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A new proof (due to X Cabre) of the classical
isoperimetric theorem, based on Alexandrov'sid-
ea of moving planes, will be presented. Com-
pared to the usual proofs, which use geometric
measure theory, this proof will be based on ele-
mentary ideas from calculus and partial di®eren-
tial equations (Laplace equation).

The origin of the study of isoperimetric inequalities goes
back to antiquity. Known as Dido's Problem, one of the
~rst such inequalities arose when trying to determinethe
shape of a domain with maximum possible area, given
its perimeter. Hence the name isoperimetric inequality
(the pre x iso stands for 'same' in Greek). The answer
to this question is that the circle, and the circle alone,
maximizes the area for a given perimeter. Equivalently,
given the area enclosed by a smple closed curve, the
circle and it alone, minimizes the perimeter.

Nature too plays this game of shape optimization. Why
are soap bubbles round? A bubble will attain a posi-
tion of stable equilibrium if the potential energy due to
surface tension is minimized. This, in turn, is directly
proportional to the surface area of the air-soap Im in-
terface. Thus, for a given volume of air blown to form
a bubble, the shape of the bubble will be that for which
the surface area is minimized and this occurs only for
the spherical shape.

In the case of the plane, the isoperimetric property of
thecirclewasestablished by Steiner using very ingenious
geometric arguments (see [1] for a very nice treatment
of this). There are two aspectsto a proof of this kind.
First we assume that there is such an optimal shape
and deduce that it must be the circle. Next we prove
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the existence of the optimal shape. Steiner's method
does not work in three dimensions. Indeed, the proof of
the isoperimetric property of the spherein IR® was a far
more daunting task and was proved in a rather di+ cult
paper by H A Schwarz.

An analytic way of looking at this problem isto formu-
late an isoperimetric inequality. If L isthe perimeter of
aregion in the plane and A isits area, then

L2, 4YA: (1)

Thus, whatever be the plane domain of perimeter L, the
greatest possible area it can have is L?=4%and this is
attained for the circular region and for it alone. This
settles the question of the existence and uniqueness of
the optimal shapein asingle stroke. In the case of three
dimensions, if V isthe volume of a region and S isthe
surface area, then the isoperimetric inequality reads as

S®, 36?2 (2)

with equality only for the sphere. We can generalize
this to N-dimensions. Let !y denote the volume of
the unit sphere in IR™ (Exerciseg prove that !y =
WN=2= (N=2 + 1), where j (s) = 01 e *xSi 1dx is the
usual gamma function). If - % IRN is a bounded do-
main, and @ denotes its boundary, then

j@j, NIYj-ju 3

where JEj denotes the N -dimensional (Lebesgue) mea-
sure or the (N j 1)-dimensional surface measure of a
subset E of IRN asthe case may be. Once again, equal-
ity is attained in (3) for the sphere and only for the
Sphere.

Theinequality (1) can be proved very easily using Fourier
series (cf. for example, [2] for a very readable exposi-
tion). However, for dimensions N , 3, the proof of (3)

Why are soap
bubbles round? A
bubble will attain a
position of stable
equilibrium if the
potential energy due
to surface tension is
minimized. For a
given volume of air
blown to form a
bubble, the shape of
the bubble will be
that for which the
surface area is
minimized and this
occurs only for the
spherical shape.
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In the case of three
dimensions, if V is
the volume of a
region and S is the
surface area, then
the isoperimetric
inequality reads as
S® > 36mV2

is not that immediate. In fact, even the notion of “sur-
face measure’ of the boundary is not obvious. When
N = 2, we clearly understand the notion of length of
a recti able curve. In higher dimensions, @ will be
a (N j 1)-dimensional manifold and there are several
ways to de ne j@j. There are, for instance, the in-
duced (N j 1)-dimensional surface measure (from IRV),
the Hausdor® measure, the Minkowski content, the de
Giorgi perimeter, etc. All these notionsagree on smooth
domains. The di®erences occur in the presence of singu-
larities on the surface. However, whatever may be the
de nition chosen, (3) is always true. Indeed, the valid-
ity of the classical isoperimetric inequality (with equality
only for the sphere) is a criterion for the acceptability
of the notion of a surface measure.

In general, the proof uses dix cult notions from geomet-
ric measure theory. Recently, Cabre (personal commu-
nication) has observed that it is possible to use an idea
similar to that used by Alexandrov in proving certain es-
timates for solutions of eliptic partial di®rential equa-
tions to prove the classical isoperimetric theorem. We
will present this proof.

