Proc. Indian Acad. Sci. (Math. Sci.) Vol. 112, No. 2, May 2002, pp. 337—-346.
© Printed in India

On the limit matrix obtained in the homogenization
of an optimal control problem

S KESAVAN* and M RAJESH

*The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600 113,
India

Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India
E-mail: kesh@imsc.ernet.in; rajesh@math.iisc.ernet.in

MS received 6 January 2001
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1. Introduction

Let 2 c RY be a bounded domain. Letd o, < arp;. We denote byM (a,,, apr, Q) the
setof allN x N matricesA = A(x), with coefficients inL*°(2), such that

anlE? < A0)E - € <ayltl?, ae.x, forall £ e RY.

Given a family of matricesi, € M(a,,, ay, 2), letv, € H&(Q) be the unique (weak)
solution of the problem

(1.1)

—div(A,Vv,) = f in Q
ve = 0 onaQ

wheref e L?(Q) is given. Then{v,} is bounded 43 () and ifv, — vg in H}(S2), we
have

(1.2)

—div(AgVvg) = f in Q
) 0 on Q2

whenA, H-converges to\g (cf. Murat [7]). We know thafv, } does not converge strongly

in Hol(sz). Nevertheless(,, |V, |2 dx is bounded and hence (at least for a subsequence)
converges. We would like to know if this limit can be expressed in terms of the function
vo. More generally, ifB, € M (B, Bu, 2), be another family of matrices, consider the
‘energy’ defined by

/ B:Vv, - Vv, dx.
Q
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Again, this is a bounded sequence and we would like to express its limit (when it
converges) in terms af. More precisely, we would like to know if there exists a matrix
B* € M(Bm, Bu. ©2) such that

/BSVUE-Vdexa/B#Vvo-Vvodx
Q Q

and, if so, identify that matrix and estimate the constgptand ;.

WhenB, = A, itis well-known (cf. Murat [7]) that indeed” = Ap, the H-limitof A,.

It turns out that the solution to this problem is closely related to the question of homog-
enizing an associated optimal control problem.

Let Uag C L2(2) be a closed convex set (called the set of admissible controls) and let
f € L%(Q) be given. Giverd € Uy, letu, € H}(Q) be the unique (weak) solution of
the ‘state equation’:

—div (A Vu,)

f+06 in Q
u, = 0 onoJo2 |’ (1.3)
Then, there exists a unique ‘optimal contr@’ € Uaq such that
Je(6F) = min J.(0), (1.4)
6€Uaq
where, ford € Ugq, andu, = u.(6) solution of (1.3),
1 N
Jo(0) = —/ B.Vu, - Vu, dx + —f 62 dx, (1.5)
2 Jg 2 Ja

N > 0 being a fixed constant, called the ‘cost of the control'.

The homogenization of the optimal control problem (1.3)—(1.5) was first studied in
the periodic case by Kesavan and Vanninathan [5] and then in the geneal case under the
framework of H-convergence by Kesavan and Saint Jean Paulin [3]. They also extended
these results (cf. [4]) to the ‘perforated case’ wheris replaced by a family of ‘perforated
domains’Q2, c . In all these cases, it was shown that there exists a maftisuch
that, in the limit, there is an optimal control problem witlg and B* replacingA, andB,
respectively in (1.3)—(1.5).

The expression derived fa* is complicated and the symmetry of this matrix, when
all the B, are symmetric, requires a detailed proof (cf. [3,4]). Further, while the ellipticity
could be proved, no upper bound, i.e. an estimatgfprcould be derived.

In this paper, a new formula f@* is obtained and, in the symmetric case, the symmetry
can be read off directly from it. An upper bound is also derived.

The paper is organized as follows. In 82, the equivalence of the two problems stated
above is studied and the existence and uniqueness of the rB4iestablished based on
the results of Kesavan and Saint Jean Paulin [3]. In §3, the new formukf'fisrderived
and its properties are studied. In 84, the corresponding results for the perforated case are
stated.

2. Two equivalent problems

Let22 c RN be abounded domain and let € M (a,,, opr, 2) andB, € M (B, By, )
be given. We now consider two statements.
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(S1) There exists a matriB* € M(B,., B, Q) such that, given a strongly convergent
sequencég.} in H~1(Q) and the corresponding sequerfeg} of solutions inHol(sz) of
the problem

