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Abstract. The aim of this paper is to provide an alternate treatment of the homogenization of
an optimal control problem in the framework of two-scale (multi-scale) convergence in the
periodic case. The main advantage of this method is that we are able to show the convergence
of cost functionals directly without going through the adjoint equation. We use a corrector
result for the solution of the state equation to achieve this.
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1. Introduction

LetQ = R be a bounded domain. We denote by M (o, §,Q) the set of all N x N matrices
A =((a;;)) such that a;;e L*(Q) for 1 <i,j < N and
alé? <ay&é < BléfPae(x), O<a<f (1.1)

for all £eR". (Here and in the sequel we adopt the convention of summation over
repeated indices). We now describe the optimal control problem.

Let U, = L*(Q) be a closed convex set. Let fe L*(Q) be a fixed function. For e U,
we define the state variable u=u(f)e Hy(Q) as the (weak) solution of the following
second order elliptic boundary value problem:

—div(AVu)=f+6 in Q,
u=0 on 0Q
where A€ M (o, §,Q). We then consider the cost (or objective) functional defined by

(1.2)

. N
J(9)=% J BVuVudx+-2- f 02dx, (1.3)
Q Q

where, for 0 U, u is the associated state variable (solution of (1.2)) and Be M(x, 3, Q)
is a symmetric matrix. The problem is then to find 0* e U, (called the optimal control)
such that

J(0*) = min J(0),

0eU,,

It is a standard result (cf. [7]) that there exists a unique optimal control 6*.

We are now interested in the situation where we have a family of optimal control
problems of the kind described above. More precisely, let A.e M(«, f,Q) and
B,e M(«, ', Q) (with B, symmetric) where £ > 0 is a parameter which eventually tends
to zero. Then we consider the problem: find 6% € U, such that

J(6%) = min J,(6). (14)
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where

N

J,(0)= ! J B,Vu,Vu,dx + = j 6%dx, \ (15)
2 ') i 2 Q

and u,e H}(Q) is the state variable corresponding to 6 U, and is the unique solution

of the problem:

{— div(4,Vu,)=f+0 in Q

u,=0 on 0Q. (16)

It can be shown that {6*}, where 0} is the unique optimal control of the problem
(1-4)—(1-6), is uniformly bounded in L?(Q) (with respect to &) and so for a subsequence,
0 — 0% weakly in L2(Q). The problem is to characterize 0%. In particular, we wish to
find the matrices 4, and B,, with properties similar to those above so that 67 is the
optimal control of the corresponding problem.

This problem was first studied by Kesavan and Vanninathan [ 6] in the case when the
coefficients A, and B, are periodic (see § 3 below for a precise description of this case).
Kesavan and Saint Jean Paulin [4] solved it in the case of general coefficients and in
a later paper (cf. [5]) extended it to the case when the domain Q is replaced by
a ‘perforated domain €Q,’.

In all the papers cited above, the energy method in homogenization theory was used.
Further the adjoint state variable p,e H (Q) was introduced via the equation

{div(‘AsV’pe —B,Vu,)=0 in Q 7

p,=0 on 0Q

(with additional Neumann condition on the holes in case of perforated domains). The
system (1.6)~(1.7) was first homogenized and from this the limit matrices 4, and
B, were identified. .

In this paper we restrict our attention to the periodic case. As technical device we use
the notion of 2-scale convergence developed by Nguetseng [8] and Allaire [1]. We are
then able to directly obtain the matrix B, without the necessity of introducing the
adjoint problem.

Given the problem

—div(4,Vw,) = f in Q
w,=0 on JQ

where the A, are periodic, we are directly able to calculate the limit of the integral

(1.8)

J B.Vw,Vw, dx.
Q

Once this is done, the procedure outlined by Kesavan and Saint Jean Paulin [5]
establishes the convergence of the optimal control. ‘_

Of course, the method of 2-scale convergence necessitates the assumption of some
regularity of the coefficients 4, .

We also prove, along the way, some slightly improved versions of results on 2-scale
convergence compared with those of Allaire [1]. We are able to directly deal with the
periodically perforated domain and we prove some corrector results for the solution of
the analogue of (1.8) in that case.

[




Homogenization and optimal control 191

Finally, we are able to easily extend our results to the multi-scale case, i.e. where there
are several (well separated) scales of periodicity in the coefficients using the results of
multi-scale convergence of Allaire and Briane [2].

2. 2-Scale convergence

Let Q = R¥ be abounded open set. I2t Y denote the unit cell [0, 11" in R, In this paper
we use the symbol ||- |, , to denote the L? norm of a function defined on Q.

For ¢>0, and g a function defined on Q x Y, we define an oscillating function
g(x,(x/¢)) as follows. Cover RY with translates of the e-cell, ¢Y. Then any x e Q fails in
a translate of the cell ¢Y and hence corresponds to a unique y in Y. Define g(x, (x/¢)) to
be the value of g at (x, y). Here and in the sequel, we denote a function that is Y-periodic
by the subscript #.

