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A new holographic entropy bound from quantum geometry
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A new entropy bound, tighter than the standard holographic bound due to Bekenstein, is derived
for spacetimes with non-rotating isolated horizons, from the quantum geometry approach in which
the horizon is described by the boundary degrees of freedom of a three dimensional Chern Simons
theory.

The Holographic Principle (HP) [1] - [8] and the holographic Entropy Bound (EB) have been the subject of a
good deal of attention lately. In its original form [1], [2], the HP asserts that the maximum possible number of
degrees of freedom within a macroscopic bounded region of space is given by a quarter of the area (in units of Planck
area) of the boundary. This takes into account that a black hole for which this boundary is (a spatial slice of) its
horizon, has an entropy which obeys the Bekenstein-Hawking area law and also the generalized second law of black
hole thermodynamics [4]. Given the relation between the number of degrees of freedom and entropy, this translates
into a holographic EB valid generally for spacetimes with boundaries.

The basic idea underlying both these concepts is a network, at whose vertices are variables that take only two
values (‘binary’, ‘Boolean’ or ‘pixel’), much like a lattice with spin one-half variables at its sites. Assuming that the
spin value at each site is independent of that at any other site (i.e., the spins are randomly distributed on the sites),
the dimensionality of the space of states of such a network is simply 2p for a network with p vertices. In the limit of
arbitrarily large p, such a network can be taken to approximate the macroscopic surface alluded to above, a quarter
of whose area bounds the entropy contained in it. Thus, any theory of quantum gravity in which spacetime might
acquire a discrete character at length scales of the order of Planck scale, is expected to conform to this counting and
hence to the HP.

Let us consider now a slightly altered situation: one in which the binary variables at the vertices of the network
considered are no longer distributed randomly, but according to some other distribution. Typically, for example, one
could distribute them binomially, assuming, without loss of generality, a large lattice with an even number of vertices.
Consider now the number of cases for which the binary variable acquires one of its two values, at exactly p/2 of the p
vertices. In case of a lattice of spin 1/2 variables which can either point ‘up’ or ‘down’, this corresponds to a situation
of net spin zero, i.e., an equal number of spin-ups and spin-downs. Using standard formulae of binomial distributions,
this number is

N(
p

2
|a) = 2p

(

p
p/2

)

[a (1 − a)]p/2 , (1)

where, a is the probability of occurrence of a spin-up at any given vertex. Clearly, this number is maximum when
the probability of occurrence a = 1/2; it is given by p!/(p

2 !)2. Thus, the number of degrees of freedom is now no
longer 2p but a smaller number. This obviously leads to a lowering of the entropy. For very large p corresponding to
a macroscopic boundary surface, this number is proportional to 2p/p

1

2 . The new EB can therefore be expressed as

Smax = ln

(

exp SBH

S
1/2
BH

)

, (2)

where, SBH = AH/4l2P is the Bekenstein-Hawking entropy. This is a tighter bound than that of ref. [4] mentioned
above. The ‘tightening’ of holographic EB is the subject of this paper. We shall show below that, in the quantum
geometry framework, it is possible to have an even tighter bound than that depicted in eq. (2).

There are of course examples of situations where the EB is violated [5], [6] and must be generalized. However,
generalizations proposed so far [6] appear to be tied to fixed classical background spacetimes, and may not hold
when gravitational fluctuations are taken into account [7]. In this note, we restrict ourselves to the older version
of the EB appropriate to stationary spacetimes, but with allowance for the existence of radiation in the vicinity of
the boundary. In this sense, the appropriate conceptual framework is that of the Isolated Horizon [9]. We consider
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generic 3+1 dimensional isolated horizons without rotation, on which one assumes an appropriate class of boundary
conditions. These boundary conditions require that the gravitational action be augmented by the action of an SU(2)
Chern-Simons theory living on the isolated horizon [9]. Boundary states of the Chern-Simons theory contribute to the
entropy. These states correspond to conformal blocks of the two-dimensional Wess-Zumino model that lives on the
spatial slice of the horizon, which is a 2-sphere of area AH . The dimensionality of the boundary Hilbert space has been
calculated thus [10]- [12] by counting the number of conformal blocks of two-dimensional SU(2)k Wess-Zumino model,
for arbitrary level k and number of punctures p on the 2-sphere. We shall show, from the formula for the number
of conformal blocks specialized to macroscopic black holes characterized by large k and p [12], that the restricted
situation described above, ensues, thus realizing a more stringent EB. We may mention that similar ideas relating the
quantum geometry approach to the HP and EB have been pursued by Smolin [7], although, as far as we understand,
the issue of tightening the Bekenstein bound has not been addressed.

