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A new proof (due to X C abre) of the classical
isoperim etrictheorem ,based on A lexandrov'sid-
ea of m oving planes, w ill be presented. C om -
pared to the usualproofs, w hich use geom etric
m easure theory,this proofw illbe based on ele-
m entary ideasfrom calculusand partialdi®eren-
tialequations (Laplace equation).

Theorigin ofthestudyofisoperim etricinequalitiesgoes
back toantiquity.Known asDido'sProblem ,oneofthe
¯rstsuchinequalitiesarosewhentryingtodeterm inethe
shape ofa dom ain with m axim um possible area,given
itsperim eter. Hence thenam e isoperim etric inequality
(theprē x iso standsfor s̀am e'in Greek).Theanswer
to thisquestion isthatthe circle,and the circle alone,
m axim izesthearea fora given perim eter.Equivalently,
given the area enclosed by a sim ple closed curve,the
circleand italone,m inim izestheperim eter.

Naturetooplaysthisgam eofshapeoptim ization.W hy
are soap bubbles round? A bubble willattain a posi-
tion ofstableequilibrium ifthepotentialenergy dueto
surface tension ism inim ized. This,in turn,isdirectly
proportionalto thesurfacearea oftheair-soap ¯lm in-
terface. Thus,fora given volum e ofairblown to form
abubble,theshapeofthebubblewillbethatforwhich
the surface area ism inim ized and this occurs only for
thesphericalshape.

In the case ofthe plane,the isoperim etric property of
thecirclewasestablishedbySteinerusingveryingenious
geom etric argum ents(see [1]fora very nice treatm ent
ofthis). Therearetwo aspectsto a proofofthiskind.
First we assum e that there is such an optim alshape
and deduce thatitmust be the circle. Nextwe prove
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the existence ofthe optim alshape. Steiner's m ethod
doesnotwork in threedim ensions.Indeed,theproofof
theisoperim etricproperty ofthespherein IR3 wasa far
m oredaunting task and wasproved in a ratherdi± cult
paperby H A Schwarz.

An analyticway oflooking atthisproblem isto form u-
latean isoperim etricinequality.IfL istheperim eterof
a region in theplaneand A isitsarea,then

L2 ¸ 4¼A: (1)

Thus,whateverbetheplanedom ain ofperim eterL,the
greatest possible area itcan have is L2=4¼ and thisis
attained for the circularregion and foritalone. This
settles the question ofthe existence and uniquenessof
theoptim alshapein asinglestroke.In thecaseofthree
dim ensions,ifV isthevolum eofa region and S isthe
surfacearea,then theisoperim etricinequality readsas

S3 ¸ 36¼V 2 (2)

with equality only for the sphere. W e can generalize
this to N -dim ensions. Let !N denote the volum e of
the unit sphere in IR N (Exercise: prove that !N =
¼N =2=¡(N =2 + 1),where ¡(s) =

R1

0 e¡ xxs¡ 1dx is the
usualgam m a function). If- ½ IRN is a bounded do-
m ain,and @- denotesitsboundary,then

j@-j¸ N !
1
N
N j-j

1¡ 1
N ; (3)

where jE jdenotesthe N -dim ensional(Lebesgue)m ea-
sure or the (N ¡ 1)-dim ensionalsurface m easure ofa
subsetE ofIR N asthecasem ay be.Onceagain,equal-
ity is attained in (3) for the sphere and only for the
sphere.

Theinequality(1)canbeprovedveryeasilyusingFourier
series (cf. forexam ple,[2]for a very readable exposi-
tion).However,fordim ensionsN ¸ 3,theproofof(3)

Why are soap
bubbles round? A
bubble will  attain a
position of stable
equilibrium if the
potential energy due
to surface tension is
minimized.   For a
given volume of air
blown to form a
bubble, the shape of
the bubble will be
that for which the
surface area is
minimized and this
occurs only for the
spherical shape.