DEFINITION 2.1

A sequence {u, } of functionsin L*(Q), where ¢is a parameter which tends to zero, is said to
2-scale converge to a function uye L*(Q x Y) if

Jusqb(x,f>dx—+Jp J o (x, )b (x, y)dydx for all ¢peD(Q,CZ(Y)).
o € aJy 21

We write u, —=2>u,(x, y). O

The relevance of this definition stems from the following result.

Theorem 2.1. [1] Every bounded sequence in L*(Q) has a 2-scale convergent
subsequence. O

Remark 2.1.

(1) For any 2-scale convergent sequence its 2-scale limit is unique.
(2) If ¢(x,y)is ‘smooth’ (for instance if it belongs to one of the spaces listed below in
" Remark 2.2), then ¢(x, (x/€)) == ¢ (x, y). :

(3) If u,—u strongly in L?(Q), then u, 2= u(x).

4) Ifu, —zfimo (x, ), then u, — [, u,(x, y) weakly in L*(Q) (take test functions depend-
ing on x alone). \

(5) As a result of the previous remark and the uniform boundedness principle, any
2-scale convergent sequence is bounded.

(6) Supposing that u, admits an asymptotic expansion,

u,=1u, (x,%) + eu, (x,%) +82u2<x,§> +---, (2.2)

where u,(x, ) are assumed to be ‘smooth’, then u, 2=>»u(x, y). So the 2-scale limit gives
the first term in the asymptotic expansion of u,, when the expansion is valid. O
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DEFINITION 2.2

A measurable function y:Q x Y —R which is periodic in the variable y is said to be
admissible if

x\? )
j;ﬁ(&;) dx— ) Yl/’(X,y) dydx. (2.3)

More generally, let {u,} be a sequence which 2-scale converges to uy(x, y). It is said to be
admissible if

f (ug)zdx—{ J Uy (x,y)*dydx. (2.4)
Q Q Y
O

Remark 2.2 Though the most general condition under which i (x, y) is admissible is not
known, it is known that if  belongs to one of the space L?(Q, Cy4(Y)), C.(Q, L2 (Y)) or
C(Q, L (Y)) then it is admissible (cf. [1]). 0

Theorem 2.2. Let u, ~*=*>u(x, y) and assume that {u,} is an admissible sequence. If v, is
any sequence such that v, —%"—S»vo (x,y) then,

uavs—*J uo(xay)vo(x:y)dy in D,(Q) ‘ (25)
Y
and
limf ueusdxzj J Uo(x, y)vg(x, y)dydx. (2.6)
e—0 Q aldy

Further, if uy(x,(x/¢)) ii»uo(x, y) and u, is an admissible function then,
X
U, — U X,

Remark 2.3. (1) In fact, except for (2.6), this result is proved in [1]. The same proof can
be easily adapted to give (2.6) as well. (2) The hypothesis for (2.7)1s slightly more general
than saying (cf. [1]) e L*(Q, C,(Y)). a

lim

e—0

=0, 2.7)

2,0
Ul

We now prove a result which will be used repeatedly in the sequel.

Theorem 2.3. Suppose that u, =% u(x,y) and ¢ & C(Q, LL(Y)) then,

X

u,¢ (x,-—) == U4 (%, ) o (%, ). (2.8)

&

Proof. Since || (x, (x/8)} |l o < | ¢ (x, y) .0 x yand {u,} is bounded in L*(Q) we have,

X
u£¢ (.x, E)

By Theorem 2.1, for every subsequence of {u,9(x,(x/¢))} there is a further subsequence
(which we continue to index by & for simplicity) and a function u(x, y) such that

< ¢|u,|,q < cfor all & (where ¢ is a generic constant).
2,0

N g*i
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u ¢ (x,(x/e)) 2-scale converges to u(x,y). We will show that u(x, y) = u,(x, y) ¢ (x, y).
Since this limit is independent of the subsequence chosen, it shows that the entire
sequence 2-scale converges to this limit.

To prove the claim made above, let y € D(Q, C(Y)). Then we have by definition,

i o (<)o (<3 )or= [ [ waree

On the other hand, ¢y e C(Q, L7 (Y)) and s0 ¢ (x, (x/e)¥ (x, (x/e)) == (x, Y)Y (x, y)
and ¢y is an admissible function (cf. Remark 2.2). Therefore by Theorem 2.2 we get,

nmf u.gqs(x,f)w(xﬁ)dx= j f s (5 9) (6, ) () dxdly
e=0 | & & oJy

as u, is the 2-scale limit of u,. From the above and the density of D(Q, C2(Y)) functions
in L*(Q x Y) we conclude that u = u,¢. This completes the proof. |

COROLLARY 2.1

Let u,, uy and ¢ be as in Theorem 2.3. Let {v,} be an admissible sequence which 2-scale
converges to vy (x, y). Then,

J uq,’>< )u dx—-»f J. Uy pv,dxdy. (2.9)

