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Listening to the Shape of a Drum

1. The Mathematics of Vibrating Drums
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A drum vibrates at distinct frequencies. These fre-
quencies are related to the eigenvalues of a differen-
tial operator called the Laplacian. Mathematicians
are interested in knowing how much geometric infor-
mation about the domain ( the surface of the drum)
can be retrieved from the eigenvalues.

Behind this rather obvious and apparently silly statement,
for we all know that we hear sounds and not shapes, lies a lot
of deep and beautiful mathematics. In 1966, Marc Kac pub-
lished a paper entitled ‘Can one hear the shape of a drum?’
This paper, with its catchy title, spawned a lot of mathe-
matical research and the basic problem was finally settled
only in 1992.

The problem addressed by Kac is what is known as an in-
verse problem. Given a drum, the natural question to ask is,
“ What sounds does it make?”. The inverse problem deals
with the inference of the shape of the drum by just hearing
the sounds it produces.

The reason for posing such a question is not just the intellec-
tual curiosity of the mathematician’s mind. Indeed, inverse
problems are not only mathematically interesting but have
serious applications. For instance, seismologists infer a lot
about the internal structure of our planet from the ‘sounds’
that an earthquake produces and the way they echo, bounc-
ing off different layers of rock. In medicine, the ultra-sound
scan also deals with the inference of shapes based on sound
signals received.

~ The ancient Greeks knew that vibrating strings ( one - di-

mensional drums!) could produce many different musical
notes depending on the number of points which are at rest
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Box 1. A Bit of History

The earliest major work on vibrating strings was due to Brook Taylor in 1714. He
showed that the normal modes are sinusoidal in shape and that their amplitude
varies sinusoidally in time. In 1746, d’Alembert showed that the violin string has
many more vibrations that are not normal modes and that are not sinusoidal. In
fact, he proved that the wave can start out as almost any shape one likes. Euler
was the first to write down the wave equation which he had solved by 1748. The
concept of normal modes led to the notion of superposition of solutions. Thus the
general solution of the wave equation could be expressed in the form

ad nwT nmct
u(z,t) =Y bpsin ( )sin ( )
= L L

and Euler gave formulae for the coefficients b,,.

But the general concept of a function was not clear and this started a controversy
over the representation of an arbitrary function (d’Alembert’s solution) by a series
of sines (Euler’s solution). This point was finally settled only about 70 years later
by Dirichlet. He was the first to give precise conditions for the validity of (what

is referred to the article of S Thangavelu and the book by R Bhatia (see Suggested
Reading).

we now call) Fourier series expansions. For more details on this topic, the reader

(these points are called nodes). For the fundamental fre-
quency, only the end points are at rest. If there is one more
node at the centre, the string produces a note one octave
higher. The larger the number of nodes, the higher the fre-
quency of the note will be. These higher order vibrations
are called overtones.

In the same way, when a drum is struck, it vibrates at dis-
tinct frequencies via normal modes. The lowest or base fre-
quency is called the fundamental tone and the higher ones
are called overtones. Kac’s question can now be phrased as
follows: if a person who can identify all the modes of vi-
" bration hears, but cannot see, the drum, can he identify its
shape just from hearing the fundamental tone and all the
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overtones?

It was Euler (see Boz I for a note on the historical devel-
opment) who first wrote down the wave equation which de-
scribes the vibrations of strings (in one space dimension) and
drums (in two dimensions) around the middle of the 18th
Century. For a string of length L represented by the inter-
val [0, L] of the real line, the vertical displacement u(z, t),
where z € |0, L] and t stands for time, satisfies the differen-
tial equation
0*u 0%

2oz (1)
where c is a constant depending on the physical characteris-
tics of the string like the material it is made of, its tautness
etc.. Likewise, in two dimensions, if a thin membrane is
stretched to occupy a bounded region 2 of the plane, rep-
resenting the ‘drum’, then the vertical displacement of the
drum at a point (z1,z2) € Q and at time ¢ is given by
a function u(z1,z2,t) satisfying the two-dimensional wave
equation

u  0%u  *u

o2y 9

52 ~ o2 | 903 @)
(Here, and throughout the sequel, we will normalize the con-
stant ¢ to be unity.) More generally, if ¢ = (z1,z2,...,2zN) €

Q, where ) is a bounded domain, i.e. a. bounded and con-
nected open set, in the N-dimensional Euclidean space, IR,
we say that a function u(z,t) satisfies the N-dimensional
wave equation if

0%u
W‘ = AU, (3)
where,
N 62
A'U, = ; —8?

