed in a manifold with two S2 boundaries,

result in higher number of punctures on the boundaries. This raises the hope that one may

be able to distinguish mutant knots and links through invariants constructed from the

representations of these braids. Theory of r-parallel composite braids has been developed

by Murakami [16]. We shall develop the representation theory of these composite braids

in the conformal block basis.

In Murakami’s construction of r-parallel version of the braids, every strand is replaced

by a composite of r strands. The elementary generators bi (i = 1, 2...n− 1) of the braid

group Bn are replaced by (n − 1) composite braid generators φr(bi) ∈ Brn as shown in

Fig.6(a) which depicts a map from Bn → Brn. In terms of the elementary braid generators

bi, the composite braid generators are given by:

φr(bi) = (b(ri− r + 1, ri− 1))(−r) b(ri, ri+r−1) b(ri−1, ri+r−2) ......b(ri−r+1, ri) .

(13)

where b(i, j) = bibi+1...bj . We shall, however, use a different construction of composite

braids as shown in Fig.6(b) and (c). This one is symmetric in the two composite legs,

each leg is twisted around itself by π, as against the Murakami version of Fig.6(a), where

only one leg is twisted around itself by 2π. The symmetrized r-composite braid generators

will be denoted by B(r). These generators for parallel composite braids(Fig.6(b)) can be

represented in terms of elementary braid generators as:
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B(r)(bi) = b(ri− r + 1, ri− 1)−1b(ri− r + 2, ri− 1)−1....b(ri− 1, ri− 1)−1

b(ri+ 1, ri+ r − 1)−1b(ri+ 2, ri+ r − 1)−1....b(ri+ r − 1, ri− 1)−1

b(ri, ri+ r − 1)b(ri− 1, ri+ r − 2) ...b(ri− r + 1, ri) . (14)

where b(i, j) = bibi+1....bj .

The braid generators for the composite braid, like the Murakami generators [16], satisfy

the braid group identities:

B(r)(bi) B(r)(bj) = B(r)(bj) B(r)(bi) , for |i− j| > 1 (15)

B(r)(bi) B(r)(bi+1) B(r)(bi) = B(r)(bi+1) B(r)(bi) B(r)(bi+1) . (16)

The closures of composite braids give knots and links. The closure respects the invari-

ance under Markov moves (Fig.7):

closure(AB) = closure(BA) , (17)

closure(A B(r)(b±1
n )) = closure(A) . (18)

where A and B are elements of composite braid group Bn.

The above composite braid formalism can be generalised for antiparallel strands also.

This will enable us to obtain any knot or link by platting of braids [11, 12]. Such a braid

is drawn in Fig.6(c). A corresponding representation in terms of the elementary braid

generators can also be written down.

We shall now develop explicit representations for the composite braid generators

B(r)(bi) in the SU(2) conformal block basis. For simplicity, the discussion will be pre-

sented for composite braids made of two strands, r = 2. Generalizations to other values

of r is straightforward.

For r = 2, the generators for composite parallel braids can be written as:

B(2)(bi) = b−1
2i−1 b

−1
2i+1b(2i, 2i+ 1) b(2i− 1, 2i) . (19)

Similarly, the generators for the antiparallel composite braids are:

B(2)(bi) = b2i−1 b2i+1b(2i, 2i+ 1) b(2i− 1, 2i) . (20)
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The representations of braid generators B(2)(bi) can be obtained in terms of the repre-

sentations of the elementary braiding generators bi and the duality matrix (5) relating the

eigen bases of bi and bi+1 in the SU(2) Chern-Simons framework. Let us consider a four

strand braid carrying a spin j representation. Associated composite braid with r = 2 will

have eight elementary strands. We start with the identity operator χ1 in a manifold with

two S2 boundaries as shown in Fig.8(a) and act on this by B(2)(b2) to obtain a composite

braid χ2 as shown in Fig.8(b). The Chern-Simons functional integrals over mainfolds χ1

and χ2 can be expanded in terms of convenient conformal block bases associated with

Wess-Zumino theory on the two eight-punctured S2 boundaries in the same manner as

in Ref.[11]. We shall show that the composite braid B(2)(b2) is diagonal in the confor-

mal block bases |φ〉 of SU(2) Wess-Zumino theory drawn in Fig.9(a). In this figure, at

every trivalent point, the various spins obey the fusion rules of the SU(2) Wess-Zumino

conformal field theory. Thus we write the functional integrals over manifolds χ1 and χ2

as:

χ1 =
∑

li,mj

|φ
(1)
l1,(l2,l3,n1),l4

〉|φ
(2)
l1,(l2,l3,n1),l4

〉 , (21)

χ2 = B(2)(b2)χ1 =
∑

li,mj

|φ
(1)
l1,(l2,l3,n1),l4

〉B(2)(b2)|φ
(2)
l1,(l2,l3,n1)l4

〉 , (22)

where the superscript (1) and (2) on the basis vectors corresponds to the two S2 bound-

aries.