While (1) or (3) is referred to as the classical isoperi-
metric inequality, by an isoperimetric problem, we mean
today a problem of optimizing some domain dependent
functional keeping some geometric parameter of the do-
main (like its measure) xed.

Lower Contact Set

Let f : [a;b]! IR beaC! (i.e. continuously di®eren-
tiable) function. Let X, 2 (a;b) beapoint in theinterior
such that the graph of the function f lies entirely above
the tangent at x,. Thus, for all x 2 [a; b),

F(x), f(Xo) + FAxo)(X i Xo): (4)

Theset S of all pointsx, 2 (a; b) such that (4) istruefor
all x 2 [a; b iscalled thelower contact set of thefunction
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f. If, in addition, f istwice di®erentiable, then
1
f(x)=f(xo)+ fo(xo)(x i Xo)t Ef (D(Xo)(x i X0)2+

o(jx i Xojz);
where o(jX i Xoj?) signi_ esan error term "(X i Xo) such
that
lim"(xi xo)7jx i Xoj? = O

From this we deduce that
f%x,), O (5
for all x, 2 S.

Let us now consider a straight line with slope m lying
entirdy below the graph of the function f : [a;b! IR
in the plane. Let us move this line paralle to itself.
Eventually, the line must encounter the graph of f . The
(abcissa of the) rst point of contact could be a;bor in
(a;b).

Let us assume that the (abcissa of the) rst point of
contact, X,, liesin theinterior (a;b). Then, if f isC?,

gx) = f(x)i f(X)i mxi Xo), O

for all x 2 [a;b] and is equal to zero, i.e, it attains its
minimum, at X,. Thus gAx,) = 0, i.e. fYx,) = m and
Xo 2 S.

Hence, any straight line moving paralle to itself from
below (the graph of) f and rst hittingf at an ‘interior
point" must do so as a tangent and so the sope of such
aline must bein the set fS).

If - % IRN is a bounded domain, and if f :- ! IR is
a C! function, we can again de neits lower contact set,
S, analogously as follows:

S=1xe2-jf(X), f(Xo)+r f(Xo):(Xi Xo)for alx 2 - g;

(6)

An isoperimetric
problem, we mean
today a problem of
optimizing some
domain dependent
functional keeping
some geometric
parameter of the
domain (like its
measure) fixed.
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If we consider a
hyperplane moving
parallel to itself, it is
easy to see that,
analogously, if the
first point of contact
is an interior point,
then the plane

becomes the tangent

at that point.

where the dot in the above inequality denotes the usual
scalar product in IRN. Again, if the function is twice
di®erentiable, then

f(X) =1f(Xo) + 1 f(Xo):(Xi Xo)*

%(Xi Xo) D (Xo)(X i Xo) + O(jX i Xoj?);

where D?f (x,) denotes the Hessian matrix of second
derivatives, i.e. the symmetric matrix whose entries are
@%ﬁ (Xo), and jx | Xoj denotes the Euclidean distance
in IRN. We can then easily see that, if x, 2 S, then
D2f (Xo) is a symmetric and positive semi-de nite ma-
trix, i.e. for all » 2 IRV, we have »" D?f (xo)», O.

If we now consider a hyperplane moving paralle to it-
sdf, it is easy to see that, analogoudly, if the rst point
of contact is an interior point, then the plane becomes
the tangent at that point. The direction cosines of the
normal to the plane will then belong to the set r f (S),
where S isthe lower contact set.

Theseideas justify the terminology we have used for the
st S.

The Neumann Problem

Let - % IRN be abounded and smooth domain. Let ¢
denote the Laplace operator, i.e.

N e,

¢ = —:
-1 @

If °(x) denotesthe unit outward normal to the boundary
@ at thepoint x 2 @ , then theouter normal derivative
of a di®erentiable function v is given by

%(x) = r v(X):°(x):

12
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Let us examinethe lower contact set of a solution of the
Neumann problem:

_ £7)
f in-

g on@:

¢cu
@
@

()

This problem will have (an in nite number of) solutions
if, and only if, f and g satisfy thecompatibility condition
(see Box 1) 7 7

f = o (8)
@

Let usnowtakeg” 1on @ . Then, if wetakef to be

constant on - , it follows from (8) that

. 1@
f - 9
- 9

Let m be an arbitrary vector in IRN. There do exist
planes, of the form z = m:x + ¢, lying below the graph