—div(A,Vv,) = g, in Q
ve = 0 ona [’ (2.1)
then, for a subsequenag, — vg weakly in Hol(Q) and
/ B:Vuv, - Vo, dx — / B*Vug - Vg dx, (2.2)
Q Q
B:Vv, - Vv, — B*Vug- Vg in D'(2). A (2.3)
Remark2.1. If g, — gin H~1(Q), then (cf. Murat [7])
—div(AgVvg) = g in Q
vo = 0ono2 |’ (2.4)
whereAg is the H-limit of A,. Also
A.Vv, — AgVg (2.5)

weakly inL2()V. N

In order to make the second statement, we need to introduce the ‘adjoint state’ function.
Let g, andv, be as above. Then we denote fay< Hol(Q), the adjoint state, which is the
solution of

div ‘A,Vps — B.Vv,) = 0 in Q
p. = 0onaq |’ (2.6)
where, we have denoted the transposd oby ‘A, .
Remark2.2. From the hypotheses, it is evident that} is bounded inHOl(Q). [ |

Remark2.3. The system consisting of (2.1) and (2.6) is of the type used by Lions [6] to
construct the optimality system to solve the optimal control problem (1.3)-(1.5), using a
duality argument. The system consisting of (2.1) and (2.6) was used by Kesavan and Saint
Jean Paulin [3] to homogenize the optimal control problem (1.3)—(1.18.

(S2) There exists a matri8® € M(B,,, Bu. ) such that, giverg, strongly convergent
in H~1(Q) and v, solution of (2.1) andp, solution of (2.6), then, for a subsequence,
ve — 0, pe — poweakly inHg(Q) andz, = 'A,Vp, — B,Vv, — zweakly inL?(Q)",
where

z="AoV po — B*Vug (2.7)
andAgistheH-limitof 4,. W
Remark2.4. The painvo, po) will satisfy the homogenized system:

—div(AgVvg) = g in Q
div(fAoV po — B#¥Vug) = 0 in Q . i (2.8)
vo=po = 0 ondQ2

We now prove the equivalence of these two statements.
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Theorem 2.1. If B¥ € M(B,,, Bu, ) is such tha(S2)is true, then it also verifie€S1).
The converse is true B, and B* are symmetric.

Proof. Let (S2) hold forB*. Now, by virtue of (2.1), (2.4), (2.6) and (2.8), we have, for
the relevant subsequence,

/ B:Vu, - Vv, dx = / '"AcVpe - Vv, dx
Q Q

= / AV, - Vp, dx
Q

= (&, PE)H—I(Q),H&(Q)

— (g, pO>H*l(Q)’H&(Q)

= / AoVug - Vpo dx
Q

= / B#Vvo - Vg dx.
Q

This proves (2.2). Now,
BV - v, = _(tAsvps — B:Vve) - Vug + (A V) - Vpe.

Now, by virtue of (2.1) and (2.6), the divergences of the expressions within parantheses
in each of the two terms in the right-hand side are strongly convergeit f(2). Also,
Vv, andV p, converge weakly ir.2(2)". Thus, by the div-curl lemma of compensated
compactness theory (cf. Murat [7], Murat and Tartar [8] or Tartar [10]), we conclude that,
in view of (2.5) and (2.7),
B: Vv, - Vv, — —("AgV po — B*Vvg) - Vg + AgVvg - V po
= B*Vug - Vg

in D'(2). This proves (2.3).

Conversely, let3, and B# be symmetric and assume that (S1) holds. L& <2 be a

(relatively compact) open subset andjet D(2) be such tha) = 1 in a neighborhood
of w. Definent € H}(Q), 1 <k < N, to be the unique solution of the problem

p— I k = - i i
dlv(AsVngz div (AoV(nxx)) in Q } (2.9)

ns =0 on 92

Then, byH-convergenceyt — nx; weakly in H}(2) andA, Vn* — AoV (nx) weakly
in L2(Q)". By superposition of the solutions of (2.1) and (2.9), we get

—diV(A,V(ve £ 7¥)) = g £ (—div (AgV(nxp)) in Q.
Hence, by (S1), for a subsequence,
BV (v £ 17) - V(ve £ 0f) — B*V (vo + 1xp) - V(vo & nxx)

in D'(2). Hence, using the polarization identity which requires the symmet#;, afnd
B*, we get that

BV, - Vit — B*Vug - V(nxp) (2.10)
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in D’ (2). We can now apply the div-curl lemma to the pair, Vn’;), since divz, = 0, to
get

Ze - VE = 2+ V(nxp)
in D'(R2). On the other hand
k_ k k
Ze - VN, = AeVng - Vpe — BeVue - Vi,
— AoV(nxi) - Vpo — B*Vuo - V(nxp)

again by applying the div-curl lemma to the first term on the right-hand side and by also
using (2.10). Thus, ow, we have

z-ep = tAono -ep — B#Vvo - ey

wheree; is the standard-th basis vector oR" . This proves (2.7) ow and as» €2 was
arbitrary, we have the result so. [l

Remark2.5. We can use the test functiOﬂ&to prove the uniqueness of the matB¥X,
when it exists. Indeed, if we have two matricﬂﬁ,i = 1, 2, satisfying (S2), (or (S1), in

the symmetric case), setting = ni , we then have that (cf. (2.7))
'AoV po — BfV (nx;) = AoV po — B3V (nx)).