Writing the right-handed parallel composite braid generator explicitly in terms of the

elementary braid generators, b−1
3 b−1

5 b4b5b3b4,its eigenvalues as indicated in Appendix, turn

out to be:

B(2)(b2)|φl1,(l2,l3,n1),l4〉 = λ̃(+)
n1

(l2, l3)|φl1,(l3,l2,n1),l4〉 ,

λ̃(+)
n1

(l2, l3) = (−1)n1qCl2
+Cl3

−Cn1
/2 . (23)

Similarly, the eigen basis for the commuting composite generators B(2)(b1) and B(2)(b3) can

be shown to be that associated with the eight point conformal blocks of Fig.9(b) denoted

as |φ̂(l1,l2,m1),(l3,l4,m1)〉 with eigenvalues λ̃(+)
m1

(l1, l2) and λ̃(+)
m1

(l3, l4) for parallel composite

braids, respectively.
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Following Appendix, it is straightforward to work out the eigenvalues for the

righthanded antiparallel composite braid operator of Fig.6(c). These eigenvalues for

B(2)(b2) are found to be

λ̃(−)
n1

(l2, l3) = (−1)n1qCn1
/2 . (24)

The absence of l2 and l3 in the expression on the right-hand side, in contrast to that for par-

allel braids (23) is consistent with first Reidemeister move. The eigen basis for this opera-

tor is the same as for the corresponding parallel composite braid above. Notice that these

eigenvalues do not explicitly depend on the spin j of the external eight lines of the confor-

mal bases. These depend only on the spins on the internal lines. The above discussion has

been developed for symmetrized version of the composite braids (Fig.6(b),(c)). The eigen-

values of the braid matrix here have a symmetric form. For the original composite braids

of Murakami (Fig.6(a)), these eigenvalues are different. For parallel (+) and antiparallel

(−) composite braids, these turn out to be λ̂(±)
n1

(l2, l3) = (−1)l2±l3q
Cl3

−Cl2
2 λ̃(±)

n1
(l2, l3).

The eigen bases of odd-indexed generators B(2)(b1), B(2)(b3) and even-indexed gener-

ator B(2)(b2) are related by the four-point duality matrix relating the internal lines with

spins l1, l2, n1, l3, l4 in Fig.9(a) and spins l1, l2, m1, l3, l4 in Fig.9(b):

〈φ̂(l1,l2,m1),(l3,l4,m1)|φl1,(l2,l3,n1),l4〉 = am1n1





l1 l2

l3 l4



 . (25)

Notice again, like the eigenvalues of composite braids above, it is the duality matrix

relating only the internal spins that appears here.

We have completely determined the theory of composite braid for the r = 2 case.

Generalisation to r-composite braids with arbitrary number (n) of strands can be easily

done. The relevant conformal block bases (Fig.10(a),(b)) are the extensions of the confor-

mal blocks (Fig.9(a),(b)). The li (i ∈ [1, n]) are the allowed representations in the tensor

product of the r spin j representations of the SU(2) Wess-Zumino model. The composite

strands made up of r individual strands, all carrying spin j, have been represented by

thick external lines as shown in Fig.10(c).