Proof. By Theorem 2.3, u, ¢ (x, (x/g)) ==+ u, (x, ) d (X, y). Also, v, 2= v(x, y) and {v,}
is an admissible sequence. Therefore, (2.9) follows from Theorem 2.2. O

Theorem 2.4. [1] Let {u,} be a bounded sequence in Hy(Q) that weakly converges to
a function u in H§(Q). Then there exists a function u, € L*(Q, Hy(Y)/R) such that ( for
a subsequence)

u, 2= u(x) and,
Vu, 225V u + V,uy(x, y). |
Remark 2.4. (1) H1(Y) is the space of functions in H*(Y) which have been extended

by Y-periodicity to RY.(2) In case u, has an asympotic expansion then it would be
of the form

u,(x) = uy(x) +u, (x,i—)—f— a

3. Convergence of cost functionals

LetQbea bounded open set in RY. We obtain a periodically perforated domain Q, by
removing from Q a set of periodically distributed holes T..ie. Q, =Q\T, where T is

‘defined as follows.

Let T be an open subset of the unit cell Y = [0, 17" with Lipschitz boundary. Set,
T,= | etk+T).

kezZN
We denote the ‘material part’ of the unit cell by Y*,ie. Y* =Y\ T.
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The boundary of Q, has two parts-one comprises the union of boundaries of holes
strictly contained in Q, denoted by ,,,Q..

00 Q= | {0,(k+T):e(k+ T)=Q}.

int
kezZV

The second part is the exterior boundary,
00 Q. = 0Q,\0,,,Q,.

We make the following assumptions:

ext

Q, is a connected set. | (3.1)
Let A be the N x N matrix 4 =((a;(x,y))) in M(o;, B,Q x Y)such that

4,6 C(Q, LZ(Y)). (3.2)
Consider a sequence { f,} in L*(Q,) and a function fe L*(Q) such that,

f,— Af weakly in L*(Q), (3.3)

where A = | Y*|, the volume of the material part of the unit cell and the ~ denotes the
extension by zero outside ..

We consider the following problem posed in Q_ with a Neumann condition on
interior holes:

—div(4,Vu,)=f, in Q,
A Vu,:n,=0 on 0,,Q, (3.4)
u,=0 on 0,,Q,.

ext
Introduce the space,
V.={ueHy(Q,):u=0 on 0

and the bilinear form, a,:V, x V, > R

1
glc]

ext”

a,(u,v) = f A, VuVudx,
Q

where 4, is the matrix A(x, (x/g)).
Then (3.4) admits the weak formulation,

{ Find u,eV, such that

a,(u,, ) = (£, v) for all veV,. (3.5)

It is known that a, is coercive and hence (3.5) admits a unique solution u, in V. Itis also
known that {#,} is a bounded sequence in L2 (Q)(cf. [1]). Hence assume for a subse-
quence that

7, Au weakly in L*(Q) for a function ue L2(Q) (3.6)

Theorem 3.1. Let u, be the solution of (3.5). Then for a subsequence

{g 225, p(y)ulx)
Vit, 225 1 0)(V,u(0) + V1, (x, )

where ue Hy(Q), u, € L*(Q, C4(Y)/R) and X s the characteristic function of the set Y*.

(3.7)

R T
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In fact, if we choose u, such that [ty (x, y)dy = O then, (u, u, ) is the unique solution in
H(Q) x L*(Q, Ci(Y)/R) of the 2-scale homogenized problem

—div, (A )(V,u+V,u(x,y)) =0 in Qx Y*
A, y)(Vu+Vou, (x, y)n,=0 on dY*\gY (3.8)
~div, (fyx () A Y)(V, u+ Vou,(x,y))dy) =4Af in Q. O

Remark 3.1. (1) This theorem is proved in [1] for f, = f in Q,. The same proof can be
adapted to prove Theorem 3.1 where the right hand side in equation (3.5) is a sequence
{f.} such that f,— 1f. (2) The extra regularity of u; comes from the smoothness of the
coefficients a;;(x, y). (3) The equations (3.8) may be decoupled by setting

ou _ .
“1(35:)’) = —a?chl(xay)a

where, X" (x,y) is the solution of the problem:
—div,(A(x, y)(e + VX(x, ) =0 in Y*ae. x
JyeXi(x, y)dy =0 ae x (3.9)
y—  X'x,y) is Y-periodic

fori=1,2,...,N and u is the solution of

—div (4o (x)Vu)=Af in Q, (3.10)
u=0 on 0Q
where the matrix 4, given by,
X"
(Ao (X)) = [y () (ai,-(x, Y)+ ag(x, N5, y)) dy,
yk
is the H,-limit of the sequence {4, }. O

We now prove a corrector result. First we need the following preliminary result.

Lemma 3.1. Let u, be the solution of (3.5) and (u,u,) be as in Theorem 3.1. Then
{2, (0ujox, + du, Jdy,(x, (x/€))) } is an admissible sequence fori=1,2,... N, where X, IS the
characteristic function of the set Q,.

