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1. Introduction

Let� ⊂ R
N be a bounded domain. Let 0< αm < αM . We denote byM(αm, αM,�) the

set of allN ×N matricesA = A(x), with coefficients inL∞(�), such that

αm|ξ |2 ≤ A(x)ξ · ξ ≤ αM |ξ |2, a.e. x, for all ξ ∈ R
N.

Given a family of matricesAε ∈ M(αm, αM,�), let vε ∈ H 1
0 (�) be the unique (weak)

solution of the problem

−div(Aε∇vε) = f in �

vε = 0 on ∂�

}
(1.1)

wheref ∈ L2(�) is given. Then{vε} is bounded inH 1
0 (�) and ifvε ⇀ v0 in H 1

0 (�), we
have

−div(A0∇v0) = f in �

v0 = 0 on ∂�

}
(1.2)

whenAε H -converges toA0 (cf. Murat [7]). We know that{vε} does not converge strongly
in H 1

0 (�). Nevertheless,
∫
�

|∇vε|2 dx is bounded and hence (at least for a subsequence)
converges. We would like to know if this limit can be expressed in terms of the function
v0. More generally, ifBε ∈ M(βm, βM,�), be another family of matrices, consider the
‘energy’ defined by

∫
�

Bε∇vε · ∇vε dx.
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Again, this is a bounded sequence and we would like to express its limit (when it
converges) in terms ofv0. More precisely, we would like to know if there exists a matrix
B# ∈ M(β̃m, β̃M,�) such that∫

�

Bε∇vε · ∇vε dx →
∫
�

B#∇v0 · ∇v0 dx

and, if so, identify that matrix and estimate the constantsβ̃m andβ̃M .
WhenBε = Aε, it is well-known (cf. Murat [7]) that indeedB# = A0, theH -limit of Aε.
It turns out that the solution to this problem is closely related to the question of homog-

enizing an associated optimal control problem.
LetUad ⊂ L2(�) be a closed convex set (called the set of admissible controls) and let

f ∈ L2(�) be given. Givenθ ∈ Uad, let uε ∈ H 1
0 (�) be the unique (weak) solution of

the ‘state equation’:

−div (Aε∇uε) = f + θ in �

uε = 0 on ∂�

}
. (1.3)

Then, there exists a unique ‘optimal control’θ∗
ε ∈ Uad such that

Jε(θ
∗
ε ) = min

θ∈Uad
Jε(θ), (1.4)

where, forθ ∈ Uad, anduε = uε(θ) solution of (1.3),

Jε(θ) = 1

2

∫
�

Bε∇uε · ∇uε dx + N

2

∫
�

θ2 dx, (1.5)

N > 0 being a fixed constant, called the ‘cost of the control’.
The homogenization of the optimal control problem (1.3)–(1.5) was first studied in

the periodic case by Kesavan and Vanninathan [5] and then in the geneal case under the
framework ofH -convergence by Kesavan and Saint Jean Paulin [3]. They also extended
these results (cf. [4]) to the ‘perforated case’ where� is replaced by a family of ‘perforated
domains’�ε ⊂ �. In all these cases, it was shown that there exists a matrixB# such
that, in the limit, there is an optimal control problem withA0 andB# replacingAε andBε
respectively in (1.3)–(1.5).

The expression derived forB# is complicated and the symmetry of this matrix, when
all theBε are symmetric, requires a detailed proof (cf. [3,4]). Further, while the ellipticity
could be proved, no upper bound, i.e. an estimate forβ̃M , could be derived.

In this paper, a new formula forB# is obtained and, in the symmetric case, the symmetry
can be read off directly from it. An upper bound is also derived.

The paper is organized as follows. In §2, the equivalence of the two problems stated
above is studied and the existence and uniqueness of the matrixB# is established based on
the results of Kesavan and Saint Jean Paulin [3]. In §3, the new formula forB# is derived
and its properties are studied. In §4, the corresponding results for the perforated case are
stated.