We start with the formula for the number of conformal blocks of two-dimensional SU(2)k Wess-Zumino model that
lives on the punctured 2-sphere. For a set of punctures P with spins {j1, j2, . . . jp} at punctures {1, 2, . . . , p}, this
number is given by [10]

NP =
2

k + 2

k/2
∑

r=0

∏p
l=1 sin

(

(2jl+1)(2r+1)π
k+2

)

[

sin
(

(2r+1)π
k+2

)]p−2 . (3)

Observe now that Eq. (3) can be rewritten as a multiple sum,

NP =

(

2

k + 2

) k+1
∑

l=1

sin2θl

j1
∑

m1=−j1

· · ·
jp
∑

mp=−jp

exp{2i(

p
∑

n=1

mn) θl} , (4)

where, θl ≡ πl/(k + 2). Expanding the sin2 θl and interchanging the order of the summations, this becomes

NP =

j1
∑

m1=−j1

· · ·
jp
∑

mp=−jp

[

δ̄(
∑

p

n=1
mn),0 − 1

2
δ̄(
∑

p

n=1
mn),1 − 1

2
δ̄(
∑

p

n=1
mn),−1

]

, (5)

where, we have used the standard resolution of the periodic Kronecker deltas in terms of exponentials with period
k + 2,

δ̄(
∑

p

n=1
mn),m =

(

1

k + 2

) k+1
∑

l=0

exp{2i [(

p
∑

n=1

mn) − m]θl} . (6)

Our interest focuses on the limit of large k and p, appropriate to macroscopic black holes of large area. Observe,
first of all, that as k → ∞, the periodic Kronecker delta’s in (6) reduce to ordinary Kronecker deltas,

lim
k→∞

δ̄m1+m2+···+mp,m = δm1+m2+···+mp,m . (7)

In this limit, the quantity NP counts the number of SU(2) singlet states, rather than SU(2)k singlets states. For
a given set of punctures with SU(2) representations on them, this number is larger than the corresponding number
for the affine extension. This is desirable for the purpose of deducing an upper bound on the number of degrees of
freedom in any spacetime.

Next, recall that the eigenvalues of the area operator for the horizon, lying within one Planck area of the classical
horizon area AH , are given by

ÂH ΨS = 8πβ l2P

p
∑

l=1

[jl(jl + 1)]
1

2 ΨS , (8)

where, lP is the Planck length, jl is the spin on the lth puncture on the 2-sphere and β is the Barbero-Immirzi
parameter [13]. We consider a large fixed classical area of the horizon, and ask what the largest value of number of
punctures p should be, so as to be consistent with (8); this is clearly obtained when the spin at each puncture assumes
its lowest nontrivial value of 1/2, so that, the relevant number of punctures p0 is given by

p0 =
AH

4l2P

β0

β
, (9)
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where, β0 = 1/π
√

3. We are of course interested in the case of very large p0.
Now, with the spins at all punctures set to 1/2, the number of states for this set of punctures P0 is given by

NP0 =

1/2
∑

m1=−1/2

· · ·
1/2
∑

mp0
=−1/2

[

δ(
∑

p0

n=1
mn),0 − 1

2
δ(
∑

p0

n=1
mn),1 − 1

2
δ(
∑

p0

n=1
mn),−1

]

(10)

The summations can now be easily performed, with the result:

NP0 =

(

p0

p0/2

)

−
(

p0

(p0/2 − 1)

)

(11)

There is a simple intuitive way to understand the result embodied in (11). This formula simply counts the number of
ways of making SU(2) singlets from p0 spin 1/2 representations. The first term corresponds to the number of states
with net J3 quantum number m = 0 constructed by placing m = ±1/2 on the punctures. However, this term by
itself overcounts the number of SU(2) singlet states, because even non-singlet states (with net integral spin, for p is
an even integer) have a net m = 0 sector. Beside having a sector with total m = 0, states with net integer spin have,
of course, a sector with overall m = ±1 as well. The second term basically eliminates these non-singlet states with
m = 0, by counting the number of states with net m = ±1 constructed from m = ±1/2 on the p0 punctures. The
difference then is the net number of SU(2) singlet states that one is interested in for that particular set of punctures.