Box 1

If A isa square matrix of order n which is singular, i.e. there exists a non-zero vector X,
such that Ax, = 0, then the system of linear equations Ax = b either has no solution or
an in nity of solutions according as b does not or does satisfy a compatibility condition.
If the matrix is symmetric (or self-adjoint, in the complex case) the condition ishix, = 0
for any X, in the null space of A. For, if Ay = b, then

biXo = Ay:Xo = Y:AT X0 = y:AX, = O

By dimension arguments, it can also be shown that this condition is sut cient. The
situation in the case of the Neumann problem is very similar. The problem (7) can be
put in the form of a linear equation in an in nite dimensional Hilbert space with the
linear operator being what is known as a self-adjoint compact operator. Such operators
have properties very similar to those of linear operatorsin —nite dimensional spaces. In
particular, if f = 0and g= 0in (7) we have non-trivial solutionsviz. constant functions,
as solutions to (7). Thus, in the general case, (7) either has no solution or an in nite
number of solutions according as (8) is not or is satis ed. This property is known is
functional analysis as the Fredhdim alter native.

Thenecessity of (8) iseasy to seeby just integrating both sides of the di®erential equation
in (7) and applying Green's (i.e. integration by parts) formula to the term on the left-
hand side.
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of u. Moving the plane paralld to itsef, we will even-
tually meet the graph of u. If the (abcissa of the) r«t
point of contact liesin - , we already observed that the
plane becomes a tangent to u and that m 2 r u(S),
where S isthe lower contact set of u.

On the other hand, if the (abcissa of the) rst point of
contact X, 2 @ , then, for all x 2 -,

g(x) " u(X)i u(Xo)i mMi(xi Xo), O

and g(Xo) = 0isthe minimum and is attained on the
boundary. It follows that if ©(x,) is the unit outward
normal of @ at X,, then,

r g(xo):o (Xo) - 0

since g is decreasing in that direction at Xo. Thus,
mM:°(Xo) , I U(Xo):°(Xo) = %(xo) =1

Hencejmj , 1. Therefore, if jmj < 1, the moving plane
of theform z = m:x + ¢ can meet the graph of u only as
atangent at an ‘interior point' and som 2 r u(S). We
have thus established the following result.

Lemma 1 If B1(0) denotes the ball of unit radius in
IRN having its centre at the origin, then

B1(0) ¥ar u(S):¥ (10)

The Isoperimetric Inequality

Let - %2 IRN beasmooth domain and let u bea solution
of (7) wheng” 1landf given by (9). Then u will bea
smooth function. Then, by Lemma 1,
Z Z
I, = B1(0)j - jr u(S)j = dx - jdet(D2u)jdx;
r u(S) S

14
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Box 2

T = (Ty; T2 Th) - 1 T(-), where- isan open set in IRV, isa C-di®omorphism
(i.e. T isinvertible and both T and Ti ! are C!- mappings), then for a subset S of -,
by the change of variable formula

VA VA

dx = jdet(TYx))jdx;
T(S) S

where T9x) is the Jacobian matrix whose entries are %}-(x). However, if T is not
a di®omorphism, we have that the equality in the above relation is replaced by the

inequality \- ". For example consder T : IR ! [0;+1) given by T(x) = x? and

S=1[i 11

Inour case T = r u and so TYx) = D2u(x).

by the change of variable formula applied to the map-
pingr u:- ! IRN. Thereason we have an inequality
for the last term is that this mapping may not be a
di®omorphism (see Box 2). Now, recall that, on S,
D2u is symmetric and positive semi-de nite. Hence its
eigenvalues and, therefore, its determinant will be non-
negative. Thus,

Z

Z H 2 ﬂN
I, - det(D%u)dx - tr(B7)
S

dx
S N

by the AM-GM inequality. But tr(D?u) = ¢ u and by
(7) and (9), we get

VAR VERS | VANV | .

_ i@ ", iej " __iei
" s Nj-j - Nj-j NNj- Nt
from which we easily deduce (3).

This provestheinequality for smooth domains. For gen-
eral domains, depending on the de nition of the surface
measure, the inequality usually follows by approxima-
tion of the domain by smooth domains.

The Equality Case

Let us now assumethat - ¥ IRN is a smooth domain
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such that equality is attained in (3). We will show that
- must be aball. (It is obvious that, conversdly, if - is
a ball, then we do have equality in (3); for, j-j=1,rN
and j@j= N! rNi!1 wherer istheradius of the ball.)