' Proof. We have, by Theorem 2.3,

ou N ou, X 2-s (Ou + Ou, 69) ) 1)
——— —_— — -—-—-«* — ———— .
Xe ox; oy, \ e ox; 9y, V) X

- Since du, /0y,(x, (x/€)) vanishes on the holes, we can write

—a—y—-!—% xzc— de— @-!—@—1 xf 2dx
QXS ox;  dy,\ e T, X"‘@xi oy, \ e
du \? oudu, [ x
‘J"(a“) bet2 :a""“a‘y“(>d

2
+f (—aﬁi(x,i)) dx.
o \ 0); €
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(e[ o
Q i Q i

since y,—Sy x(y)dy in L*(Q) weak * and (du/dx,)* € L' (Y). Next,

Ou Ou, 5_
J (Do — [ (] Lmner) e
= f f x(y)—”—b—‘l(x,wdydx

since du, /0y, (x, (x/e)) = [y 0u, /0y, (x, y)dy weakly in L*(Q) and Ouy [0y,(x, y) = x(y)
du,/0y,(x, y). Finally,

f 5(;11 (x —>dx-——>[ J ( xy)> dydx (since u, is smooth.)
o 9Y; €
=f f x(y)(ﬁy‘—l(x,w) dydx.
QJY i

2
] (520 52(o5) e ] fro (2 + ) v

which proves the lemma. O

Now,

Thus

We are now in a position to prove the following corrector result.

Theorem 3.2. Let u_be the solution of (3.5). Then

Z’i‘ﬁs ou ou, [ x
ox, ox, dy, e ke

where (u,u,) are as in Theorem 3.1.

=0 for i=1,2,...N (3.11)

2,0

Proof. Let
Vi %S ou ou, [ x
P ox, ox, 0y, e )k
Then,
N |2
ay |IFl <
i=1 2,0

Ou, Ou  ou [ x Ou, du  ou X
a.lx,— )= _-" = —t T 1 = .
J‘Q( U ( 3) <axj 0x; 0y, <x, 8)> (6xi 0x; 0y, <x, € )) &

Therefore, using equation (3.4), this can be written as
N .
; 6u ou ou X
a ) ()2, < f U dx — f . —1x=
izzl eh2,0 o, f a au x ax a X + ayl X, A Xs dx

N
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—

| g () +6u1 X, ausdx-l- a,;( x>
a T\ e 6ij£ ay;\ e Xe ox; o T\ e
ou ou, [ x ou Ou, [ x
- e Y — — x,= ) 3.12
* <5xj % 5J’j (X’ S)XE) <5xi s 0y; (x, 'S)xa)dx ( )

We make the following observations,

du, 2-s ou  ou,
ox, —x(») (5; + N (x, Y))

a,;(x,y)e C(Q, LZ(Y)),

ou ou, [ x\ 2-5 ou  Ou,
(5&- X + . (’“Z) xn) — () (a—x— + 5—y£(>c, y))
Further by lemma 3.1, {(du/ox,)y, + (Ouy /0y;)(x,(x/€)x,)} is an admissible sequence.
So by Corollary 2.1 and from the observations made above it follows that

Pa X 558 ou +5ul_xx dxms
Q ij ’8 axJ axiXt: ayl ’8 X.‘: -

(‘
f 2OV AG YV + Vyuy (x, 9)) (Y, + V,u, (x, y))dydx,
QJY

(‘a %) (L -|-aulxf é;*’dac—+
a \7e axjxe ay; \ e ke 0x,

f , 2OV A VIV + Vu (6, )V, + V,u, (x, ) dydx

e

e

JQ

a( x> u -}-6ulxE Ou +@—1 X~ dx —
AN aijg Iy, \ e ke 6xixe oy, \ e Xe

f . L XA YV, u+V,u (x, ) (Vo + V,u, (x, y)dydx.

and

Summing over the limits of the second, third and fourth terms on right hand side of
equation (3.12) we get

- JQ L KOV AC YVt + Yy (6, )V, 0 + Vg (x, ) dydx

which, by (3.8), is [,4 fudx. Now notice that
e, || gy @) S ¢ (independent of &)
u,=0o0nd,Q,

u,—~ Au and,

fi—~1f.