2. Two equivalent problems

Let� ⊂ R
N be a bounded domain and letAε ∈ M(αm, αM,�) andBε ∈ M(βm, βM,�)

be given. We now consider two statements.
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(S1) There exists a matrixB# ∈ M(β̃m, β̃M,�) such that, given a strongly convergent
sequence{gε} in H−1(�) and the corresponding sequence{vε} of solutions inH 1

0 (�) of
the problem

−div(Aε∇vε) = gε in �

vε = 0 on ∂�

}
, (2.1)

then, for a subsequence,vε ⇀ v0 weakly inH 1
0 (�) and∫

�

Bε∇vε · ∇vε dx →
∫
�

B#∇v0 · ∇v0 dx, (2.2)

Bε∇vε · ∇vε ⇀ B#∇v0 · ∇v0 in D′(�). � (2.3)

Remark2.1. If gε → g in H−1(�), then (cf. Murat [7])

−div(A0∇v0) = g in �

v0 = 0 on ∂�

}
, (2.4)

whereA0 is theH -limit of Aε. Also

Aε∇vε ⇀ A0∇v0 (2.5)

weakly inL2(�)N . �
In order to make the second statement, we need to introduce the ‘adjoint state’ function.

Let gε andvε be as above. Then we denote bypε ∈ H 1
0 (�), the adjoint state, which is the

solution of

div (tAε∇pε − Bε∇vε) = 0 in �

pε = 0 on ∂�

}
, (2.6)

where, we have denoted the transpose ofAε by tAε.

Remark2.2. From the hypotheses, it is evident that{pε} is bounded inH 1
0 (�). �

Remark2.3. The system consisting of (2.1) and (2.6) is of the type used by Lions [6] to
construct the optimality system to solve the optimal control problem (1.3)–(1.5), using a
duality argument. The system consisting of (2.1) and (2.6) was used by Kesavan and Saint
Jean Paulin [3] to homogenize the optimal control problem (1.3)–(1.5).�
(S2)There exists a matrixB# ∈ M(β̃m, β̃M,�) such that, givengε strongly convergent
in H−1(�) andvε solution of (2.1) andpε solution of (2.6), then, for a subsequence,
vε ⇀ v0, pε ⇀ p0 weakly inH 1

0 (�) andzε = tAε∇pε−Bε∇vε ⇀ zweakly inL2(�)N ,
where

z = tA0∇p0 − B#∇v0 (2.7)

andA0 is theH -limit of Aε. �
Remark2.4. The pair(v0, p0) will satisfy the homogenized system:

−div(A0∇v0) = g in �

div(tA0∇p0 − B#∇v0) = 0 in �

v0 = p0 = 0 on ∂�


 . � (2.8)

We now prove the equivalence of these two statements.
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Theorem 2.1. If B# ∈ M(β̃m, β̃M,�) is such that(S2) is true, then it also verifies(S1).
The converse is true ifBε andB# are symmetric.

Proof. Let (S2) hold forB#. Now, by virtue of (2.1), (2.4), (2.6) and (2.8), we have, for
the relevant subsequence,∫

�

Bε∇vε · ∇vε dx =
∫
�

tAε∇pε · ∇vε dx

=
∫
�

Aε∇vε · ∇pε dx

= 〈gε, pε〉H−1(�),H1
0 (�)

→ 〈g, p0〉H−1(�),H1
0 (�)

=
∫
�

A0∇v0 · ∇p0 dx

=
∫
�

B#∇v0 · ∇v0 dx.

This proves (2.2). Now,

Bε∇vε · vε = −(tAε∇pε − Bε∇vε) · ∇vε + (Aε∇vε) · ∇pε.
Now, by virtue of (2.1) and (2.6), the divergences of the expressions within parantheses
in each of the two terms in the right-hand side are strongly convergent inH−1(�). Also,
∇vε and∇pε converge weakly inL2(�)N . Thus, by the div-curl lemma of compensated
compactness theory (cf. Murat [7], Murat and Tartar [8] or Tartar [10]), we conclude that,
in view of (2.5) and (2.7),

Bε∇vε · ∇vε ⇀ −(tA0∇p0 − B#∇v0) · ∇v0 + A0∇v0 · ∇p0

= B#∇v0 · ∇v0

in D′(�). This proves (2.3).
Conversely, letBε andB# be symmetric and assume that (S1) holds. Letωb� be a

(relatively compact) open subset and letη ∈ D(�) be such thatη ≡ 1 in a neighborhood
of ω. Defineηkε ∈ H 1

0 (�), 1 ≤ k ≤ N , to be the unique solution of the problem

−div(Aε∇ηkε) = −div (A0∇(ηxk)) in �

ηkε = 0 on ∂�

}
. (2.9)

Then, byH -convergence,ηkε ⇀ ηxk weakly inH 1
0 (�) andAε∇ηkε ⇀ A0∇(ηxk) weakly

in L2(�)N . By superposition of the solutions of (2.1) and (2.9), we get

−div(Aε∇(vε ± ηkε)) = gε ± (−div (A0∇(ηxk)) in �.