Y

is the Laplace operator.
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To solve the wave equation, we will also need initial and
boundary conditions. The initial conditions give the ini- —09Q N
tial displacement u(zx,0) and the initial velocity u:(x,0) as
known functions of x € Q. The boundary condition pre-
scribes the behaviour of the drum along the boundary 02
for all time.

o0 N

(All the domains that we consider shall be assumed to be
bounded. By the boundary, 0, we mean the topological
boundary. For simplicity, we assume that 92 has finitely Q
many connected components, each of which is a piecewise O Y,
smooth and closed hypersurface in IRY. Thus, if N = 2, 9
will be the disjoint union of finitely many piecewise smooth
simple closed curves. See figure 1).

Figure 1. Bounded domains

Thus, if we imagine that the drum skin is attached to the
boundary, then it cannot move along the boundary and so,
for all t, we have

u =0 on 0Q. 4)
In case of the string, this translates as
uw(0,t) =u(L,t) =0 (5)

for all t > 0. A

One of the ways of solving the wave equation is to use the
method of separation of variables. We look for solutions of
the form

u(z,t) = P(t)w(z). (6)
This, on substitution in (3), yields
P'(t)  Aw
= — = —)\(say). 7
O L s g
Thus, we look for functions w(z), not identically zero, such
that
' Aw+X w = 0 inQ (8)
w = 0 on 0.
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Elementary considerations show that this can be possible
only if A > 0. For, if A <0, and if w were a solution to (8),
we multiply the differential equation by w and integrate by
parts using Green’s theorem to get

~/ |Vw]2dx+)\/ w?dz = 0.
Q Q

(There is no term involving the integral on the boundary
since w = 0 on 05).) Since both terms are negative, we de-
duce that w = 0.

Thus, we can now write the general solution for 1. We have
W(t) = Acos(VAt) + Bsin(VAt).
The constants A and B can be determined using the initial

conditions. For instance, if u(z,0) = 0, then A = 0. In this
case, we have, upto a multiplicative constant,

u(z, t) = sin(v/M)w(z) (9)

where w is a solution of (8). Solutions of this kind are called
normal modes.

The Case of a String

In the one-dimensional case, the equation (8) reads as

I

w”(x) + dw(z)
w(0) = w(L)

Il

0 forO<x<L}
0.

Again, the general solution is given by
w(z) = Acos(VAz) + Bsin(vVx)

and, taking into account the boundary conditions, we deduce
that
A=0 and \=n?n?/L%
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Thus we have non-trivial solutions only when A = A\, =
n?m?/L* and the corresponding solution (upto a multiplica-
tive constant) is given by

wn(z) = sin (?) .

The numbers A, are called eigenvalues and the functions
wy, are called eigenfunctions of the differential operator a%zg.
The numbers v/, are the frequencies; /A1 is the fundamen-
tal frequency and the rest are the overtones. The general
solution of the wave equation (1) can be written down by

superposition of the normal modes (see Box 1).
Higher Dimensions

In dimensions N > 2, we can again show (though we need
more sophisticated mathematical techniques to do this) that
there exists a sequence of numbers

O< A <Al SN < (10)

which tends to infinity as n — oo, and corresponding func-
tions wyn(z) such that the pairs (An,wn(z)) are nontrivial
solutions to (8) and that non-trivial solutions occur only at
those numbers which are, once again, called eigenvalues and
are the squares of the frequencies. In the one-dimensional
case, all the frequencies were distinct. This need not be the
case in higher dimensions. However, the fundamental fre-
quency will still be distinct from the rest as shown by the
strict inequality following A1 in (10). The higher eigenvalues,
nevertheless, will only repeat themselves at most finite num-
bers of times. The set of eigenfunctions corresponding to an
eigenvalue is a finite dimensional vector space spanned by
the corresponding w,’s. Again, while the eigenfunctions in
the one-dimensional case were all sinusoidal, those in higher
dimensions are more complicated in shape.