10 RESONANCE  September  2002

GENERAL  ARTICLE

isnotthatim m ediate.In fact,even thenotion of s̀ur-
face m easure'ofthe boundary is not obvious. W hen
N = 2,we clearly understand the notion oflength of
a rectī able curve. In higher dim ensions,@- willbe
a (N ¡ 1)-dim ensionalm anifold and there are several
ways to dē ne j@-j. There are,for instance,the in-
duced (N ¡ 1)-dim ensionalsurfacem easure(from IR N ),
the Hausdor® m easure,the M inkowskicontent,the de
Giorgiperim eter,etc.Allthesenotionsagreeon sm ooth
dom ains.Thedi®erencesoccurin thepresenceofsingu-
laritieson the surface. However,whateverm ay be the
dē nition chosen,(3)isalwaystrue. Indeed,thevalid-
ityoftheclassicalisoperim etricinequality(withequality
only forthe sphere)isa criterion forthe acceptability
ofthenotion ofa surfacem easure.

In general,theproofusesdi± cultnotionsfrom geom et-
ric m easure theory. Recently,Cabre (personalcom m u-
nication)hasobserved thatitispossibleto usean idea
sim ilartothatused byAlexandrovinprovingcertaines-
tim atesforsolutionsofellipticpartialdi®erentialequa-
tionsto prove the classicalisoperim etric theorem . W e
willpresentthisproof.

W hile (1) or (3) is referred to as the classicalisoperi-
m etricinequality,byan isoperim etricproblem ,wem ean
today a problem ofoptim izing som edom ain dependent
functionalkeeping som egeom etricparam eterofthedo-
m ain (likeitsm easure)¯xed.

Lower C ontact Set

Letf :[a;b]! IR be a C 1 (i.e. continuously di®eren-
tiable)function.Letxo 2 (a;b)beapointin theinterior
such thatthegraph ofthefunction f liesentirely above
thetangentatxo.Thus,forallx 2 [a;b],

f(x)¸ f(xo)+ f0(xo)(x¡ xo): (4)

ThesetS ofallpointsxo 2 (a;b)such that(4)istruefor
allx 2 [a;b]iscalledthelowercontactsetofthefunction

In the case of three
dimensions, if V  is

the  volume of a
region and S is the
surface area, then

the isoperimetric
inequality reads as

S3    ≥  36π V2.
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f.If,in addition,f istwicedi®erentiable,then

f(x)= f(xo)+ f0(xo)(x¡ xo)+
1

2
f00(xo)(x¡ xo)

2+

o(jx¡ xoj
2);

whereo(jx¡ xoj2)signī esan errorterm "(x¡ xo)such
that

lim
y! x

"(x¡ xo)=jx¡ xoj
2 = 0:

From thiswededucethat

f00(xo)¸ 0 (5)

forallxo 2 S.

Letus now considera straightline with slope m lying
entirely below thegraph ofthe function f :[a;b]! IR
in the plane. Let us m ove this line parallelto itself.
Eventually,thelinem ustencounterthegraph off.The
(abcissa ofthe)¯rstpointofcontactcould bea;borin
(a;b).

Let us assum e that the (abcissa ofthe) ¯rst point of
contact,xo,liesin theinterior(a;b).Then,iff isC 1,

g(x)= f(x)¡ f(xo)¡ m (x¡ xo)¸ 0

forallx 2 [a;b]and isequalto zero,i.e.,itattainsits
m inim um ,atxo. Thusg

0(xo)= 0,i.e. f0(xo)= m and
xo 2 S.

Hence,any straight line m oving parallelto itselffrom
below (thegraph of)f and ¯rsthittingf atan ìnterior
point'm ustdo so asa tangentand so theslopeofsuch
a linem ustbein thesetf0(S).