The odd-indexed composite braid generator B(r)(b2i+1) is diagonal in the SU(2) con-

formal block basis |φ̂〉 of Fig.10(a):
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B(r)(b2i+1)|φ̂ [(l1, l2, m1), s0, (l3, l4, m2), s1, ...si−1, (l2i+1, l2i+2, mi+1), ..]〉 =

λ̃mi+1
(l2i+1, l2i+2)|φ̂ [(l1, l2, m1), s0, (l3, l4, m2), s1, ...si−1, (l2i+2, l2i+1, mi+1), si, ....]〉 , (26)

where the eigenvalue for parallel (+) and antiparallel (−) braid generators introducing

righthanded half-twists are:

λ̃(+)
mi+1

(l2i+1, l2i+2) = (−1)2l2i+1−mi+1qCl2i+1
+Cl2i+2

−Cmi+1
/2 , (27)

λ̃(−)
mi+1

(l2i+1, l2i+2) = (−1)mi+1qCmi+1
/2 . (28)

The eigenvalues are symmetric under interchange l2i+1 ↔ l2i+2. (Notice that the lis are

either all integer or all half-integers and hence (−1)2li = (−1)2lj ). The half-twist operator

B(r)(l2i+1), in addition to interchanging the internal labels l2i+1 and l2i+2 of the conformal

block also reverses the order of the external r-legs of each composite strand (thick line)

connected to these two internal lines.

The eigen basis |φ〉 for the even indexed composite generator B(r)(b2i) are diagonal in

the basis of Fig.10(b):

B(r)(b2i)|φ [l1, (l2, l3, n1), r1, (l4, l5, n2), r2, ...ri−1, (l2i, l2i+1, ni), ri, ....]〉 =

λ̃ni
(l2i, l2i+1)|φ [l1, (l2, l3, n1), r1, (l4, l5, n2), r2, ...ri−1, (l2i, l2i+1, ni), ri, ....]〉 , (29)

with eigenvalues given by eqn.(27) and (28) for parallel and antiparallel righthanded

twists.

Using methods of Ref.[11], the generalised transformation matrix relating the two

bases in eqns.(26, 29) (Fig.10(a) and (b)) can be seen to be:

〈φ̂|φ〉 =
∏

i

arimi+1





si−1 l2i+1

l2i+2 si





∏

i

asi−1ni





ri−1 l2i

l2i+1 ri



 , (30)

where r0 = l1 and s0 = m1.

Equations (26 - 30) constitute the composite braid representations.

Thus it is clear that only the irreducible representation in the product of spin j carried

by the individual elementary strands in a r-composite strand appear in the representation
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theory of the composite braids, i.e., in the braid eigenvalues (27,28) and generalised

duality matrix (30).

This completes our discussion of representation theory of composite braid in the SU(2)

Chern-Simons framework. The formalism developed here can be extended to any compact

semi-simple group. Further, we have placed the same set of r-representations in each

composite strand. We could as well place different sets of r-representations on the different

composite strands. Theory of such multicoloured composite braids can also be developed

in a similar fashion.

4 Mutants and composite braids

After the above discussion of the representation theory of composite braids, we now take

up the question whether mutant knots/links can be distinguished by invariants obtained

from these new representations of the braid group. From sec.1, we know that it was the

result in eqn.(8) asserting the equality of Chern-Simons functional integrals associated

with Fig.4(a), (b) and (c), that was responsible for mutants to have same elementary

Chern-Simons invariants. This result depended on the fact that the functional integrals

over the manifolds of Fig.4(a), (b) and (c) could be written as states in the product

Hilbert spaces associated with four punctured S2 boundaries. For r-composite braids,

the corresponding Hilbert spaces are those associated with boundaries with 4r punctures.

This opens up the possibility that the invariants obtained through composite braid rep-

resentations above may distinguish mutant knots/links. The manifolds corresponding to

Fig.4(a), (b) and (c) are drawn with composite braids (r = 2) in Fig.8(a), 11(a) and (b)

respectively. We shall denote the Chern-Simons functional integrals over these manifolds

as N1, N2 and N3 respectively. We write down the explicit representations for them in

terms of the r-composite braid representations. The functional integral N1 associated

with Fig.8(a) for r-composite braid is:

N1 =
∑

(l),m1

|φ̂
(1)
(l1,l2,m1),(l3,l4,m1)

〉|φ̂
(2)
(l1,l2,m1),(l3,l4,m1)〉 , (31)

12



where the conformal blocks |φ̂〉 correspond to Fig.10(a) and the superscript (1) and (2)

refer to the two boundaries. The Chern-Simons functional integral N1 here written in

terms of basis in which the odd-indexed composite braid generator are diagonal is the

same as χ1 in eqn.(21) where we have represented it in a basis in which the even index

generators are diagonal. The functional integral N2 associated with Fig.11(a) can be

written as:

N2 =
∑

(l),m1

|φ̂
(1)
(l1,l2,m1),(l3,l4,m1)〉B

(r)(b1)(B
(r)(b3))

−1|φ̂
(2)
(l1,l2,m1),(l3,l4,m1)

〉

= λ̃(−)
m1

(l1, l2)(λ̃
(−)
m1

(l3, l4))
−1|φ̂

(1)
(l1,l2,m1),(l3,l4,m1)〉|φ̂

(2)
(l2,l1,m1),(l4,l3,m1)〉 ,

= |φ̂
(1)
(l1,l2,m1),(l3,l4,m1)〉|φ̂

(2)
(l2,l1,m1),(l4,l3,m1)〉 . (32)

Here eqn.(28) has been used. In a similar manner, the composite state N3 associated with

the r-composite braid of Fig.11(b) is:

N3 =
∑

(l),m1

|φ̂
(1)
(l1,l2,m1),(l3,l4,m1)〉B

(r)(b2)B
(r)(b1)B

(r)(b3)B
(r)(b2)]

[B(r)(b3)]
−1[B(r)(b1)]

−1|φ̂
(2)
(l1,l2,m1),(l3,l4,m1)〉 , (33)

The result of the composite braid B(r)(b2)B
(r)(b1)B

(r)(b3)B
(r)(b2)[B

(r)(b3)]
−1[B(r)(b1)]

−1,

is simply to interchange the internal spins in the basis vector |φ̂(l1,l2,m1),(l3,l4,m1)〉 to

|φ̂(l4,l3,m1),(l2,l1,m1)〉. This is precisely how a γ2-mutation would act on such a representa-

tion. This can also be seen explicitly by substituting the composite braid representation

into eqn.(33). After some algebra and use of identities (A.5, A.6) from the Appendix, the

following result is obtained:

N3 =
∑

(l),m1

|φ̂
(1)
(l1,l2,m1),(l3,l4,m1)〉|φ̂

(2)
(l4,l3,m1),(l2,l1,m1)〉 . (34)

Thus clearly from eqns.(31, 32 and 34), we find :

N1 6= N2 6= N3 . (35)

This result is encouraging and thus may allow us to distinguish mutants. In particular, let

us consider an example of a pair of mutant links belonging to pretzel class L1 = L[3, 2, 2, 3]

and L2 = L[3, 2, 3, 2] of Fig.5. These two links are related by a γ1-mutation. The link L1

13



can be thought of as obtained by gluing two copies of the 3-ball drawn in Fig.12(a) onto

each other along oppositely oriented boundaries. On the other hand, mutant link L2 is

obtained by gluing the ball of Fig.12(a) onto that in Fig.12(b). We shall study these links

with the orientations as specified in these figures. We replace the strands in Fig.12(a)

and (b) by composites with r elementary strands. The various braids are also changed

to symmetrised composite braids. The corresponding Chern-Simons functional integral

associated with these manifolds (Fig.12(a) and (b)) containing r-composite braids will be

represented by vectors |Ψ1〉 and |Ψ2〉 respectively. Following methods of Ref.[11], these

can be expressed in terms of conformal blocks associated with S2 boundary containing 4r

punctures. A straightforward calculation yields (after using identities A.5, A.6, and A.7):

|Ψ1〉 =
∑

l1,l2,r

f(l1, l2, r)|φ̂(l1,l2,r),(l2,l1,r)〉 , (36)

|Ψ2〉 =
∑

l1,l2,r

f(l1, l2, r)|φ̂(l2,l1,r),(l1,l2,r)〉 , (37)

where

f(l1, l2, r) =
∑

s1,s2

(−1)2l1+r+s1

[2s2 + 1]
√

[2r + 1]

[2l2 + 1]
qCs2−8Cl1

−2Cl2
+ 3

2
Cs1



al2s1





l1 s2

r l1









2

.

The square bracket represents the q-numbers: [x] = (qx/2 − q−x/2)/(q1/2 − q−1/2). These

states are related to each other by

|Ψ2〉 = N2|Ψ1〉

where N2 (Fig.11(a)) here has oppositely oriented two S2 boundaries. It is also clear that

the coefficients in the state |Ψ1〉 is not symmetric under the interchange l1 ↔ l2. This

implies: |Ψ1〉 6= |Ψ2〉 which is the reflection of the fact N1 6= N2.