" If Q = (0,1) x (0,1), the open unit square, then the eigen-
functions are combinations of sinusoidal ripples in two per-
pendicular directions. Corresponding to the eigenvalue A =
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(m? + n?)7m?, we have the eigenfunctions

Wnm(T1,22) = sin(nmz)sin(mrzs)
Wmn(z1,22) = sin(mmrz;)sin(nrzs).

Thus, the fundamental frequency is /A1 = V27 while the

next higher overtones are given by v/ A2 = /A3 = /5.

If Q were the unit circle in the plane (the familiar circular
drum!), the eigenfunctions involve more complicated expres-
sions called Bessel functions.

[t must be mentioned, however, that whatever the domain,
the eigenfunction corresponding to the fundamental frequency
vanishes only on 9€), It has no zeros inside €.

For a brief idea about the mathematical principles from
which these properties are deduced, see Boz 2.

Kac’s Question

We are now in a position to formulate mathematically the
question posed by Kac. Two domains €; and Qs in RY are
said to be isospectral if they have the same set of eigenvalues
(iso means same in Greek; the spectrum, in this case, is the
collection of eigenvalues of the Laplacian).

As we know from high school geometry, two plane domains
are said to be congruent if we can cut out one of them and
place it on the other so that the two coincide exactly. A
more formal way of saying this is that we can map one do-
main onto the other using a combination of (i) rotations
about the z-axis, (ii) reflection about some line in the x —y
plane passing through the origin and (iii) translations in the
x — y plane. It turns out that these transformations are
precisely those which preserve the Euclidean distance (the
mathematical jargon is metric) between points in the plane.
- Thus, congruent domains are also called isometric.

Thus Kac’s question reads:“Are isospectral domains in the
plane isometric? Kac attributes this question to Bochner
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Box 2. The Spectrum of the Laplacian

For those readers who have some knowledge of functional analysis, the following
remarks will outline the procedure for obtaining the eigenvalues and eigenfunctions
of the Laplacian.

Let Q be a bounded domain in IRN and consider the real Hilbert space L*(Q2) of
square integrable real-valued functions on €. It can be shown that if f € L?(Q), then
there exists a unique solution (in a subspace of L%(f2) consisting of functions van-
ishing on the boundary and whose first order derivatives are also square integrable)
of the problem: .
Au+f = 0 in{d

v = 0 ond. }

The mapping f — G(f) := u, can be shown to be a self-adjoint, compact linear '
operator on L2(Q). The problem (8) is now equivalent to solving

w = AG(w)

and the spectral theory of compact, self-adjoint linear operators tells us that there is
a sequence of eigenvalues {\,} increasing to infinity (which are in fact the reciprocals
of the eigenvalues of G). The associated eigenfunctions {wn} can be chosen to form
an orthonormal basis for L*(Q), i.e. if g € L%((2), then

oo -

9= (9, wn)wn

n=1

(in the sense of L2(2)) where, (g, h) = Jo ghdz is the inner-product in L*().

The fact that A; is a simple eigenvalue and that w; does not vanish in the interior of
the domain are consequences of what is known as the mazimum principle, a property
basic to ‘second-order elliptic partial differential operators’ of which the Laplacian
1s the most important example.

and the non-mathematical interpretation in terms of drums
to L. Bers.

* While Kac posed the question for plane domains, one can
ask the same about domains in any N-dimensional space.
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More generally, if M is a Riemannian manifold (see [2]) , it
is equipped with a metric and we can also perform calculus
on functions on M. We can define the Laplace operator by

A(f) = div(grad(/)).

Once again A has a sequence of eigenvalues and one can ask
if isospectral manifolds are isometric.

The essence of Kac’s question is whether a domain in Eu-
clidean space or a manifold is completely determined by the
spectrum of the associated Laplace operator. On the face of
it there is no reason to see why this should be true and even
Kac felt that it was rather ambitious to think so. However,
we will see in the next part that the spectrum does hold a lot
of geometrical information about the domain. We will also
trace the developments which ultimately led to the settling
(negatively!) of the conjecture of Kac.
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]f f *2 The men of experiment are like the
ant; they only collect and use. The

l ! reasoners resemble spiders, who
make cobwebs out of their own
substance. But the bee takes a
middle course; it gathers its material
from the flowers of the garden and
of the field, but transforms and
digests it by a power of its own.

Leonardo Da Vinci
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