. So by a strong compactness result of Allaire and Nandakumar [3],

fou,dx ef A fudx.
Q, Q
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Therefore, it follows from (3.12) that |r l,o—0 as ¢—0, which completes the
proof. O

Remark 3.4. 1f f, is the restriction of a given function f in L*(Q) to Q, for all &, then

j fsuadx=J fﬁsdx-—sj fAudx,
Q, Q Q

since #i,—Au weakly in L*(Q). In this case we do not use the compactness result of
Allaire and Nandakumar. O

COROLLARY 3.1

'678/6xi is an admissible Sequence foralli=1,2,... N.ie.,

—

: ou, \? u  Ou,\?
“nf(”") dx_LL“”(‘a‘va—yi) drdx

Proof. We have

C u\? ([ . ou ou X 2
— ) dx= s i x,= .
Ja (axi) * Ja (1‘3 - 6‘xiXE - 0y; <x’ 3)X6> ax

i 5& 2 [ [ ou ou X
—£ | dx= 2dx +2 H— —Lx,=
dn(axi) * dn(rS) T J9r8<axixs+ dy; (X,E>Xg>dx

14

ou ou, [ x\\*,
2 Z . 3.
L (aﬂa 0y, (x’e)> dx (3.13)

By Theorem 3.2, r;—0 in L*(Q) strongly. Also, {x,(du/dx,+ du, /dy,(x, (x/e))} is
a bounded sequence in L%(Q). So the first two terms in the right hand side of (3.13)
converge to zero as ¢ —0. Therefore,

) ou.\? ou ou x\ )2
1 U ) dix = 1i ou L ouf x
) L(ax,) x };E%L(axi’“"ayi(x’a)) dx

= f ) L (5; o y)) 1(»)dydx (by lemma 3.1),

ie., {3u,/ox,} is an admissible sequence.

So,

O

For u, as above i.e. solving (3.5) we have the following result on the convergence of
cost functionals.

Let B be the N x N matrix ((by;(x, ))). Assume that b,;e C(Q, LZ(Y)) for all i,j.
Denote the matrix (b;;(x, (x/¢))) by B,.

Theorem 3.3. With the above assumptions on u, and B we have,

J . B,Vu,Vu dx—
Ql

J . J.Y XWBOL Y)Y+ V,yuy (x, )V, + V,u, (x, ) dy dx.




.
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Proof. We may write

— —

r ,
J‘ B,Vu Vu,dx = J bii(xa£> _a_y_l_iﬁg dx
o a ¢ ) 0x,0x,

J

Note the following,
b;;e C(Q,LZ(Y))

Bu 2oy, Ou  Ju,
o, x(;)(a +—3—}7( )>

1

c'mf X .
== lsan admissible sequence.
0x

i

So, by Corollary 2.1,

ou_ ou
limf B,Vu,Vu dx-—hmj bi,.( )(U ™ 4x
e—0 0 =0 Jg & (7\ (%C

0 0
-.—.-J J‘ by;(x, n(—(—'i+f—”'—i( X, ¥) \x (1 qu](x,,v))x(.v)dydx
aly dy; o NP0

/

=j j 1B, y)(V,u+V,u (x WV u+V,u (x,y))dydx. O
Q Y

Remarks 3.5. (1) We can write, when B is symmetric,

J f XBx, YUV u+ V u, (x, )V u + Vyu, tx, y))dydx
QJY

~

= J B,VuVudx
Q
where,
(By)i;=(Bo); + J x()) BV, (X' — Y)V (X7 — Y)dy.
Y

Here, Y' is the solution of the ith cell problem for B viz.,
—div,(B(x,y)(¢' + V,Y(x,y))) =0  in ¥*
B(x,y)(¢'+V,Y(x,y))n=0  ondY*\3Y
e Y, 3)dy = 0
y — Yi(x,y) is Y-periodic

and B, is the H, limit of the matrices B, and is given by the formula

oY’
(Bﬂ)ijzj X(y)(bij+blka >dy
Y

(2) If there are no holes then y(y) = 1. Hence we obtain the same formula for B, as in
[6,4].

(3) In the above mentioned papers, the existence of B, was proved in the context of an
optimal control problem. The authors obtained the matrix B, by introducing the
adjoint state variable and analysing the corresponding adjoint equation. While their
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analysis works for general coefficients, we have obtained the cost functional in the
periodic case directly, without involving the adjoint problem.

(4) Once we have the convergence of cost functionals we can complete the study of the
optimal control problem as in[5]. 0

4. Reiterated homogenization

In physical problems involving more than one microscopic scale it is useful to have the
notion of multi-scale convergence. The definition and main results of multi-scale
convergence as introduced by Allaire and Briane [2] are recalled. We later apply this
method to obtain the limit of quadratic functionals, thereby generalizing the results
obtained in § 3 to a multiply perforated domain. '

Let Q be a bounded open set in RY. We consider functions which depend on one
macroscopic variable and n microscopic variables.

Let {a,(e)}., {a,(€)},...,{a,(e)} be n sequences such that

lima;e)=0 fori=1,2,...n 4.1)

e—0

and such that 3m > 0 with

1 Va4 .
— I Zit1\® . = = n—1 4.
lim | o 0fori=1,2,...n 4.2)

If (4.2) is satisfied, then we say that the scales a;(¢) are well-separated.

Example. Let 0 <k, <k, <--- <k, be n numbers. Then we may take a,(g) = .