If- ½ IR N isa bounded dom ain,and iff :- ! IR is
aC 1 function,wecan again dē neitslowercontactset,
S,analogously asfollows:

S = fxo 2 -jf(x)¸ f(xo)+r f(xo):(x¡xo)forallx 2 -g;
(6)

An isoperimetric
problem, we mean
today a problem of
optimizing some
domain dependent
functional keeping
some geometric
parameter of the
domain (like its
measure) fixed.
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wherethedotin theaboveinequality denotestheusual
scalar product in IR N . Again,ifthe function is twice
di®erentiable,then

f(x)= f(xo)+ r f(xo):(x¡ xo)+

1

2
(x¡ xo)

T D 2f(xo)(x¡ xo)+ o(jx¡ xoj
2);

where D 2f(xo) denotes the Hessian m atrix ofsecond
derivatives,i.e.thesym m etricm atrix whoseentriesare
@2f

@xi@xj
(xo),and jx ¡ xojdenotesthe Euclidean distance

in IRN . W e can then easily see that,ifxo 2 S,then
D 2f(xo)is a sym m etric and positive sem i-dē nite m a-
trix,i.e.forall»2 IRN ,wehave»T D 2f(xo)»¸ 0.

Ifwe now considera hyperplane m oving parallelto it-
self,itiseasy to seethat,analogously,ifthe¯rstpoint
ofcontactisan interiorpoint,then the plane becom es
the tangentatthatpoint. Thedirection cosinesofthe
norm alto theplanewillthen belong to thesetr f(S),
whereS isthelowercontactset.

Theseideasjustifytheterm inologywehaveused forthe
setS.

The N eum ann Problem

Let- ½ IR N bea bounded and sm ooth dom ain.Let¢
denotetheLaplaceoperator,i.e.

¢ =
NX

i= 1

@2

@x2i
:

Ifº(x)denotestheunitoutwardnorm altotheboundary
@- atthepointx 2 @-,thentheouternorm alderivative
ofa di®erentiablefunction v isgiven by

@v

@º
(x)= r v(x):º(x):

If we consider a
hyperplane moving
parallel to itself, it is

easy to see that,
analogously, if the

first point of contact
is an interior point,

then the plane
becomes the tangent

at that point.
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B ox 1

IfA isa squarem atrix ofordern which issingular,i.e.thereexistsa non-zero vectorxo
such thatAxo = 0,then thesystem oflinearequationsAx = beitherhasno solution or
an in¯nity ofsolutionsaccording asbdoesnotordoessatisfy a com patibility condition.
Ifthem atrix issym m etric(orself-adjoint,in thecom plex case)thecondition isb:xo = 0
forany xo in thenullspaceofA.For,ifAy= b,then

b:xo = Ay:xo = y:AT xo = y:Axo = 0:

By dim ension argum ents,it can also be shown that this condition is su± cient. The
situation in the case ofthe Neum ann problem isvery sim ilar. The problem (7)can be
put in the form ofa linear equation in an in¯nite dim ensionalHilbert space with the
linearoperatorbeing whatisknown asa self-adjointcom pactoperator.Such operators
have propertiesvery sim ilarto those oflinearoperatorsin ¯nite dim ensionalspaces.In
particular,iff = 0and g= 0 in (7)wehavenon-trivialsolutionsviz.constantfunctions,
as solutions to (7). Thus,in the generalcase,(7)either hasno solution or an in¯nite
num ber ofsolutions according as (8) is not or is satis̄ ed. This property is known is
functionalanalysisastheFredhÄolm alternative.

Thenecessityof(8)iseasytoseebyjustintegratingboth sidesofthedi®erentialequation
in (7)and applying Green's(i.e. integration by parts)form ula to the term on the left-
hand side.

Letusexam inethelowercontactsetofasolution ofthe
Neum ann problem :

¢ u = f in -
@u
@º = g on @-:

¾

(7)

Thisproblem willhave(an in¯nitenumberof)solutions
if,andonlyif,f andgsatisfythecom patibilitycondition
(seeBox 1) Z

-

f =

Z

@-

g: (8)

Letusnow takeg ´ 1 on @-.Then,ifwetakef to be
constanton -,itfollowsfrom (8)that

f ´
j@-j

j-j
: (9)

Let m be an arbitrary vector in IRN . There do exist
planes,oftheform z= m :x+ c,lying below thegraph



14 RESONANCE  September  2002

GENERAL  ARTICLE

ofu. M oving the plane parallelto itself,we willeven-
tually m eetthegraph ofu. Ifthe(abcissa ofthe)¯rst
pointofcontactliesin -,wealready observed thatthe
plane becom es a tangent to u and that m 2 r u(S),
whereS isthelowercontactsetofu.