The composite invariant for the oriented link L1 is the product of the state |Ψ1〉 with

its dual; for oriented link L2, it is the inner product of |Ψ1〉 with |Ψ2〉:

Vj[L1] = 〈Ψ1|Ψ1〉 =
∑

l1,l2,r

(f(l1, l2, r))
2 , (38)

Vj[L2] = 〈Ψ2|Ψ1〉 =
∑

l1,l2,r

f(l1, l2, r)f(l2, l1, r) . (39)
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Again, clearly these are not equal: Vj[L1] 6= Vj[L2]. In particular, for j = 1/2 on every

individual strand in the r-composite braid (Jones Polynomial), a straightforward compu-

tation yields:

V1/2[L1] − V1/2[L2] = q−4(1 + q + q−1)(X − 1)2 (40)

where X = (q−11 − q−10 − q−9 + q−8 − q−7 + q−5 + q−2).

Next let us take up an example of a pair of mutant knots, namely the famous 11

crossing Kinoshita-Terasaka knot and its mutant known as the Conway knot as shown

in Fig.13(a) and (b). The Kinoshita-Terasaka knot K1 can be thought of as obtained by

gluing three-ball of Fig.14(b) onto that of Fig.14(c) along oppositely oriented boundaries.

The Conway knot K2 in contrast, is obtained by gluing the three-ball in Fig.14(a) onto the

three-ball in Fig.14(c). The state |Ψ3〉 associated with Fig.14(a) can be readily evaluated

by the method of Ref([11]):

|Ψ3〉 =
∑

l1,l2,r

A(l1, l2, r)|φ̂(l1,l1,r),(l2,l2,r)〉 , (41)

where A(l1, l2, r) is:

A(l1, l2, r) =
∑

m,n

[2l2 + 1]
√

[2l2 + 1][2l1 + 1]a0m





l1 l1

l2 l2





(

λ̃(−)
m (l1, l2)

)2
a0n





l2 l2

l2 l2





(

λ̃(+)
n (l2, l2)

)−3
arm





l1 l1

l2 l2



 arn





l2 l2

l2 l2



 al20





r l2

l2 r



 . (42)

The state |Ψ4〉 associated with Fig.14(b) is related to state |Ψ3〉 through N3:

|Ψ4〉 = N3|Ψ3〉 =
∑

l1,l2,r

A(l1, l2, r)|φ̂(l2,l2,r),(l1,l1,r)〉 . (43)

Similar calculation for the state |Ψ5〉 associated with Fig.14(c), yields:

|Ψ5〉 =
∑

(l1,l2,r

B(l1, l2, r)|φ̂(l1,l2,r),(l1,l2,r)〉 , (44)

where B(l1, l2, r) is given by:

B(l1, l2, r) =
∑

(n),(m),(y),(m′)

√

[2l1 + 1][2l2 + 1] [2l2 + 1]a0m1





l1 l1

l2 l2





a0m2





l2 l2

l2 l2



 λ̃(+)
m1

(l1, l2) [λ̃(−)
m2

(l2, l2)]
−1an1m1





l1 l2

l1 l2




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an2m2





l2 l2

l2 l2



 al2y1





n1 l1

l2 n2



 (λ̃(+)
y1

(l1, l2))
−1ay2y1





n1 l2

l1 n2





an1m′
1





l1 l2

l2 y2



 an2m′
2





y2 l1

l2 l2



 (λ̃
(+)
m′

1

(l2, l2))
2[λ̃

(−)
m′

2

(l1, l2)]
−1

arm′
1





l1 l2

l2 y2



 arm′
2





y2 l2

l1 l2



 ay20





r l2

l2 r



 . (45)

The composite invariant for the Kinoshita-Terasaka knot K1 is given by the inner product

of |Ψ4〉 and |Ψ5〉 and that for the Conway knot K2 by the inner product of |Ψ3〉 and |Ψ5〉:

VR[K1] = 〈Ψ5|Ψ4〉 =
∑

l,r

A(l, l, r)B(l, l, r) = 〈Ψ5|Ψ3〉 = VR[K2] . (46)

Thus composite invariants do not distinguish these mutants. In fact, this is true for all

mutant knots. This can be seen as follows: Consider a 3-ball containing a room �

��
S

R 	

	R

with four external legs marked as A,B,C,D as shown in the Fig.15. There are three ways

in which these four legs can be connected to each other inside the room:

Case (i) A is connected to B, C is connected to D inside the room like in Fig.12(a)

and (b). Then a general state associated with the Fig.15 for this case will be

|Ψ̃1〉 =
∑

(l),r

F (l1, l2, r)|φ̂(l1,l2,r),(l2,l1,r)〉 , (47)

where F (l1, l2, r) is a function which depends on the room contained in the three-ball. In

general, this function need not be invariant under interchange of l1 with l2.