DEFINITION 4.1

For any Y, -periodic function (for all k=1,2,...,n) ¢(x,y,,...,y,). the oscillating
function [¢], is defined by

[¢J£(x)=¢(x,i —x—) o 0

a, (8) ’ an(a)

DEFINITION 4.2

A sequence u e L*(Q) is said to (n + 1) -scale converge to a function ue L*(Q x Y, X
ex Y)if

J ug[¢]g(X)dx—>J J J UP)(x,y1,-- -, ¥,)dy,..dy dx (4.3)
0 aly, Jy,

for all peD(Q,C(Y, X --- x Y,)), where Y,=[0,1]" for i=1,2,...,n. We write
Uy S (%, s D) | O

The following theorem justifies the definition of (n + 1) -scale convergence.

Theorem 4.1. (Compactness)(cf. [2]) Every bounded sequence in L*(Q) has an (n+ 1)
-scale convergent subsequence. ad
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Remark 4.1. (1) f u(x,y,,...,y,) in smooth, then [u], (x) iz, U,y V,)-
(2) If u, »u in L*(Q) strongly, then u, LSRN u(x).

3) Ifzu D8, y(x, Viseeos V) then u “‘IY IY u(x, y1,5...,9,)dy,..dy, weakly in
L*(Q).

(4) Thus any (n + 1)-scale convergent sequence {u,} is bounded in L?(Q). This follows
from the previous remark and the uniform boundedness principle.

(5) If u, has the expansion

w09 =000+ Y, @)U+

where the functions u,u,,...,u, are assumed to be smooth, then

u, LS (%, y .., p,)-
Hence the (n + 1) -scale limit of a sequence determines the first term in the asymptotic
expansion of u,(x). 0
DEFINITION 4.3

(a) A measurable function u(x, y,,..,y,) is said to be admissible if

J ([u]s(x))de*J J J U, YyseesY,)dy,..dy, dx. (44)
o oly, Y,

(b) A sequence {u,} which (n+ 1)-scale converges to an u(x,y,,..,y,) is said to be
admissible if

j (ug)zdxaj J J U(X, 5.y, dy,..dy,dx. 4.5)
Q aly, Jy
|

Remark 4.2. (1) The space L*(Q, C,(Y; x --- x Y,))is an example of a space of admiss-
ible functions. In general, continuity in n of the variables is sufficient in addition to the
appropriate measurability properties (cf. [2]).

Q) Ifuel?(Q, Cy(Y, x --- x Y,)), then [u],(x) L5 u(x, vy, .5 Vy)- O

The following theorem is in a certain sense, a theorem on strong (n+1) -scale
convergence. This is made precise as follows.

Theorem 4.2. [2] Suppose that u, L*2=% u(x,y,,..,,) and {u,} is an admissible

sequence. Also suppose that {v,} is another sequence which (n + 1)-scale converges to
(X, ¥15-.,¥,) Then,

usvs—»J. J (uv)(%, ¥15--» Y,)dy,..dy;, in D'(Q). (4.6)
Yy, Jy, v
Also,

j usvsdxaf J J (uv)(x,yl,..,yn)dyn..dyldx. (4.7)
S Ja aly, Jy,

Further, if the (n+ 1) -scale limit u(x,y,,..,y,) is admissible and

[0, (0) 22225 w(x, s,y 00 V),
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then
lim |, — [, | =0. (4.9)

O

Remark 4.3. (a) In Theorem 4.2, the conclusion (4.7) is new though the proof of (4.7) is
similar to that of (4.6).

(b) In fact, (4.6) can be improved to weak convergence in L*(Q) if u,v, € L*(Q). This
happens, for instance, if u, =y, =] [’=, x;(x/a;(e)) where y,(y,) are the characteristic

functions of Y < Y(Y# are certain subsets of the unit cell when we look at certain

problems over a perforated domain). 0O
COROLLARY 4.1 .
Let u, =% u(x, y,,..,y,) and p € L*(Q, C,(Y, X --- x Y.)). Then

us[d)]g m (uql))(xﬁ yl" "lyn)‘ (4"9)

Progf. The proof is similar to the proof appearing in the 2-scale case (cf. Theorem 2.3). [

COROLLARY 4.2

Let {u,} be a sequence which (n+ 1)-scale converges to u(x, y,,...y,). Assume that {u,} is
an admissible sequence. Let ¢ € I*(Q, C,(Y, x --- x Y,)). Let w, be another sequence
which (n+ 1) -scale converges to w(x,y,,..,y,). Then,

j Ma[¢]ewgdx—>J J J (UPw)(x, yy,..,,)dy,..dy, dx. (4.10)
o ady Jy,

Proof. Apply Corollary 4.1 to ¢, w, and take ¢w, for v, in Theorem 4.2. O

Theorem 4.3. [2] Let {u,} be a sequence in H* (Q) which converges weakly to uin H'(Q).
‘Then for a subsequence (which we continue to index by &) and Sunctions u, (X, y1,--.» ;)
eL2Qx Y, x - x Y,_, H{(Y*\R), k =1,2....,n we have,

(n+1)—s (n+1)~s

U, ——— u(x) and, Vi, ——= V. u+ 3. V, u,. (4.11)
k=1
O

3. Convergence of quadratic functionals

We now apply the results of the previous section to obtain the limit of J .(u,) where J is
a quadratic functional and u, is the solution to a Neumann problem in a multiscale per-
forated domain. As before we assume that the scales a,(e), a,(e),...,a,(e) are well separated.
We now define a multi-scale periodically perforated domain Q, for a fixed ¢ > 0.