On theotherhand,ifthe(abcissa ofthe)¯rstpointof
contactxo 2 @-,then,forallx 2 -,

g(x)´ u(x)¡ u(xo)¡ m :(x¡ xo)¸ 0

and g(xo) = 0 is the m inimum and is attained on the
boundary. It follows that ifº(xo) is the unit outward
norm alof@- atxo,then,

r g(xo):º(xo)· 0

sinceg isdecreasing in thatdirection atxo.Thus,

m :º(xo)¸ r u(xo):º(xo)=
@u

@º
(xo)= 1:

Hencejm j¸ 1.Therefore,ifjm j< 1,them oving plane
oftheform z= m :x+ ccan m eetthegraph ofu only as
a tangentatan ìnteriorpoint'and so m 2 r u(S).W e
havethusestablished thefollowing result.

Lem m a 1 IfB1(0) denotes the ballofunitradius in
IRN having itscentre atthe origin,then

B 1(0)½ r u(S):¥ (10)

The Isoperim etric Inequality

Let- ½ IRN beasm ooth dom ainandletu beasolution
of(7)when g ´ 1 and f given by (9).Then u willbea
sm ooth function.Then,by Lem m a 1,

!N = jB1(0)j· jr u(S)j=

Z

r u(S)

dx ·

Z

S

jdet(D 2u)jdx;
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B ox 2

IfT = (T1;T2;:::;TN ):- ! T(-),where- isan open setin IR N ,isaC 1-di®eom orphism
(i.e. T isinvertible and both T and T¡ 1 are C 1-m appings),then fora subsetS of-,
by the changeofvariableform ula

Z

T (S)
dx =

Z

S

jdet(T0(x))jdx;

where T0(x) is the Jacobian m atrix whose entries are @Ti
@xj

(x). However, if T is not
a di®eom orphism ,we have that the equality in the above relation is replaced by the
inequality \·". For exam ple consider T : IR ! [0;+1 ) given by T(x) = x2 and
S = [¡ 1;1].

In ourcaseT = r u and so T0(x)= D 2u(x).

by the change ofvariable formula applied to the m ap-
ping r u :- ! IR N . The reason we havean inequality
for the last term is that this m apping m ay not be a
di®eom orphism (see Box 2). Now,recallthat,on S,
D 2u issym m etric and positive sem i-dē nite. Hence its
eigenvaluesand,therefore,itsdeterm inantwillbenon-
negative.Thus,

!N
·

Z

S

det(D 2u)dx ·

Z

S

µ
tr(D 2u)

N

¶ N

dx

by the AM -G M inequality. Buttr(D 2u)= ¢ u and by
(7)and (9),weget

!N ·

Z

S

µ
j@-j

N j-j

¶ N

dx ·

Z

-

µ
j@-j

N j-j

¶ N

dx =
j@-jN

N N j-jN ¡ 1

from which weeasily deduce(3).

Thisprovestheinequalityforsm oothdom ains.Forgen-
eraldom ains,depending on thedē nition ofthesurface
m easure,the inequality usually follows by approxim a-
tion ofthedom ain by sm ooth dom ains.

The Equality C ase

Letusnow assum ethat- ½ IR N isa sm ooth dom ain
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such thatequality isattained in (3).W ewillshow that
- m ustbea ball.(Itisobviousthat,conversely,if- is
a ball,then wedo haveequality in (3);for,j-j= !N r

N

and j@-j= N !N r
N ¡ 1,whereristheradiusoftheball.)