Case (ii) A is connected to C, B is connected to D inside the room as in Fig.14(a)

and (b). Then the general state will be

|Ψ̃2〉 =
∑

(l),r

G(l1, l2, r)|φ̂(l1,l1,r),(l2,l2,r)〉 . (48)

Case (iii) A is connected to D and C is connected to B inside the room as in Fig.14(c).

In this case the state will be

|Ψ̃3〉 =
∑

(l),r

H(l1, l2, r)|φ̂(l1,l2,r),(l1,l2,r)〉 (49)

Observe that, we could get knots by gluing two 3-balls such that (a) one satisfies case

(i) and the other case (ii), (b) one satisfies case (i) and the other case (iii), and (c) one
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satisfies case (ii) and the other case (iii). Then the composite invariants for three knots

K1, K2 and K3 so constructed are:

VR[K1] =
∑

l,r

F (l, l, r)G(l, l, r) ;

VR[K2] =
∑

l,r

F (l, l, r)H(l, l, r) ;

VR[K3] =
∑

l,r

G(l, l, r)H(l, l, r). (50)

These knot invariants obtain contribution only from the subspace spanned by the basis

vectors |φ̂(l,l,r),(l,l,r)〉. Also, from eqns.(31-34), the state responsible for mutation will

behave like an identity state in this subspace. i.e.,

N1|li=l = N2|li=l = N3|li=l . (51)

Hence, the mutants of any knot cannot be distinguished even by composite invariants.

Clearly, the composite braid eigenvalues (27, 28) and transformation matrices (30) in

this invariant subspace are the same as the eigenvalues (A.3,A.4) and duality matrices

for elementary braids carrying spin l representations. Hence the r-composite invariant

for a given knot is simply the sum over the Chern-Simons invariants for the irreducible

representations in the product of r spin j representations. This is true not only for SU(2)

but, by a straightforward generalisation of above arguments, also for other compact semi-

simple Lie groups. Thus this result can be stated as:

For a general gauge group G, the r-composite knot invariant associated with repre-

sentation R of G is the sum of elementary Chern-Simons invariants for all irreducible

representations in the product of r representations R⊗R⊗ ....R as allowed by the fusion

rules of corresponding Wess-Zumino conformal field theory.

Since elementary Chern-Simons invariants for any gauge group do not distinguish

mutant knots, it is clear, not even composite invariants can do so. In particular, composite

version of the HOMFLY polynomial also cannot distinguish mutant knots in contrast to

results in[16].

Now let us discuss the case of mutant links. Links can be obtained by gluing each

of the states corresponding to case (i), (ii) and (iii) onto its dual or mutated dual state.

Notice that the state |Ψ̃1〉 is invariant under γ2 mutation, and the state |Ψ̃2〉 is invariant
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under γ1 mutation. Then mutant link (if isotopically distinct) which can be constructed

from |Ψ̃1〉 (|Ψ̃2〉) and its γ2 (γ1) mutated dual state cannot be distinguished by composite

invariants. On the other hand mutant link obtained from |Ψ̃1〉 (|Ψ̃2〉) and its γ1 (γ2)

mutated dual state can be distinguished (if isotopically distinct) by composite invariants.

The example of the class of pretzel links (Fig.5) discussed above is of this type: they can

be constructed by the products of |Ψ̃1〉 with its dual and its γ1 mutated dual respectively.