Let T(i=1,2,...,n) be open subsets of Y= [0,1]" with smooth boundary. Let
YF = Y\ T.. Define

n

s'= U Uak+T)

keZVi=1

and set T =Qn S2.
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Define 2, to be Q\ T¢. We assume Q, to be connected. The boundary of Q, consists

of two parts; the union of boundarles of holes entirely contained in Q viz.,
3: @ = (e 2v0B(k) Where,

n

B(k) = U {a &)k + T%)} and B(k) = Q

and the exterior boundary, d,,,Q, = 9Q,\d,,Q,. Consider the Neumann problem,

—div(4,Vu,) = f inQ,
ANVu,n,=0 on 9, Q (5.1)

int=% |

u=0 on §_Q

ext &

where A,(x) = (([a;;],(x))) and we have the following assumptions on A = ((a;;))-
(1) AeM(0, B,Q X ¥, x - x Y).
(2) a;€e L*(Q,Cy(Yy x --- x Y})).

It is known that (5.1) has a unique solution u, and that the sequence {4, } is bounded
in L*(Q) independently of &. Assume that i, — Au in L*(Q) where 2=]]'_,|Y*| and
ue L*(Q). Then it is known that u solves the homogenized problem given by the
following theorem.

Theorem 5.1. [2] Let u, be the solution of (5.1). Then,

~ (n+1)

ua——'—”/l(x)xo/lﬂ >yn)

Vu, _‘i"f_”_’;L(qu + Y Vykuk)x(yl,...,yn), (5.2)

k=1

where y(V1s...,¥,) =] 7= 1 %:(v;) and y; is the characteristic function of the set Y¥. Also,
(u,uy,...,u,) is the unique solution in

n

V=HyQ)x [] L2Q@x Y, x - x Y,_,, HL(Y?))

i=1
of the (n + 1)-scale homogenized problem:
( —div,, (A(V,u+ 2., V, 1)) =0 in ¥
AVu+Zio, V,u)n=0 on 0T,
[y, taymu,dy, =0
_‘diVy,-(fY,-n"jY..H;—HXk(LVk)A(Vx”+Eﬁ=1vyk“k)dyn"dyj+1)=o in Y¥
< Gy T T 1 0 AV + Epo ¥, ) dy, -y )m=0 on 8T,
. ijXj(yj)ujdyj=0
for j=1,2,...,n—1 and finally,
'_—divxj‘Yi"j’Y,.]_—['iXk(yk)A(qu+Z’:=1Vykuk)dyn“dy1 =Af in Q
\ ' u=0 ondQ. (53)
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COROLILARY 5.1

The function u is also the unique solution of the homogenized problem
—div(4°Vu)=1f in Q
{ u=0 on 0Q G4

where A° is obtained from the iterative formulae,

A=A
__l. . 5.5
{AJ = j‘Y,-Xk(yk)AJ(i + VWf)de (3:3)
for 1 <j<nand, for £eRY, w5 is the unique solution of the cell equation:
- —div, (A +Vws)=0 in Y*

A+ Vw5)n=0 on 8T, (5.6)
§e, ;)W yys..00y;)dy; =0
where wie L2(Q x Y, x - x Y;_; H(Y})). 0
We now consider cost-functionals
1
J (u)== J B,Vu,Vu dx
2 Ja.

where B, =(([b;;1,(x))) and b;;€ L*(Q, C,(Y; x --- x Y})). Inall that follows let u, be the
solution of (5.1) and (u,u,. .., u,) be the solution of the homogenized problem (5.3). Let
us assume that u, e L*(Q, Ci(Y; x --- X Y;)) so that u, may be used as test functions in
multi-scale convergence. Then we show that,

lisz(u8)=j J j x(y)B(qu+ >V, uk)
ad aly, Y, k=1 "
X (qu-i— > Vykuk)dyn..dyldx, (5.7)
K=1

where y =(y,,...,y,) with y;€ Y.. The proof of the convergence of cost-functionals i.e.
the result (5.7) goes along the same lines as in the 2-scale case. First we require the
following lemma.

Lemma 5.1. With (u,u,,...,u,) as above and assumed to be regular, the sequence

du " du X X
{Xe <5;z * k;1 aJ’:i (xaa1(3)’ - .,ak(’g)))}

is admissible fori=1,2,...,N.