Ifwehaveequality in theisoperim etricinequality,then,
retracing theproofofthetheorem presented in thepre-
vious section,we see that allthe inequalities becom e
equalities.In particular,wegetthatjSj= j-j,i.e.-nS
hasm easurezero,and so S isdensein -.Butitisim -
m ediateto seefrom (6)that,sinceu issm ooth,S = -.
Further,on S(= -),we have equality in the AM -GM
inequality forthe eigenvaluesofD 2u and so the eigen-
valuesareallequal,i.e.D 2u isa scalarm atrix.Thus

@2u

@xi@xj
(x)´ ¸(x)±ij; (11)

wherethedelta on theright-hand sideistheusualKro-
necker delta and ¸(x) is easily seen to be a constant
given by

¸ =

µ
!N

j-j

¶ 1=N

:

Next,since B1(0) ½ r u(S)and,in the equality case,
bothhavethesam em easure,wehavethatB 1(0)isdense
in r u(S) = r u(-). By the sm oothness ofu,it thus
follows that jr uj · 1 in -. But, on the boundary,
jr uj ¸ j@u@ºj = 1:Thus, jr uj ´ 1 on the boundary
and thisim plies thatthe tangentialcom ponentofthe
gradientiszeroon theboundary.Thusu isconstanton
the boundary. Since any two solutionsof(7)di®erby
an additiveconstant,wem ay henceforth assum ethat

¢ u = j@-j
j- j in -

u = 0 on @-
@u
@º = 1 on @-:

9
=

;
: (12)

By them aximum principle(seeBox3),u < 0 in - and
sou mustattain am inimum atapointxo in -.Clearly
r u(xo)= 0.
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B ox 3

M any ofyou would have com eacrosssom ething called the m axim um m odulusprinciple
when studying analytic functions in the com plex plane. The realand im aginary parts
ofan analytic function are harm onic functions,i.e. they satisfy the equation ¢ u =
0. Solutions ofthe Laplace equation (and,m ore generally,those ofa class ofpartial
di®erentialequations known as elliptic second order equations, ofwhich the Laplace
equation istheprototype)enjoy specialpropertieswhich gounderthenam eofm axim um
principles.Forinstance,theweak m axim um principlestatesthatif¢ u ¸ 0 in a dom ain
and ifu · 0 on the boundary,then u · 0 in the dom ain aswell.The strong m axim um
principle then asserts that either u is identically equalto a constant in the closure of
the dom ain oru attainsitsm axim um only on the boundary. In particular,ifu = 0 on
the boundary and ifu were non-constant(asisthe case in the Neum ann problem (12)
considered above,since ¢ u 6= 0),we deducethatu < 0 in the interiorofthedom ain.

Let B be the largestpossible ballin - with centre at
xo.Now,ifx 2 B ,then forsom e» in thelinesegm ent
joining x and xo,wehave,by them ean valuetheorem ,

u(x) = u(xo)+ r u(xo):(x¡ xo)+
1
2(x¡ xo)T

D 2u(»)(x¡ xo)
= u(xo)+

¸
2jx¡ xoj2:

By thenatureofB ,theremustbea pointon @B which
also lieson @- and so u = 0 atthatpoint.Butby the
above form ula,itthen followsthatu = 0 on allof@B.
Sinceu < 0in -,thiswillbepossibleonlyifB coincides
with -,i.e. - isa ball. In fact,if¡M = u(xo)< 0 is
them inim um ofu,then

@- = fx 2 -ju(x)= 0g= fxjjx¡ xoj
2 =

2M

¸
g:

R em ark: Problem (12) is an overdeterm ined bound-
ary value problem . Serrin form ulated a m ethod which
wasfurtherdeveloped asthe m ethod ofm oving planes
by Gidas,Niand Nirenberg to study sym m etry proper-
tiesofpositivesolutionsofsem ilinearellipticequations.
Thishasbeen furtherrē ned by Berestyckiand Niren-
berg.Theirm ethod uses,in an essentialway,m aximum
principles.In particular,a m aximum principlein s̀m all
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dom ains'isvery usefuland itwas proved by Varadan
using an estim ate forsolutionsofsecond orderelliptic
equationsduetoAlexandrov,Bakelm anandPucci.This
last estim ate was proved using the idea ofthe lower
contact set and an inclusion analogous to that stated
in Lem m a 1,and inspired Cabre to im itate it to sug-
gesttheproofoftheisoperim etricinequality presented
here.¥
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