In fact the composite link invariants are related to elementary multicoloured link

invariants. This follows from the fact that the eigenvalues (27, 28) of the composite braid

and elementary multicoloured braid generators (A.3,A.4) are related as:

λ̃(±)
n1

(l2, l3) = (−)l2−l3q
|Cl2

−Cl3
|

2 λ(±)
n1

(l2, l3) . (52)

Thus the composite invariant V comp
j [L] for a link L can be written in terms of the elemen-

tary multicolour link invariants Vl1,l2,...,lm[L], where l1, l2, ..., lm are the spins placed on the

m component knots K1, K2, ..., Km of the link L:

V comp
j [L] =

∑

l1,l2,..,lm

q
∑

s,t
lk(s,t) |Cls−Clt

|
Vl1,l2,...lm[L] , (53)

The li span the spins of irreducible representations in the product of r spin j representa-

tions carried by the individual strands in the composite braid. Here lk(s, t) is the linking

number for the (Ks, Kt) pair of component knots in L. Notice that the q-independent

phase factors (−)l2−l3 in the eigenvalues (52) disappear in eqn.(53) because l2−l3 is always

an integer and there are even number of crossings between any pair of linking component

knots. The result in eqn.(53) generalises to invariants obtained from any arbitrary com-

pact semi-simple group.

Though the composite braiding eigenvalues for the asymmetric and symmetric com-

posite braids (Fig.6) are different, the composite invariants for knots and links constructed

from these two types of composite braids are the same.

5 Conclusions

In this paper, we have presented a proof that the isotopically inequivalent mutant knots

and links cannot be distinguished by the elementary Chern-Simons invariants associated
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with the representations of any gauge group G. The proof involves the fact that indepen-

dent mutations γ1 and γ2 on the Chern-Simons functional integral over a three-ball with

four punctured S2 boundary do not change it (eqn.10). This follows from specific braid-

ing properties of four-point conformal blocks of the corresponding Wess-Zumino conformal

field theory.

In order to explore the possibility that composite braid representations may be of help

to distinguish mutant knots and links, we have developed the representation theory of

such braids made up of r strands within the framework of Chern-Simons field theory.

The composite representations of generators of the n-braids can be given in the basis

of nr-point conformal blocks of the corresponding Wess-Zumino theory. These do not

depend explicitly on the spins placed on individual strands in the r-composite braid, but

depend only on the spins on the internal lines of the corresponding conformal blocks

(Fig.11(a) and (b)).

The r-composite invariant for a knot carrying representation R of the group G is

given by the sum of elementary Chern-Simons invariants for the knot associated with the

irreducible representations in the product of r representations, R ⊗ R ⊗ ....R, allowed

by the fusion rules of the corresponding Wess-Zumino conformal field theory. Thus, it

is clear that mutant knots cannot be distinguished by such composite invariants. On

the other hand, we have argued that the composite invariants for a link can be written

as a weighted sum of multicoloured elementary invariants (53). Therefore, some mutant

links do have distinct composite invariants. These are the links related by a mutation of

a four-leg room carrying strands from two distinct component knots. Specific examples

discussed are the class of pretzel links. We have clearly demonstrated that the r-composite

invariants associated with any representation of SU(2) are indeed different. In particular,

spin 1/2 composite invariants, which corresponds to Jones polynomials, distinguish these

mutant links. However, links related by a mutation of a four-leg room carrying strands

from the same component knot cannot be distinguished by composite invariants.

Since higher spin elementary Chern-Simons invariants tend to distinguish chirality of

knots [15, 12], it is worth pointing out that the composite knot invariants will also tend to

do so. However, there are exceptions. For example, the sixteen crossing knots (Fig.16(a)
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and (b)) discussed in ref[19] are respectively chiral and achiral. These are also related by a

mutation. Hence the chirality of knot in Fig.16(a) cannot be detected by any elementary

Chern-Simons invariant, nor by any composite invariant.

Appendix

In this Appendix, following methods of ref.[11] we outline the derivation of eigenvalues

of the composite braid operator for right-handed half-twists in the parallel composite

(r = 2) strands. The operation of the symmetrized composite braid operator B(2)(b2)

(Fig.8(b)) on the eight-point conformal block of Fig.9(a) is as follows:

B(2)(b2)|φl1,(l2,l3,n1),l4〉 = b−1
3 b−1

5 b4b5b3b4|φl1,(l2,l3,n1),l4〉 . (A.1)