Hence, by (S1), for a subsequence,

Bε∇(vε ± ηkε) · ∇(vε ± ηkε) ⇀ B#∇(v0 ± ηxk) · ∇(v0 ± ηxk)

in D′(�). Hence, using the polarization identity which requires the symmetry ofBε and
B#, we get that

Bε∇vε · ∇ηkε ⇀ B#∇v0 · ∇(ηxk) (2.10)
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in D′(�). We can now apply the div-curl lemma to the pair(zε,∇ηkε), since divzε = 0, to
get

zε · ∇ηkε ⇀ z · ∇(ηxk)

in D′(�). On the other hand

zε · ∇ηkε = Aε∇ηkε · ∇pε − Bε∇vε · ∇ηkε
⇀ A0∇(ηxk) · ∇p0 − B#∇v0 · ∇(ηxk)

again by applying the div-curl lemma to the first term on the right-hand side and by also
using (2.10). Thus, onω, we have

z · ek = tA0∇p0 · ek − B#∇v0 · ek

whereek is the standardk-th basis vector ofRN . This proves (2.7) onω and asωb� was
arbitrary, we have the result on�. �

Remark2.5. We can use the test functionsηjε to prove the uniqueness of the matrixB#,
when it exists. Indeed, if we have two matricesB#

i , i = 1, 2, satisfying (S2), (or (S1), in

the symmetric case), settingvε = η
j
ε , we then have that (cf. (2.7))

tA0∇p0 − B#
1∇(ηxj ) = tA0∇p0 − B#

2∇(ηxj ).

Thus onω, we have thatB#
1 = B#

2 and the result follows for all of� sinceωb� is
arbitrary. �

The existence of aB# satisfying (S2) was proved in the general case by Kesavan and
Saint Jean Paulin [3]. We recall their formulation and also give another, shorter, proof of
their result.

We first need to define some test functions. First of all, we recall the existence of functions
Xkε ∈ H 1(�), for 1 ≤ k ≤ N , with the following properties (cf. Murat [7]).

Xkε ⇀ xk weakly inH 1(�)

Aε∇Xkε ⇀ A0ek weakly inL2(�)N

{div(Aε∇Xkε)} converges strongly inH−1(�)


 . (2.11)

We now define another set of test functionsψkε ∈ H 1
0 (�) for 1 ≤ k ≤ N , which verify

−div(tAε∇ψkε + tBε∇Xkε) = 0 in �

ψkε = 0 on ∂�

}
. (2.12)

Then, up to a subsequence,{ψkε } converges weakly inH 1
0 (�) to ψk0 and {tAε∇ψkε +

tBε∇Xkε } converges weakly inL2(�)N . Then, (cf. [3]), we define

t (B#)ek = lim
ε→0

(tAε∇ψkε + tBε∇Xkε)− tA0∇ψk0 . (2.13)

Theorem 2.2. B# defined by(2.13)satisfies(S2).
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Proof. We extract a subsequence such that all the bounded sequences that occur below
are convergent in the relevant weak topologies. Letgε → g strongly inH−1(�) and
(vε, pε) ∈ H 1

0 (�)×H 1
0 (�) be the solution of (2.1) and (2.6). Letvε ⇀ v0 andpε ⇀ p0

weakly inH 1
0 (�) and letzε ⇀ z weakly inL2(�)N . Now

zε · ∇Xkε = ∇pε · Aε∇Xkε − tBε∇Xkε · ∇vε
= (Aε∇Xkε) · ∇pε − (tAε∇ψkε + tBε∇Xkε) · ∇vε

+ (Aε∇vε) · ∇ψkε
We can pass to the limit, using the div-curl lemma, in each term to get

z · ek = A0ek · ∇p0 − lim
ε→0

(tAε∇ψkε + tBε∇Xkε) · ∇v0 + A0∇v0 · ∇ψk0

using (2.13) from which (2.7) follows. �
Remark2.6. In the statements (S1) and (S2), we have required that the relevant conver-
gences occur for a subsequence. It must be noted that the subsequence is independent of
the strongly convergent sequencegε. Indeed, it depends only on the convergences implied
in (2.11) and (2.13) (cf. Rajesh [9]).�

3. Properties ofB#

We are now interested in properties like the symmetry and ellipticity of the matrixB#

defined in the previous section. Kesavan and Saint Jean Paulin [3] proved that it is symmet-
ric when all theBε are symmetric and that̃βm = βm. However, the problem of estimating
β̃M was left open. In this section, a new formula forB# will be given from which the
symmetry can be just read off and which will also enable us to estimateβ̃M .