Proof. First we note that,

ou - 0uk( X b )) (n+1)—s (Bu - 6uk>
A et X, seves >yl — + —
* (5xi kgl Oy \ ay(e) a,(e) * ox; k§1 Vi

du [ ou, 2 j (6u )2 ou & [614,{]

— X+ — | (¥)x, ) dx= — s 2—x — | (x
JQ(axix 121 [ayki]e( )X) * o \0x; * axix 1;1 Vi s( )

. n auk:| )2

+ — | (x) ] dx,
(kgl [ayki s( )

and
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where as usual

[%} (x)__‘auk<x x x )
Vi s _ayki -741(8),“"‘11((8) .

Now,
XE-»J‘ J AW1s---5y,)dy,..dy, in L*(Q) weak *
v, Jy,
and,
2
(%) e LY(Q)
Therefore,
J (&)= )]G >
Q i
Next,
ou

(n+1)—~s

_a—sc—xﬁd—-——)g;c—;)c(yla'-':yn)

i

and {Z}_, [0u,/dy,;], (x)} is an admissible sequence since we have assumed the u;s to
be regular. Therefore by Theorem 4.2,

ou " auk] ) J‘ j J ou ( ou, )

— — | (x) |dx— dy,..dy,dx.
Jn axixe<k§1 I:ayki s( ) aJy, Xax kzl OVi Tn
Xs (X) —*

<k§1 [ayki e g kgl Vi

by Corollary 4.1. Therefore,

" a 2 n a
LG ]o o[ ] [ AE ) oo

by Corollary 4.2. Hence,

ou i 6uk:| )2 J‘ J J (é‘u 1 Ou, )2
el 7 T — [ (x) ] dx— —+ ) — dy,..dy,dx
JL:X (axi kgl [ayki s( ) aJy, Y;,X 0x; k§1 OV '

which proves the admissibility of the said sequence. O

Finally,

Then we obtain, as in the 2-scale case, the following corrector result. The proof being
similar, we omit it.

Theorem 5.2. If u_is the solution of the Neumann problem (5.1) and we assume further

that (u,u,,...,u,) are sufficiently regular then,
Bu, ou 2| Ou
lim | %% _ %, _ 5| S =0 for i=1,2,...,N. O
pooe) 0x; Ox; Xe kgl [@%il(xmz 2,0 for 1 ’
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We now show that {du,/dx,} is an admissible sequence. Before that we prove the
following lemma.

Lemma 5.2. Let a, SUZ5 a(x, 4. ., y,) and assume that {a,} is an admissible se-

quence. Let {b,} be a sequence of functions in L*(Q) such that
%ET(} la, —b,ll 0= 0. (5.8)
Then {b,} is aiso admissible.

Proof. Note that we can write, b, = a, +t, for a sequence , € L*(Q) such that 1,—0

strongly in L*(€2). We have that f, i"—il————» 0 (since t,—0 strongly in L*(Q)). Therefore,

(1) ;
b —Lw_——)a(x Yis-- o> V) a'nda

.
Jr (bg)zdx=’ (aa)zdx—irQ.J aetedx—}-J (z,)*dx. (5.9)
Q J Q Q Q

Hence,

lim f (b,)*dx = lim J (a,)*dx
Q £—0 Q

&0
—.:J J‘J a(X, Y1525y, dx
aly, Jy

(since the second and third terms in right hand side of (5.9) tend to zero by (5.8)). Hence,
{b,} is an admissible sequence. O

Let {u,}, u,u,,...,u, and the matrix B be as before. Then we have the following
theorem.

Theorem 5.3. Assuming that u,u,,...,u, are sufficiently smooth we have,

* r n . n
limJ,(u,) = J f J B(qu+ A uk>~<\7xu+ >V, uk> dy,..dy,dx.
g0 aldy, v k=1 k=1 "

n

Proof. We have,

ﬁu 8u
J ()= J Il 7 &
It follows from Lemma 5.1, Theorem 5.2 and Lemma 5.2 that {Ju, /dx; } is an admissible
sequence. Further

5;;8 n+1)=s ou 1 6uk
== Sl — —k i=1,2,..., :
ax o Mat k; o 2,...,N and

13

by L(Q, Cy(Y, x - x Y,)).
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So, by Corollary 4.2,

lin& J(u,)=lim '[ Bb_ﬁﬁ'%adx
&= Q

e—0

:J Jv J‘ XB(qu-l- y Vyk“k>'(vx“+ > Vykuk)dy"..dyldx.
aly, Y, k=1 k=1

n

O

Remark 5.2. By an iterative formula we can write the limit of J,(u,) as [, B°Vu-Vudx
where B° is given by the iterative formulae,

B"= B,
(B*~ 1)ij = (H, limit of Bk)ij + fn Xk(yk)BkVyk(W;c - ﬂ;;)vy‘,(wi —nj)dy,

forall 1 <i,j< N and for k=1,2,...,n; where, 5 is the unique solution of the ith cell
equation for B* viz.,

—div, (B(e' + V, ) =0 in Y}
Bi(e'+ Vyﬂ;;)'" =0 ondT,
.fYka(yk)’ﬁ;dyk = 0.
and wi are obtained from (5.6) by taking ¢ =¢'.
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