The basis chosen is not diagonal in the even indexed elementary generator b4. Using

appropriate duality matrices (5), we go to its diagonal basis to operate b4. Then, again

we have to go back to the same odd-indexed basis to operate b3 on it. This leads to

b3 b4|φl1,(l2,l3,n1),l4〉 =
∑

[(r),(l′),(m),n1]

am1n1





l1 l2

l3 l4



 ar2l2





l1 j

j m1



 ar3l3





m1 j

j l4





am1,p1





r2 j

j r3



λ(+)
p1

(j, j)am2p1





r2 j

j r3



 ar2l′
2





l1 j

j m2





ar3l′
3





m2 j

j l4



 am2n2





l1 l′2

l′3 l4



λ
(+)
l′
2

(j, j)|φl1,(l′
2
,l′
3
,n2),l4〉 , (A.2)

where λ(±)
n (j1, j2) are the eigenvalues of elementary braiding matrices for righthanded

half-twist in parallelly (+) and antiparallelly (−) oriented strands, carrying spins j1 and

j2, given by ([11]):

λ(+)
n (j1, j2) = (−)j1+j2−nqCj1

+Cj2
−

|Cj1
−Cj2

|

2
−Cn/2 , (A.3)

λ(−)
n (j1, j2) = (−)|j1−j2|−nq−

|Cj1
−Cj2

|

2
+Cn/2 , (A.4)

and the four-point SU(2) duality matrices aij





l1 l2

l3 l4



 are explicitly given in Appendix

I of Ref.[11].
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Similarly the generators b−1
3 b−1

5 b4b5 can be applied. The following orthogonality con-

dition and identities [11] satisfied by the q-Racah coefficients enables us to simplify the

expression:
∑

m2

ar1m2





m1 l1

l2 m3



 ar2m2





m1 l1

l2 m3



 = δr1r2
, (A.5)

∑

s1

ar1s1





p1 j1

j2 p2



 ar2s1





p1 j2

j1 p2



 (−1)s1q−Cs1/2

= (−1)−r1−r2+p1+p3+j1+j2ar1r2





j2 p2

j1 p1



 q(Cr1+Cr2−Cj1
−Cj2

−Cp1
−Cp2

)/2 ,

(A.6)

∑

p1

al1p1





r1 m1

j1 j2



 ar1r2





p2 j3

p1 j2



 ap1s1





r2 j3

m1 j1





= al1r2





p2 s1

j1 j2



 ar1s1





p2 j3

m1 l1



 . (A.7)

Finally, we arrive at the simplified result for two-strand parallel composite braids:

B(2)(b2)|φl1,(l2,l3,n1),l4〉 = (−1)n1qCl2
+Cl3

−Cn1
/2|φl1,(l3,l2,n1),l4〉 (A.8)

Starting with its representation in terms of elementary braid generators as given in

eqn.(20) a similar calculation can be done for the eigen values of an antiparallel composite

braid operator of Fig. 6(c).
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Figure captions:

Fig.1 Mutant links.

Fig.2 Mutations (γ1, γ2, γ3) of room �

��
R

R 	

	R

.

Fig.3 Three-balls, each with four punctured S2 boundary.

Fig.4 Diagrammatic representations of the Chern-Simons functional integrals for

3-manifolds with two boundaries: (a) ν1, (b) ν2 and (c) ν3.

Fig.5 Pretzel link L[a1, a2....am].

Fig.6 r-composite braids: (a) Murakami braid φ(r)(bi), (b) symmetrized parallel braid

B(r)(bi) and (c) symmetrized antiparallel braid B(r)(bi).

Fig.7 Markov moves for composite braids.

Fig.8 Diagrammatic representations of functional integrals (a) χ1 and (b) χ2

Fig.9 Eight point conformal blocks bases (a) |φ〉 and (b) |φ̂〉.

Fig.10 Eigen bases (a) |φ〉 for odd indexed r-composite braid generator, (b) |φ̂〉 for even

indexed r-composite braid generator and (c) explicit representation of the

composite thick line in terms of r lines each carrying spin j.

Fig.11 Diagrammatic representations of Chern-Simons functional integrals over

two-boundary manifolds N2 and N3.

Fig.12 Diagrammatic representations of the states (a) |Ψ1〉 and (b) |Ψ2〉.

23



Fig.13 Eleven crossing mutants: (a)Kinoshita-Terasaka knot K1 and (b) Conway knot K2.

Fig.14 Diagrammatic representations of the functional integrals over three-balls: (a) |Ψ3〉,

(b) |Ψ4〉 and (c) 〈Ψ5|

Fig.15 A three-ball containing room �

��
S

R 	

	R

with marked points A,B,C,D on the S2

boundary.

Fig.16 A pair of mutant knots with 16 crossings.
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