First of all, we recall the corrector matrices occurring in the study ofH -convergence
of Aε, as introduced by Murat [7]. IfXkε are the test functions introduced in the previous
section (cf. (2.11)), the corrector matrices are defined by

Mεek = ∇Xkε , 1 ≤ k ≤ N. (3.1)

Then, the following properties hold (cf. Murat [7] or Murat and Tartar [8]):

Mε ⇀ I weakly inL2(�)N
2

AεMε ⇀ A0 weakly inL2(�)N
2

tMεAεMε ⇀ A0 in D′(�)N2

{div(AεMε)} converges strongly inH−1(�)N



. (3.2)

We now prove the main result of this section.

Theorem 3.1. B# defined by(2.13)is the limit, in the sense of distributions, oftMεBεMε.

Proof. It is enough to show that, for 1≤ i, j ≤ N ,

tMεBεMεek · ej ⇀ B#ek · ej
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in D′(�). Now

tMεBεMεek · ej = tBεMεej ·Mεek

= (tAε∇ψjε + tBεMεej ) ·Mεek − tAε∇ψjε ·Mεek

= (tAε∇ψjε + tBε∇Xjε ) · ∇Xkε − Aε∇Xkε · ∇ψjε .

We can pass to the limit in each of the two terms on the right-hand side using the div-curl
lemma to get

tMεBεMεek · ej ⇀ tB
#
ej · ek = B#ek · ej . �

COROLLARY 3.1

If theBε are symmetric, then so isB#. �

Theorem 3.2. B# ∈ M(β̃m, β̃M,�), whereβ̃m = βm and

β̃M = βM

(
αM

αm

)2

.

Proof. Thatβ̃m=βm has already been proved in [3]. Letϕ ∈ D(�), ϕ ≥ 0 and letξ ∈ R
N .

Then ∫
�

BεMεξ ·Mεξϕ dx ≤ BM

∫
�

|Mεξ |2ϕ dx

≤ βM

αm

∫
�

AεMεξ ·Mεξϕ dx

= βM

αm

∫
G

tMεAεMεξ · ξϕ dx.

Passing to the limit, using Theorem 3.1 and (3.2), we get

∫
�

B#ξ · ξϕ dx ≤ βM

αm

∫
�

A0ξ · ξϕ dx ≤ βM

αm

α2
M

αm
|ξ |2

∫
�

ϕ dx,

since we know thatA0 ∈ M(α̃m, α̃M,�), whereα̃m = αm and α̃M = α2
M/αm (cf.

Murat [7]). Sinceϕ was arbitrary, this proves the theorem.�

Remark3.1. Consider the one-dimensional case. Let 0< αM ≤ aε(x) ≤ αM and 0< βM
≤ bε(x) ≤ βM . Let

− d
dx
(aε

duε
dx
) = f in (0, 1)

uε(0) = uε(1) = 0.

Then, it has been shown by Kesavan and Saint Jean Paulin [3] that

∫ 1

0
bε

duε
dx

duε
dx

dx →
∫ 1

0
b# du0

dx

du0

dx
dx
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with

b# = a2
0

g0
,

where
1

aε
⇀

1

a0
and

1

gε
≡ bε

a2
ε

⇀
1

g0
in L∞(0, 1) weak -∗.

This yields precisely the bound obtained above forb#. �

4. The perforated case

We now briefly describe the problem in the perforated case and state the results without
proofs, since those of the corresponding results in the previous case carry overmutatis
mutandis.

Let� ⊂ R
N be a bounded domain and forε > 0, letSε ⊂ � be a closed set (the set of

perforations). We call�ε = �\Sε the perforated domain. Following Briane, Damlamian
and Donato [1], we say that a family{Sε} of holes is admissible if the following conditions
are fulfilled.