If we have equality in the isoperimetric inequality, then,
retracing the proof of the theorem presented in the pre-
vious section, we see that all the inequalities become
equalities. In particular, we get that jSj = |- j,i.e. - nS
has measure zero, and so S isdensein - . But it isim-
mediate to see from (6) that, since u is smooth, S = - .
Further, on S(= - ), we have equality in the AM-GM
inequality for the eigenvalues of D?u and so the eigen-
values are all equal, i.e. D?u is a scalar matrix. Thus

@u
@ @;
where the delta on the right-hand side is the usual Kro-
necker delta and , (x) is easlly seen to be a constant
iven b
gv y M, BN

GRS CIE:TH (11)

J-)

Next, since B;(0) 2 r u(S) and, in the equality case,
both havethe same measure, we havethat B;(0) isdense
inr u(S) = r u(-). By the smoothness of u, it thus
follows that jr uj - 1in -. But, on the boundary,
jruj o, j%j = 1. Thus, jr uj ~ 1 on the boundary
and this implies that the tangential component of the
gradient is zero on the boundary. Thusu is constant on
the boundary. Since any two solutions of (7) di®er by
an additive constant, we may henceforth assume that

o 9
¢Cu = ’%J in - =
u=20 on@ . : (12)
%: 1 on@:’

By the maximum principle (see Box 3), u< 0in - and
SO U mugt attain a minimum at a point X, in - . Clearly
r u(x,) = 0.

16
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Box 3

Many of you would have come across something called the maximum modulus principle
when studying analytic functions in the complex plane. The real and imaginary parts
of an analytic function are harmonic functions, i.e. they satisfy the equation ¢ u =
0. Solutions of the Laplace equation (and, more generally, those of a class of partial
di®erential eguations known as eliptic second order equations, of which the Laplace
equation isthe prototype) enjoy special properties which go under the name of maximum
principles. For instance, the weak maximum principle statesthat if ¢ u, 0in a domain
and if u - 0 on the boundary, then u - 0in the domain as well. The strong maximum
principle then asserts that either u is identically equal to a constant in the closure of
the domain or u attains its maximum only on the boundary. In particular, if u = 0 on
the boundary and if u were non-constant (asis the case in the Neumann problem (12)

considered above, since ¢ u 6 0), we deduce that u < 0in the interior of the domain.

Let B bethe largest possible ball in - with centre at
Xo. Now, if x 2 B, then for some » in the line segment
joining x and X,, we have, by the mean value theorem,

u(x)

U(Xo) + I U(Xo):(X i Xo) + 2(Xi Xo)T
D2u(»)(X i Xo)
u(xo) + ij i Xojz:

By the nature of B, there must be a point on @ which
alsolieson @ and sou = 0 at that point. But by the
above formula, it then follows that u = 0 on all of @3.
Sinceu < 0in -, thiswill be possible only if B coincides
with - ,i.e. - isaball. Infact, if i M = u(x,) < Ois
the minimum of u, then

@ =fx2-jux)=0g=fxjjxi Xoj?= ﬁg:
Remark: Problem (12) is an overdetermined bound-
ary value problem. Serrin formulated a method which
was further developed as the method of moving planes
by Gidas, Ni and Nirenberg to study symmetry proper-
ties of positive solutions of semilinear eliptic equations.
This has been further re ned by Berestycki and Niren-
berg. Their method uses, in an essential way, maximum
principles. In particular, a maximum principlein ‘small
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domains is very useful and it was proved by Varadan
using an estimate for solutions of second order dliptic

Address for Correspondence equationsdueto Alexandrov, Bakelman and Pucci. This
S Kesavan last estimate was proved using the idea of the lower
The Institute of Mathematical contact set and an inclusion analogous to that stated
sclences, in Lemma 1, and inspired Cabre to imitate it to sug-

g:;::‘;%z Eﬁ:‘;: gest the proof of the isoperimetric inequality presented
I here ¥
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Information and Announcements

Drosophila Stocks Available for Classroom Studies

Drosophila is one of the best model system for conducting genetics and developmental biology
experiments in undergraduate and postgraduate classrooms.

We maintain

i. Various mutants and wild type stocks of Drosophila for monohybrid and dihybrid crosses, for
studying linkage/crossing over and sex linkage, for gene mapping.

ii. Various promoter-lacZ fusion stocks and UAS-GAL4 stocks for demonstrating specific gene
activities and the effect of misexpression of a gene at different stages of development.

We welcome teachers of school/colleges/universities who wish to get these experiments done in
their classrooms to contact us for fly stocks and for the detailed procedures to be followed.

SL Lakhotia JK Roy
lakhotia@banaras.ernet.in, lakhotia@bhu.ac.in  jkroy@banaras.ernet.in, jkroy@bhu.ac.in

Cytogenetics Laboratory

Department of Zoology

Banaras Hindu University

Varanasi 221 005

Tel: 0542-368145, Fax: 0542-368457
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