Thus onw, we have that3¥ = B and the result follows for all of2 sincew €< is
arbitrary. Wl

The existence of &% satisfying (S2) was proved in the general case by Kesavan and
Saint Jean Paulin [3]. We recall their formulation and also give another, shorter, proof of
their result.

We first need to define some test functions. First of all, we recall the existence of functions
Xk e HY(Q), for 1 < k < N, with the following properties (cf. Murat [7]).

Xk —~ x weakly in HY(Q)
A VXK —~ Ager weakly in L2(Q)V ) (2.11)
{div(A: VX¥)} converges strongly i ~1(£2)
We now define another set of test functiafs H&(Q) for 1 < k < N, which verify

—div(A. VY +'B.VvX) = 0in @ }

Yk = 0 onaQ (2.12)

Then, up to a subsequendg4’} converges weakly irH}(Q2) to y& and (A, Vy* +
'B.VX¥} converges weakly ii.2(2)V. Then, (cf. [3]), we define

L(BMex = Iimo(’Angf + B VX5 —AqVyE. (2.13)
£—>

Theorem 2.2. B¥ defined by(2.13)satisfieqS2).
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Proof. We extract a subsequence such that all the bounded sequences that occur below
are convergent in the relevant weak topologies. ¢.et— g strongly in H~1(Q) and

(ve, pe) € H}(Q) x Hi(2) be the solution of (2.1) and (2.6). Let — vo andp, — po

weakly in H}(2) and letz, — z weakly in L2(2). Now

2 VX =vp. . A, VXF — 1B, VXF. Vo,
= (A VXY . Vpe — (A VYE +'B.VXE) . Vo,
+ (Ae V) - VK

We can pass to the limit, using the div-curl lemma, in each term to get

z-ex = Ager - Vpo — Iimo(’Angf +'B.VX¥) - Vg 4+ AgVg - Vs
£—

using (2.13) from which (2.7) follows. Il

Remark?2.6. In the statements (S1) and (S2), we have required that the relevant conver-
gences occur for a subsequence. It must be noted that the subsequence is independent of
the strongly convergent sequenge Indeed, it depends only on the convergences implied

in (2.11) and (2.13) (cf. Rajesh [9]). 1

3. Properties of B*

We are now interested in properties like the symmetry and ellipticity of the matfix
defined in the previous section. Kesavan and Saint Jean Paulin [3] proved that it is symmet-
ric when all theB, are symmetric and tha#,, = B,,. However, the problem of estimating
By was left open. In this section, a new formula ®B¥ will be given from which the
symmetry can be just read off and which will also enable us to estifate

First of all, we recall the corrector matrices occurring in the study/efonvergence
of A,, as introduced by Murat [7]. IK* are the test functions introduced in the previous
section (cf. (2.11)), the corrector matrices are defined by

Mgep = VX*, 1<k<N. (3.1)
Then, the following properties hold (cf. Murat [7] or Murat and Tartar [8]):

M, — I weakly inL2(2)N*
A:M, — Ao weakly inL2()N?
"M, A M, — Agin D' ()N
{div(A; M,)} converges strongly it ()N

(3.2)

We now prove the main result of this section.
Theorem 3.1. B¥ defined by(2.13)is the limit, in the sense of distributions, @f , B, M, .
Proof. Itis enough to show that, forx i, j < N,

"MyB.M_e; cej — B#ek ej
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in D'(R2). Now

'M¢B:Mgey - ej ='B:Mej - Mgey
= (AcVY! +'BeMeej) - Meey —'A VY] - Meey
= ('A:Vy] +'B. VX)) - VXt — A, VXF . vy

We can pass to the limit in each of the two terms on the right-hand side using the div-curl
lemma to get

#
‘M B:Mei-ej —~'B"ej - e = B¥e, e;. N

COROLLARY 3.1
If the B, are symmetric, then so 8. W

Theorem 3.2. B¥ € M (B, Bu, ), wheref,, = p,, and

2
~ o
Bm = Bu (—M> .
m
Proof. ThatB,, = 8,, has already been proved in [3]. leke D(R2), ¢ > Oand let € RV,
Then

/ BoM.& - Motg dv < BM/ |M,&% dr
Q
ﬁM

ooy
_ Bu

U

fAMgs Mg dr
Q
f’MAMéf £¢ dx.
G

Passing to the limit, using Theorem 3.1 and (3.2), we get

fQ 3 é‘wdx<—on$ swdx<ﬂ—M M|s|2f dr,

since we know thatAqg € M (&, ay, ), wherea,, = o, anday = ot,zw/am (cf.
Murat [7]). Sincep was arbitrary, this proves the theorenil

Remark3.1. Considerthe one-dimensional case. Let@); < a.(x) < oy and0< By
<b:(x) < 6M- Let

4 g,y = f  in (0,1
ue(0) = us(1) =0.