To get to the entropy from the counting of the number of conformal blocks, we need to calculate Nbh =
∑

P NP ,
where, the sum is over all sets of punctures. Then, Sbh = lnNbh.

It may be pointed out that the first term in (11) also has another interpretation. It represents the counting of
boundary states for an effective U(1) Chern-Simons theory. It counts the number of ways unit positive and negative
U(1) charges can be placed on the punctures to yield a vanishing total charge. This would then correspond to an
entropy bound given by the same formula (2) above for binomial distribution of charges.

On the other hand the combination of both terms in (11), which corresponds to counting of states in the SU(2)
Chern-Simons theory, yields an even tighter bound for entropy than that in eq. (2). One can show that [15], the
contribution to Nbh for this set of punctures P0 with all spins set to 1/2, is by far the dominant contribution;
contributions from other sets of punctures are far smaller in comparison. Thus, the entropy of an isolated horizon is
given by the formula derived in ref. [12]. We may mention that very recently Carlip [17] has presented compelling
arguments that this formula may possibly be of a universal character. Here, the formula follows readily from eq. (11)
and Stirling approximation for factorials of large integers. The number of punctures p0 is rewritten in terms of area
AH through eq. (9) with the identification β = β0 ln2. This allows us to write the entropy of an isolated horizon in
terms of a power series in horizon area AH :

Sbh = lnNP0 =
AH

4l2p
− 3

2
ln

(

AH

4l2p

)

− 1

2
ln

(

π

8(ln2)3

)

− O(A−1
H ). (12)

Notice that the constant term here is negative and so is the order A−1
H term. This then implies that the entropy is

bound from above by a tighter bound which can be written in terms of Bekenstein-Hawking entropy (SBH = AH/4l2p)
as:

Smax = ln

(

expSBH

S
3/2
BH

)

(13)

Inclusion of other than spin 1/2 representations on the punctures does not affect this bound. For example, we may
place spin 1 on one or more punctures and spin 1/2 on the rest. The number of ways singlets can be made from this
set of representations can be computed in a straight forward way. Adding these new states to the already counted
ones above, just changes the constant and order A−1

H terms in formula (12). However, these additional terms continue
to be negative and hence the entropy bound (13) still holds.1

1Using the Cardy formula with the prefactor (á la Carlip [17]) appears [18] to lead to entropy corrections for certain black
holes not in accord with eq. (13) (although the bound (2) is indeed respected). This could be an artifact of the application of
the Cardy formula. We refrain from further comment on these works since the precise relation of the Cardy formula approach
to the present framework is not clear.
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The steps leading to the EB now follows the standard route of deriving the Bekenstein bound (see, e.g., [7]): we
assume, for simplicity that the spatial slice of the boundary of an asymptotically flat spacetime has the topology of a
2-sphere on which is induced a spherically symmetric 2-metric. Let this spacetime contain an object whose entropy
exceeds the bound. Certainly, such a spacetime cannot have an isolated horizon as a boundary, since then, its entropy
would have been subject to the bound. But, in that case, its energy should be less than that of a black hole which has
the 2-sphere as its (isolated) horizon. Let us now add energy to the system, so that it does transform adiabatically
into a black hole with the said horizon, but without affecting the entropy of the exterior. But we have already seen
above that a black hole with such a horizon must respect the bound; it follows that the starting assumption that the
object, to begin with, had an entropy violating the bound is not tenable.

There is, however, an important caveat in the foregoing argument. Strictly speaking, there is as yet no derivation
of the second law of black hole mechanics within the framework of the isolated horizon. But, that is perhaps not a
conceptual roadblock as far as deriving the EB is concerned. One has to assume that if matter or radiation crosses
the isolated horizon adiabatically in small enough amounts, the isolated character of the horizon will not be seriously
affected. This is perhaps not too drastic an assumption. Thus, for a large class of spacetimes, one may propose
Eq.(13) as the new holographic entropy bound.

Finally, we should mention that we prefer to think of the above holographic principle and the consequent entropy
bound as ‘weak’ rather than ‘strong’ in the sense of Smolin [7].
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