H1 If χε is the characteristic function ofSε, then every weak-∗ limit of {χε} in L∞(�) is
positive a.e. �
H2 Let

Vε = {u ∈ H 1(�ε)|u = 0 on ∂�}.
Then, there exists an extension operatorPε : Vε → H 1

0 (�) and a constantC0 > 0,
independent ofε such that, for anyu ∈ Vε,

Pεu|�ε = u and ||∇Pεu||L2(�)N ≤ C0||∇u||L2(�ε)N
. � (4.1)

Analogous to the theory ofH -convergence, we have a theory ofH0-convergence (cf. [1]).
We now assume that we have two families of matricesAε ∈ M(αm, αM,�) andBε ∈

M(βm, βM,�). We denote byP ∗
ε : H−1(�) → V ∗

ε , the adjoint ofPε. For functions in
L2(�ε), we also have the trivial extension operatorQε which extends the functions by
zero across the holes to give a function inL2(�). We denote the unit outward normal (with
respect to�ε) on ∂Sε benε.

(S3) There exists a matrixB# ∈ M(β̃m, β̃M,�) such that, given a strongly convergent
sequence{gε} in H−1(�) and the corresponding sequence of solutionsvε ∈ Vε of

−div(Aε∇vε) = P ∗
ε gε in �ε

Aε∇vε · nε = 0 on ∂Sε
vε = 0 on ∂�


 , (4.2)

then, for a subsequence,Pεvε ⇀ v0 weakly inH 1
0 (�) and∫

�ε
Bε∇vε · ∇vε dx ⇀

∫
�
B#∇v0 · ∇v0 dx

χεBε∇(Pεvε) · ∇(Pεvε) ⇀ B#∇v0 · ∇v0 in D′(�)

}
. � (4.3)

(S4) There exists a matrixB# ∈ M(β̃m, β̃M,�) such that given a strongly convergent
sequence{gε} in H−1(�) and the sequence{vε} of solutions of (4.2) and the sequence
{pε} in Vε of solutions of
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div (tAε∇pε − Bε∇vε) = 0 in �ε
(tAε∇pε − Bε∇vε) · nε = 0 on ∂Sε

pε = 0 on ∂�


 , (4.4)

then, for a subsequence,Pεvε ⇀ v0, Pεpε ⇀ p0 weakly inH 1
0 (�), zε = Qε(

tAε∇pε −
Bε∇vε) ⇀ z weakly inL2(�)N where

z = tA0∇p0 − B#∇v0, (4.5)

A0 being theH0-limit of {Aε}. �

Theorem 4.1. If B# ∈ M(β̃m, β̃M,�) is such that(S4) is true, then so is(S3). The
converse holds when theBε andB# are symmetric. �

Kesavan and Saint Jean Paulin [4] gave a formula for a matrixB# such that (S4) holds.
If we define the corrector matrices̃Mε by

M̃εek = ∇(PεX̃kε ),

where theX̃kε are test functions with properties analogous to those mentioned in (2.11)
(cf. [1] or [4]), it can be shown that (cf. Rajesh [9])

χε
tM̃εBεM̃ε ⇀ B#

in the sense of distributions. Thus, ifBε are symmetric, so isB# and we can show that

β̃M = βM

(
αM

αm

)2

.

Kesavan and Saint Jean Paulin [4] proved that for allw ∈ H 1
0 (�)

∫
�

B#∇w · ∇w dx ≥ βmC
−2
0 ||w||2

H1
0 (�)

.

This, in fact, implies that̃βm = βmC
−2
0 . We give a proof of this below. It is adapted

from a similar proof by Casado-Díaz [2], but with different test functions.

Lemma4.1. LetA = A(x) be a symmetricN×N matrix with coefficients inL∞(�) such
that

∫
�

A∇w · ∇w dx ≥ 0 (4.6)

for all w ∈ H 1
0 (�). Then

A(x)ξ · ξ ≥ 0 (4.7)

a.e.in � for all ξ ∈ R
N .
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Proof. Let ξ ∈ R
N and letϕ ≥ 0 be aC1

0-function. Define

vε(x) = ε cos(ε−1ξ · x)ϕ(x),
wε(x) = ε sin(ε−1ξ · x)ϕ(x).

Thenvε, wε ∈ H 1
0 (�). Applying (4.6) to bothvε andwε and adding the resulting inequal-

ities, we get

ε2
∫
�

A∇ϕ · ∇ϕ dx +
∫
�

(Aξ · ξ)ϕ2 dx ≥ 0.

Passing to the limit asε → 0, using the arbitrariness ofϕ, we get (4.7) by standard
arguments. �
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C. R. Acad. Sci., Paris, Śerie A,285(1977) 441–444
[6] Lions J L, Optimal Control of Systems Governed by Partial Differential Equations (Berlin:

Springer-Verlag) (1971)
[7] Murat F,H -convergence, Mimeographed notes, Séminaire d’Analyse Fonctionnelle et
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