Then, it has been shown by Kesavan and Saint Jean Paulin [3] that

/b%%dx / #duoduo
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with
2
pt =20
g0’
where
1 1 1 b 1 .
— - and == —; —~ = in L%(0,1) weak *.
de ao 8e ag 80

This yields precisely the bound obtained aboveisfar W

4. The perforated case

We now briefly describe the problem in the perforated case and state the results without
proofs, since those of the corresponding results in the previous case carmaatis
mutandis

LetQ c RY be a bounded domain and for- 0, letS, c  be a closed set (the set of
perforations). We cal2, = Q\ S, the perforated domain. Following Briane, Damlamian
and Donato [1], we say that a fami{§,} of holes is admissible if the following conditions
are fulfilled.

H1 If x. is the characteristic function ¢f, then every weaK-limit of {x.} in L () is
positive a.e. ll

H2 Let
Ve ={u e H (Q.)lu =0 on aQ}.

Then, there exists an extension operabpr V., — H(}(Q) and a constan€y > O,
independent of such that, for any € V,,

PSM|QS =Uu and ||VP8M||L2(Q)N E COHVMHLZ(QF)N . (41)

Analogous to the theory dff -convergence, we have a theoryi-convergence (cf. [1]).

We now assume that we have two families of matrides= M («,,, ap, Q) andB; €
M(Bm, Bu, Q). We denote byP;*: H Q) > vz, the adjoint ofP,. For functions in
L?(Q,), we also have the trivial extension opera@r which extends the functions by
zero across the holes to give a functior.f($2). We denote the unit outward normal (with
respect td2,) ona S, ben,.

(S3) There exists a matriB* € M(B,,, B, ©2) such that, given a strongly convergent
sequencég.} in H~1(Q) and the corresponding sequence of solutigns V, of

—div(A,Vv,) = Plg. in @,
AV -ng = 0 onas;, }, (4.2)
Vg 0 on Q2

then, for a subsequenck,v, — vg weakly in Hol(SZ) and

ng BVvg - Vv dx — [ B*Vug - Vug dx } m 4.3)

Xe BeV(Psvy) - V(Povy) — B*Vug- Vg in D'(Q)

(S4) There exists a matriB* € M(B,,, Bu. ©2) such that given a strongly convergent
sequencdg,} in H~1(Q) and the sequende,} of solutions of (4.2) and the sequence
{pe} In V. of solutions of



Homogenization and optimal control 345

div (A.Vp, — B;Vv,) = 0 in
(‘AsVpe — BeVug) -ne. = 0 onds, ¢, (4.4)
pe = 0 onoQ

then, for a subsequencB,v, — vg, P.p. — po weakly in H&(Q), ze = Q:(A:Vpe —
B:Vv,) — z weakly inL2(Q)" where

z="A9V po — BV, (4.5)
Ao being theHp-limit of {4,}. W

Theorem 4.1.If B¥ € M(B,, Bu, Q) is such that(S4) is true, then so igS3). The
converse holds when ttg and B# are symmetric. Il

Kesavan and Saint Jean Paulin [4] gave a formula for a mattisuch that (S4) holds.
If we define the corrector matricég, by

Meep = V(P:X5),

where thef(ﬁ are test functions with properties analogous to those mentioned in (2.11)
(cf. [1] or [4]), it can be shown that (cf. Rajesh [9])

Xe tMsBsMs —~ B*

in the sense of distributions. Thus Bf are symmetric, so i8” and we can show that

2
~ o
Bm = Bu (—M> .
Om
Kesavan and Saint Jean Paulin [4] proved that fowad Hol(Q)

# -2 2

This, in fact, implies thaB,, = ﬂmc(;z. We give a proof of this below. It is adapted
from a similar proof by CasadoiBz [2], but with different test functions.

Lemmad.l. LetA = A(x) be asymmetri&v x N matrix with coefficients i.°>°(2) such
that

/ AVw- -Vwdx >0 (4.6)
Q
forall w € Hy(Q). Then

A(x)E-£=0 (4.7)

a.einQforall &€ e RV,
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Proof. Letz € R" and lety > 0 be aCé—function. Define

ve(x) = & coge £ - x)p(x),
we(x) = & sin(e & - x)(x).

Thenv,, w, € Hol(sz). Applying (4.6) to bothy, andw, and adding the resulting inequal-
ities, we get

SZ/AV¢~V¢de~I—/(AE-§)(p2dx20.
Q Q

Passing to the limit as — 0, using the arbitrariness @f, we get (4.7) by standard
arguments. l
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